用户名: 密码: 验证码:
多功能纳米压印机的研制及其在自支撑光栅制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在“紫外/热压固化多功能纳米压印机的研制”部分,根据纳米压印的技术与工艺特点,自主设计与研制紫外/热压固化多功能纳米压印机。利用压印过程的真空环境,既可以减少压印缺陷以提高压印质量,同时有利于紫外固化胶材料的快速固化;纳米压印的驱动力来源于压缩空气,利用具有一定压力的高压气体,通过独创性的高压舱结构(它以具有一定伸缩行程的焊接波纹管和具有一定弹性系数的钢性弹簧为核心部件构成),对压印气体进行传导、缓冲、均压以及调控;巧妙地利用了真空腔在抽真空的初期产生的负压逐渐由小到大,使与波纹管相连接的压印平台缓慢平稳上升,实现压印基准面石英板的“软接触”,减轻压力的冲击效应,从而保证压印精度与质量,提高压印模板的使用寿命等;采用多项独创的有效措施(焊接波纹管系统、铜半球环调控结构以及环形钢珠调控结构)解决了压印过程中压印样品与压印基准面石英板的找平与自动调节技术难题,增大找平调节范围,使找平调节更灵活;压印基准面选用高平整度、超光滑、双面抛光的石英平板;结合石英窗口、高压汞灯、可控温铠装加热丝电炉以及冷却水装置等部件,实现纳米压印的紫外曝光固化与热压快速固化的两种压印技术模式;纳米压印功能的实施采用手动工作、维护检修以及全自动工作三种操作模式,自动控制系统采用可编程逻辑控制器(PLC)为控制单元,具备各种显示、数据输入与操作功能界面的触摸屏作为数据显示和操作指令输入单元;本课题研制的纳米压印机,功能齐全,结构合理,操作简便,性能可靠稳定,自动化程度高,适合于科研与小批量生产,用于制备大面积高精度纳米结构图案与功能器件。
     在“基于纳米压印技术的自支撑金透射光栅的设计与研制”部分,利用纳米压印技术,结合反应离子刻蚀、微电镀、紫外光刻、湿法腐蚀、等离子体刻蚀等工艺过程完成了200nm周期金的自支撑透射光栅的研制。利用纳米压印双层胶工艺体系成功实现了光栅的图案转移,转移后的光栅周期为200nm,占空比约为1:1,高度100nm。通过对反应离子刻蚀工艺过程中的主要工艺参数的探索,成功地获得了紫外光固化胶和PMMA分别在CHF3和O:环境下的最佳刻蚀参数以及此参数下的刻蚀速率:利用两步刻蚀法,对压印双层胶工艺体系最终得到了350nm槽深的高分子光栅图案。在亚微米微电镀工艺过程中,通过大量的工艺探索,获得了亚硫酸金盐脉冲镀金的较好的镀液配方和工艺参数,实现了在高分子光栅空白硅衬底处镀出200nm周期、占空比约为1:1、光栅高度约300nm的金属光栅结构。通过光刻工艺过程来制作光栅的支撑结构,成功制备出周期分别为4μm和150μm的网格状金支撑结构。选择了较为适宜的腐蚀液和腐蚀条件对光通窗口内的硅进行腐蚀,最终制备出了面积为5mm×8mm、周期200nm、占空比约为1:1、光栅高度约300nm的金自支撑透射光栅,填补了国内空白,为金属自支撑透射光栅的制备提供了一个高效、低成本的方法;并对其表面微结构与对同步辐射X射线衍射效率做了相应的表征与测试分析。
     在“一维光子晶体/金属薄膜结构中的表面电磁波特性的研究”部分,对一维光子晶体(1DPC)/金属薄膜结构中所激发的新型表面电磁波的物理特性进行了较系统与全面的理论与实验研究。存在于有限周期1DPC带隙内的表面波是不同于SPs的一种新的表面电磁波,与金属表面的SPs只能产生TM模式的表面波相比,1DPC表面既可以产生TM模式的表面波,也可以产生TE模式的表面波;通过1DPC材料与结构参数的选择,这种表面模可以在任意频率范围内产生;这种局域的表面模的表面场增强效应更强,因此与入射光的共振耦合强度也就更强;同时,这种表面波沿表面传输时能量损耗更小,因此传输距离更长。有限周期1DPC/金属薄膜结构带来了激发耦合表面电磁波的新原理、新方法与新的结构形式,这种表面电磁波的激发使其成为辐射型表面波的过程可以从1DPC/金属薄膜结构的1DPC带隙内的异常透射现象给予证实;该异常透射峰的位置主要由带隙频率、1DPC最表面材料状况等因素决定,这也意味着被激发的表面波的频率同样取决于这些因素;透射峰值的大小(共振耦合的强度)则主要由1DPC的周期数和金属薄膜的厚度决定,二者的选择原则是既要使两消逝波在表面产生足够强的局域场增强效应,同时又要使消逝波能够到达界面产生共振耦合。从表面波色散曲线可以看出,在任意入射角度的电磁波到达界面时,都同样能激发不同频率的TE表面波,但TM表面波的激发只能在入射角小于Brewster角时产生。发现两个特异的现象:一是从反射或透射谱可以看出,TM表面波在入射角大于Brewster角时仍然存在,这一点与前述不同;另外一点,随着入射角度的增大,TM表面波出现了异常透射增加的现象,这与TE表面波完全不同。对TE表面波来讲,可以利用吸收率的增减推断表面波沿表面传输距离的长短。作者从理论上预测有限周期1DPC表面可能产生类似的Goos-Hass位移,可通过它来研究TE和TM表面波的不同的传输特性。
This paper is mainly divided into three different parts:
     In the first part, we focus on the designing and fabrication of a new kind of nano-imprint lithography (NIL) machine—"multi-functional NIL machine with UV and hot pressing solidification methods". Under the vacuum condition, we can speed up the solidification of UV resist and reduce the number of defects with nanostructures in the procedure of NIL. The pressure used in NIL originates from compressed air. One feature of our design of this NIL machine is to use positive pressure in the high-pressure cabin and negative pressure in vacuum chamber to control the "up and down" of imprint platform, in order to reduce the impulse force to the quartz datum plane and soften the interaction between them. Through the design for pressure-guided system (including high-pressure welded bellows cabin), high-pressure air can be used to buffer, uniform, adjust and control the interaction force in large contact area, so that high precision and high resolution patterning may be obtained, and the service life of mold may be raised. In the equipment, a original automatic parallel-adjustment system is used to parallel two planes of the sample and the quartz datum plane, which consists of the following three parts:welded bellows cabin structure, semi-sphere copper ring regulation structure and ring-shape steel ball regulation structure. With these considerations, it can increase the range of parallel-adjustment and the stability, and enhance the regulation flexibility and precision. The plane of high quality quartz, with double-surface polishing and super-smooth and high degree of planarity, is selected as the datum plane. Combining with the quartz window, datum plane quartz plate and exposure shutter, high voltage mercury arc lamp accomplish UV exposure solidification for imprint resist; and a functional assembly is used for hot pressing solidification of resist which contains temperature-controlled armored heating wire and plate with cooling water conduit. The implement of all functions for NIL about this machine has three modes:manual operation mode, manual safeguard and repair mode and automatic operation mode, in which the core unit of the automatic control system is PLC(programmable logic controller) with a touch screen performing the functions of displaying processing parameters and flow chart,and inputing operation command. This developed NIL machine has all necessary functions with rational structures. It is easy to operate, its performance is stable and reliable, and it is also of high degree of process automation.
     In the second part, we have prepared Au free-standing transmission gratings based on the NIL technology combined with RIE (reactive ion etching), microelectroplating, photolithography and wet etching. We have successfully realized pattern transfer with gratings of period200nm, line-space ratio1:1and trench height100nm. To pattern high aspect ratio gratings, the double layer resist system was used to amplify low aspect ratio patterns formed in the top film into high aspect ratio patterns in the sub-layer through a selective etching process. The sub-layer is PMMA and the top-layer is UV-resist for pattern transfer. In the processing, the residual layer of the top layer was stripped by CHF3and O2, and the sub-layer was etched by O2. Because of their different etching rate by O2RIE, we can obtain about350nm height polymer grating pattern. The pattern was served as a mold during the following micro-electroplating process. Thorough optimizing the prescription of electroplating solution and process parameters, a200nm period,300nm trench height Au grating was successfully fabricated. The meshes support the nanostructure with periods2μm and150μm, respectively, and height1.5μm, which was fabricated by UV contact lithography and gold electroplating. After the support structure patterning, the center region of the backside of the wafer was removed by selecting proper etchant. Finally, the plating base was etched by Argon plasma, and then Au free-standing transmission gratings were obtained with period200nm, line-space ratio1:1, trench height300nm in large area of5mm x8mm.This work provides a high throughout and low-cost method for the fabrication of metal free-standing transmission gratings. Also we have researched the grating's microstructure and characterized the diffraction efficiency of the gratings using SEM method and synchronous radiation X-ray diffraction, respectively.
     In the third part, we have systematically studied, theoretically and experimentally, the physical properties of surface electromagnetical waves (SEWs) which are excited and coupled in the one dimensional photonic crystal (1DPC)-metal thin film structures by visuable light. The surface waves excited in finite period1DPC are a new kind of SEWs, different from surface plasmons (SPs) excited in the surface of metals. The surface wave can be not only TM modes, but also TE modes, and its modes may exist at any frequency in any bandgap of1DPC depending on the materials and the structures. In this system, the surface field enhancement effect originated from the localized surface modes is even stronger, thus results stronger the coupling intensity with incident light, than surface plasmon polariton.1DPC-metal film structure provides a new principle, new method and new structure for exciting and coupling SEWs. The observation of extraordinary transmission within the bandgap of1DPC from1DPC-metal film structures could obviously verify the existence of exciting radiative SEWs. The frequency of the transmission peak, corresponding to the surface mode frequency, is mainly determined by the bandgap and conditions of the outmost surface material. And the intensity of the peak, corresponding to the intensity of coupling between surface mode and incident light, is decided by the period number of1DPC and the thickness of metal film. To achieve a high transmission peak, we must manipulate the two evanescent waves in1DPC and metal film to reach the interface in order to make surface field enhancement effect strong enough. According to the dispersion curves of the surface modes, we found out that TE surface modes with different frequency may be excited by the incident light at any incident angle, but TM surface modes may be excited only at incident angles smaller than Brewster's angle. We discovered two extraordinary phenomena from the reflection and transmission spectrum:the first one is that TM surface modes may be excited at angles greater than Brewster's angle, and the second is that there exists extraordinary transmission for TM surface modes which intensity rises with the incident angle increasing, quite different from TE surface modes. In near future, we may study the propagating properties of both the surface waves along the interface from both their reflection and transmission spectrum. We also propose that the Goos-Hass shift may exist for the surface waves from1DPC surface, which may be used to research some new physical effects of the surface electromagnetic waves.
引文
1.S.Y.Chou,P.R.Krauss,and P.J.Renstron,Appl.Phys.Lett.67,3114(1995)
    2. S.Y.Chou,P.R.Krauss,and P.J.Renstron,Science272,85(1996)
    3. S.Y.Chou etal.,J.Vac.Sci.Technol.B15,2897(1997)
    4. J.Ekerdt and C.G. Willson, Proc. SPIE 3676,379(1999)
    5. G.C. Willson and M. Colburn, "Step and Flash Imprint Lithography" US Patent 2002,6334960
    6. M.D.Austin etal.,Appl.Phys.Lett.84,5299 (2004)
    7. S.Y.Chou,Keimel,and J.Gu,Nature 417,835(2002)
    8. R.Fabian and S.Y.Chou,Proc.IEEE96,248(2008)
    9. L.J.Guo,Adv.Mater.19,495(2007)
    10.B.Bhushan, "Nanostructure,Micro/nanofabrication and Materials",Chap.8,Spring,2007
    11. International Technology Roadmap for Semiconductors, Semiconductor Industry Association,2003.
    12.M.C.McAlpine,R.S.Friedman,D.M.Liebar,Nano Lett.3,443(2003)
    13.C.C.Cedeno etal.,Microelectron.Eng.61-2,25(2002)
    14.D.Li and L.J.Guo,Appl.Phys.Lett.88,63513(2006)
    15.L.J.Guo,P.R.Krauss,and S.Y.Chou,Appl.Phys.Lett.71.1881 (1997)
    16. W.Zhang,and S.Y.Chou,Appl.Phys.Lett.83,1632(2003)
    17.D.S.Macintyre betal., J.Vac.Sci.Technol.B21,2783(2003)
    18.D.Pisinano et al.,Synth.Met.153,237(2005)
    19. D.Pisinano etal.,Adv.Mater.16,525(2004)
    20L.J.Cuo,X.Cheng,and C,Y.Chao,J.Mod.Opt.49.663(2002)
    21.X.Chen., J.Vac.Sci.Technol.B20,2877(2002)
    22.G.Kreindl,T.Glinsner,and R.Miller,Nature Photonics 4,27(2010)
    23.P.C.Kao.,IEEETrans.Electron.Devices52,1722(2005)
    24.JWang and H.Kostal,Laser Focus World41,76(2005)
    25.J.JWang etal.,Opt.Lett.30,195(2005)
    26.W.-DLi and S.Y.Chou,Opt Express18,931(2010)
    27.S.W.Ahn etal.,Nanotechnology16,1874(2005)
    28.S.YChou,Proc.IEEE85,652(1997)
    29.W,Wu etal., J.Vac.Sci.Technol.B16,3825(1998)
    30.J.I.Martin etal.,J.Magn.Mater.256,449(2003)
    31.T.Glinsner etal.,Solid State Technol.48,51(2005)
    32.G.M.McClelland etal.,Appl.Phys.Lett.81,(2002)
    33.Z.J.Hu etal.,Nano Lett.5,1738(2005)
    34.H.Cao etal., Appl.Phys.Lett.81,174(2002)
    35.L.J.Guo etal.,Nano Lett.4,69(2004)
    36J.D.Hoff etal., Nano Lett.4,1909(2004)
    37.W.Hu etal., J.Vac.Sci.Technol.B23,2984(2005)
    1.E.H.Anderson,C.M.Horwitz,and H.I.Smith,Appl.Phys.Lett.49,874(1983)
    2. D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett.61,1580(1985).
    3.D.W.Keith etal., Phys. Rev. Lett.66,2693(1991)
    4. J.M.Carter etal.,J. Vav.Sci.Technol. B10,2909(1992)
    5.M.L.Schattenburg etal.,Proc.SPIE 2280,181 (1994)
    6.T.A.Savas etal., J.Vav.Sci.Technol.B13,2732(1995)
    7.M.Grunman,Appl.Opt.34,5732(1995)
    8.M.Andt et al.,Nature401,680(1999)
    9.R.E.Crisenti etal., Phys. Rev.A61,003608(2000)
    10.G.Gronniger etal., Appl.Phys.Lett.87,124104(2005)
    11..B.Mc Morran etal.,Ultramicroscopy106,358(2006)
    12.M.Ahn,R.K.Heilmann,and M.L.Schattenburg, J.Vav.Sci.Technol.B25,2593(2007)
    13.A.Anderson etal., Phys. Rev.A34,3513(1986)
    14.T.H..Markert etal., Proc.SPIE2280,168(1994)
    15. M.L.Schattenburg, J.Vav.Sci.Technol.B19,2319(2001)
    16.M.C.Weisskopf, Proc.SPIE5488,25(2004)
    17.C.R.Carizares etal.,Publ.Astron.Soc.Pac.117,1144(2005)
    18.. O. Bozler, etal., J. Vac. Sci. Technol. B 12,629 (1994).
    19.C.O.Bozler etal., J.Vav.Sci.Technol.B12,629(1994)
    20. R. M. H. New, R. F. W. Pease, and R. L. White, J. Vac. Sci. Technol. B 12,3196 (1994)
    21.H.Y.Ryu etal., Appl.Phys.Lett.79,3573(2001)
    22.A,Rosenberg etal., J. Vac. Sci. Technol. B25,721(2007)
    23.Y.Wang etal.,Opt.Express18,773(2010)
    24. H.I. Smith, I. H. Anderson, and A. M. Hawryluk, Berlin Heidelberg, Springer-verlag,1984
    25. N. M. Ceglio, A. M. Hawryluk, and R. H. Price, Appl. Opt.81,3953 (1982).
    26. N. M. Ceglio, A. M. Hawryluk, and R. H. Price, Opt. Eng.82,241 (1983)
    27. M. L. Schattenburg, and D. Dewey, Opt. Eng.30,1590 (1991
    28. F. J. Weinberg and N. B. Wood, J. Sci. Instrum.36,287 (1959)
    29. A. Savas, M. L. Schattenburg, and H. I. Smith, J. Vac. Sci. Technol. B 14,4167 (1996)
    30.X.Xu etal., Proc. SPIE 3766,380 (1999)\
    31. A. Yen, M. L. Schattenburg, and H. I. Smith, Appl. Opt.31,2972 (1992).
    32.徐向东,傅义麟,傅绍军等,光学技术,27,294(2001)
    33.朱效立,马杰,谢常青等,半导体学报,28,2006(2007)
    34. N. M. Ceglio, R. L. Kauffman, A. M. Hawryluk, et al, Appl. Opt.22,318 (1983)
    35. H. W. Schnopper, L. P. van Speybroeck, J. P. Delvaille, et al, Appl. Opt.16,368 (1977).
    36. H. Brauninger, P. Presehl, and K. P. Beuermann, Appl. Opt.18,368 (1979)
    37.杨家敏,易荣清,马洪良,等,光子学报,16,1631(1996)
    38.杨家敏,易荣清,陈正林,等,物理学报,48,613(1998)
    1.I.Tamm,Phys.Z.Sowjetunion 1,733 (1932)
    2.W.Shockley,Phys.Rev.56,317(1939)
    3.D.Kossel,J.Opt.Soc.Am.56,1434(1966)
    4.H.Raether,Surface Plasmons On Smooth and Rough Surface and On Gratings (Springer Verlag,1988)
    5.M.Kreiter etal.,Opt.Commun.165,117(1999)
    6.J.J.Greffet etal.,Nature 416,61(2002)
    7.F.Coos and Hanchen,Ann.Phys.(Leipzig)1,333(1947)
    8.F.Bretenaker,A.L.Floch,and L.Dutriaux,Phys.Rev.Lett.68,931(1992)
    9.R.J.P.Enqelen etal.,Phys.Rev.Lett.102,023902(2009)
    10.J.M.Simon,L.I.Perez,andV.A.Presa,J.Opt.Simon,L.I.Perez,andV.A.Presa,J.Opt.Soc.Am.A13, 1249(1996)
    11.O.Talayama.etal.,Phys.Rev.Lett.102,043903(2009)
    12.R.D.Meade etal.,Phys.Rev.B44,10961(1991)
    13.W.M.Robertson etal.,Opt.Lett.18,528(1993)
    14.A.V.Kavokin,I.A.Shelykh,and G.Malpuech,Phys Rev.B72,233102(2005)
    15.D.Artigas and L.Torner,Phys.Rev.Lett.94,013901(2005)
    16.M.Laroche,R.Carminati,and J.-J.Greffet,Phys.Rev.B71,155113(2005)
    17.T.W.Ebbesen etal.,Nature 391,667(1998)
    18.W.L.Barnes.A.Dereux,and T.W.Ebbesen,Nature 424,824(2003)
    19.S.C.Kitson,W.L.Barnes,and J,R,Sambles,Phys.Rev.Lett.77,2670(1996)
    20.D.F.Sievenpiper etal.,Phys.Rev.Lett.80,2829(1998)
    21.S.I.Bozhevolnyi etal.,Phys.Rev.Lett.86,3008(2001)
    22.J.J.Saarinen etal.,Opt.Express 13.3754(2005)
    23.A.M.Armani etal., Science 317,783(2007)
    24.M.Liscidini and J.E.Sipe,Appl.Phys.Lett.91,253125(2007)
    25.M.Liscidini and J.E.Sipe,J.Opt.Socc.Am.B26,279(2009)
    26K.Kneipp etal.,Phys.Rev.Lett.78,1667(1997)
    27.S.M.Mie and S.R.Emery,Science 275,1102(1997)
    28.J.B.Pendry,Phys.Rev.Lett.85,3966(2000)
    29.Z.Jacob,L.V.Alekseyev,and E.Narimanov,Opt.Express 14,8247(2006)
    30.A.Salandrino and N.Engheta,Phys.Rev.B74,075103(2006)
    31.Z.Liu etal.,Science 315,1686(2007)
    32.I.I.Smolyaninov,Y.-J.Hung and C.C.Davis,Science 315,1688(2007)
    33.S.Linden etal.,Science 306,1351(2004)
    34.S.Zhang etal., Phys.Rev.Lett.95,137404(2005)
    35.M.T.Hilletal./Nat.photon.1,589(2007)
    36.D.Bergman and M.Stockman etal.,Phys.Rev..Lett.90,027402 (2003)
    37.S.Noda,Science 314,260 (2006)
    38.M.A.Noginov etal.,Nature 460,1110(2009)
    39.S.J.Bentley,Phys.Rev.Lett.86,389(2001)
    40.A.Peer etal.,Opt.Express 12,6600(2003)
    41.T.Grosjean etal.,Opt.Lett.32,976(2007)
    42.M.Kiffner,J.Evers,and M.S.Zubairy.Phys.Rev.Lett.100,073602 (2008)
    43.B.Lamprecht etal.,Appl.Phys.Lett.79,51 (2001)
    44.S.A.Maier etal.,Nature 423,229(2003)
    45.S.I.Bozhevolnyi etal.,phys.Rev.Lett.95,046802 (2005)
    46.E.Ozbay,Science 311,189 (2006)
    47.S.I.Bozhevolnyi etal.,Nature 440,508 (2006)
    48.T.Holmgaard etal.,Phys.Rev.Lett.78,165431 (2008)
    49.R.Oulton etal.,Nature Photonics 2,496(2008)
    50.E.Yablonovitch,Phys.Rev.Lett.58,2059(1987)
    51.S.John,Phys.Rev.Lett.58,2486(1987)
    52.K.M.HO.,C.T.Chan,and C.M.Soukoulis,Phys.Rev.Lett.65,3152 (1990)
    53.E.Yablonovitch,T.J.Gmitter,and K.M.Leung,,Phys.Rev.Lett.67,2295(1991)
    54.D.R.Smith etal., Appl.Phys.Lett.65,645 (1994)
    55. C.Ciminelli,F.Peluso,and M.N.Armense,J.Lightwave Technol.23,886 (2005)
    56.M.Carras and A.De Rossi,Phys.Rev B74,235920 (2006)
    57.H.J.Lezee etal.,Science 297,820 (2002)
    58E.Moreno etal.,Phys.Rev.B69,121402 (2004)
    59.A.Sentenac and P.C.Chaumet,Phys.Rev.Lett.101,013901 (2008)
    60.L.Markley etal.,Phys.Rev.Lett.101,113901 (2008)
    61.M.Laroche etal.,Opt.Lett.30,2623 (2005)
    62.S.Enoch etal.,Appl.Phys.Lett.86,261101 (2005)
    63.I.Celanovic etal.,Phys.Rev.B.72,075127 (2006)
    64.M.Laroche etal.,Phys.Rev.Lett.96,123903 (2006)
    65.F.Ramos-Mendieta and P.Halevi,J.Opt.Soc.Am.B14,370 (1997)
    66.W.M.Robertson and M.S.May,Appl.Phys.Lett.74,1800 (1999)
    67.F.Villa and L.E.Regalado,Opt.Lett.27,646 (2002)
    68.B.Wang etal.,Phys.Rev.B74,195104 (2006)
    69.F.Ramos-Mendieta and P.Halevi,Opt.Commun.129,1 (1996)
    70.W.M.Robertson,J.Lightwave Technol.17,2013 (1999)
    71.A.Shinn and W.M.Robertson, Sens.Actuator 6105,360 (2005)
    72.M.Liscidini and J.E.Sipe,J.Opt.Soc.Am.B26,279 (2009)
    73.M.R.Lee and.P.M.Fauchet,Opt.Express15,4530 (2007)
    74.E.Guillermain etal.,Appl.Phys.Lett.90,241116 (2007)
    75.S.I.Bozhevolnyi etal.,Phys.Rev.B39,23504 (2002)
    76.R.Merlin,Science 317,927(2007)
    77R.J.P.Engelen etal.,Phys.Rev.Lett.102,023902 (2009)
    78.A.P.Vinogradov etal.,Phys.Rev.B74,045128 (2006)
    79.G.Guan etal.,Appl.Phys.Lett.88,211112 (2006)
    80.D.Takayama etal.,Phys.Rev.Lett.102,643903 (2009)
    81.J.A.Gaspar-Armenta and F.Villa,J.Opt.Soc.Am.B20,2349 (2003)
    82.P.Yeh,A,Yariv,and C.-S.Hong,J.Opt.Soc.Am 67,423 (1977)
    83.A.Y.Cho,A.Yariv,and P.Yeh,Appl.Phys.Lett.30,471 (1977)
    84.P.Yeh,A.Yariv,and A.Y.Cho.Appl.Phys.Lett.32,104 (1978)
    85.X.I.Saldana and G.Gonzales dela Cruz,J.Opt.Soc.Am.A8,36 (1991)
    86F.Ramos_Mendieta and P.Halevi,Opt.Commun.129,1 (1996)
    87.R.V.Nesnidal and T.G.Walker,Appl.Opt.35,2226 (1996)
    88.J.A.Gasper-Armenta and F.Villa,J.Opt.Soc.Am.B21,405 (2004)
    89.M.Laroche,R.Carminati,and J-J.Groffet,Phys.Rev.B71,155113 (2005)
    90E.Descrovi etal.,Appl.Phys.Lett.91,241109 (2007)
    91.E.Descrovi etal.,Opt.Lett.33,243 (2008)
    92.F.Ramos-Mendieta and P.Halevi,PhYS.Rev.B59,15112 (1999)
    93.N.Malkova and C.Z.Ning,Phys.Rev.B73,113113 (2006)
    94.R.Moussa etal.,Phys.Rev.B74,115111 (2006)
    95.N.Malkova and C.Z.Ning,Phys.Rev.B76,045305 (2007)
    96.A.Szameit etal.,Phys.Rev.Lett.101,203902 (2008)
    97.A.S.Ramirez-Duverger,J.Gasper-Armenta,andR.Garcia-Llamas Opt.Commun.277,302(2007)
    1.P.Yeh,A.Yariv and C.S.Hong,J.Opt.Soc.Am.67,423 (1997)
    2.X.I.Saldana and G.Gonzalez de la Cruz,J.Opt.Soc.Am.A8,36 (1991)
    3.A.P.Vinogrado etal.,Phys.Rep.B74,045128 (2006)
    4.P.Yeh,AS.Yariv,and A.Y.Cho,Appl.Phys.Lett.32,104(1978)
    5.R.D.Meade etal.,Phys.Rev.B44,10961 (1991)
    6.F.Ramos-Mendieta and P.Halevi,Phys.Rev.B59,15112 (1999)
    7.N.Malkova and C.Z.Ning,Phys.Rev.B73,113113 (2005)
    8.R.J.P.Engelen etal.,Phys.Rev.Lett.102,023902 (2009)
    9.F.Giorgis etal.,Opt.Express 18,8087 (2010)
    10.F.Villa,J.A.Gasper-Armenta,and F.Ramos-Mendieta,Opt.Commun.216,361 (2003)
    11.F.Ramos-Mendieta and P.Halevi,J.Opt.Soc.Am.B14,370 (1997)
    12.X.Yi and P.Yeh,J.Opt..Soc.Am.B18,352 (2001)
    13.W.M.Robertson and .M.S.May,Appl.Phys.Lett.74,1800 (1999)
    14.H.Raether,Surface Plasmons on Smooth and Rough Surface and On Gratings (Springer-Verlag,1988)
    15.J.-J.Greffet etal.,Nature 416,61 (2002)
    16.W.L.Barnes,A.Dereux,and T.W.Ebbesen,Nature 424,824 (2003)
    17.T.Aoki etal.,Nature 443,671 (2006)
    18.F.Villa etal.,Opt.Lett.27,646 (2002)
    1.P.Yeh,A.Yariv and A.Y.Cho,Appl.Phys.Lett.32,104 (1987)
    2.E.Descrovi etal.,Opt.Express 16,5453 (2008)
    3.R.J.P.Engelen etal.,Phys.Rev.Lett.102,023902 (2009)
    4.F.Goos and H.Hanchen,Ann.Phys.(Leipzig)1,333 (1947)
    5.F.Bretenaker,A.Le Floch,and L.Dutriaux,Phys.Rev.Lett.68,931 (1992)
    6.F.Villa etal.,Opt.Lett.27,646 (2002)
    7.W.M.Robertson and.M.S.May,Appl.Phys.Lett.74,1800 (1999)
    8.V.N.Konopsky and E.Alieva,Phys.Rev.Lett.97,253904 (2006)
    9.B.Wang etal.,Phys.Rev.B74,195104 (2006)
    10.A.V.Kavokin,I.A.Shelykh,and G.Malpuech,Phys.Rev.B72,233102 (2005)
    11.A.P.Vinogradov etal.,Phys.Rev.B74,045128 (2006)
    12.T.Goyo etal.,Phys.Rev.Lett.101,113902 (2008)
    13.A.S.Ramirez-Duverger etal.,Opt.Commun.277,302 (2007)
    14.E.Descrovi etal.Opt.Lett.33,243 (2008)
    15..M.Liscidini and J.E.Sipe,J.Opt.Soc.Am.B26,279 (2009)
    16.“表面等离子体诱导光子共振隧穿型一维光子带隙结构的设计方法及装置”,袁长胜,汤亮,陈延峰,祝世宁,闵乃本,中国专利,专利号:ZL03158307.5。
    17. F.Villa and J.A.sper-Armenta,J.Opy.Soc.Am.B20,2349 (2003)
    18.B.J.Lee,Y.-B.Chen,and Z.M.Zhang,Opt.Lett.33,204 (2008)
    19.A.S.Ramirez-Duverger,J.Gasper-Armenta,andR.Garcia-Llamas,J.Opt.Soc.Am.B25,1016 (2008)
    20.N. Malkova and C.Z.Ning,Phys.Rew.B76,045305(2007)
    21.A.Szameit etal.,Phys.Rev.Lett.101,203902(2008)
    22.F.Villa,J.Gasper-Armenta,andF.Ramos-Mendieta,Opt.Commun.216,361 (2003)
    23. F.Ramos-Mendieta and P.Halevi, J.Opy.Soc.Am.B14,370(1997)
    24.C.F.Klingshirn,Semiconductor Optics,p28,Springer-Verlag,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700