用户名: 密码: 验证码:
纳米二氧化锰基复合材料的制备及其电化学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化锰(MnO_2)是一种极具潜力的超级电容器用电极材料,但其较差的导电率和复杂多样的结构形貌限制了其电化学性能的发挥。本论文旨在提高MnO_2的电化学性能,通过纳米化和复合导电材料的策略,设计并制备高性能的纳米复合材料,探索材料制备工艺、微观结构和电化学特性之间的联系;并在此基础上,从非对称器件结构角度去构建兼具高功率密度和高能量密度的非对称电容器。
     鉴于导电聚合物良好的电容行为和导电性,本文选择了两种导电聚合物来提高MnO_2的电化学性能,并相应地制备了MnO_2/导电聚合物纳米复合材料。首先,采用界面法合成了MnO_2/聚苯胺微纳复合球,结果表明复合物具有空心结构和介孔特性,这种独特的三维层次结构使得电解液能够贮存且离子扩散阻力小,复合材料的比电容达到262F/g。其次,首次提出采用MnO_2作为反应模板,通过原位聚合一步合成了聚吡咯纳米结构。通过调控反应摩尔比,获得了MnO_2/聚吡咯一维纳米复合管,组分间的协同作用赋予其最高318F/g的比电容量,且倍率特性和循环稳定性优异。
     利用电纺纳米碳纤维无纺布作为导电基体,通过原位氧化还原法将MnO_2纳米结构均匀地沉积在纤维表面,获得了具有同轴结构的MnO_2@纳米碳纤维自支撑电极材料,避免了使用导电添加剂和粘结剂,降低了电极质量并简化了电极制备,复合材料表现出良好的电化学性能。接着从改善外层MnO_2纳米结构形貌、提高芯层纳米碳纤维导电性以及纳米复合聚吡咯等角度分别开发了三种有效的制备方式来进一步提高MnO_2的利用率,且都获得了性能更加优异的电极材料。此外,还探讨了温度对MnO_2@纳米碳纤维电化学行为的影响机理。
     最后,提出并设计了基于自支撑电极材料的水系非对称电容器体系,组装了以MnO_2@纳米碳纤维为正极、活性纳米碳纤维为负极以及Na2SO4水溶液为电解液的非对称电容器,工作电压达2.0V,分析了正极和负极材料优化器件性能的措施,最终获得了兼具高功率密度(20.8kW/kg)和高能量密度(30.6Wh/kg)的非对称电容器,显示出了广阔的应用前景。
Manganese dioxides (MnO_2) hold a significant promise as electrode materials forsupercapacitors, but the electrochemical performance is ultimately limited by its poorelectrical conductivity. It is therefore the aim of this work to fully exploit the potentialof MnO_2-based electrode materials. The dissertation proposes strategic designs andfabrication of high-performance nanocomposites by incorporating MnO_2nanostructuresinto conducting materials, and then explores the close relationship between synthesistechnique, microstucture and the electrochemical properties. From a point view ofelectrode configuration based on these new electrode materials, asymmetricsupercapacitors are finally constructed to harvest both high power density and highenergy density.
     In view of the good pseudocapacive behavior and good electrical conductivity ofconducting polymers, two kinds of MnO_2/conducting polymers nanocomposites wereprepared. Firstly, mesoporous MnO_2/polyaniline composites with unique morphology ofhierarchical hollow submicron spheres were prepared by modified interfacial synthesis.The three-dimentional architecture provides not only the “ion-buffering reservoirs” forrapid Faradic reactions but also the rich and uniform meso-channels for fast electrolyticdiffusion. The hierarchical nanocomposites electrode exhibits high specific capacitanceof262F/g with good rate capability. Secondly, a novel approach based on a reactivetemplate of MnO_2was proposed for the first time to in-situ polymerize polypyrrolenanostructures. By controlling the molar ratio of MnO_2and pyrrole monomers,one-dimentional nanotubular MnO_2/polypyrrole nanocomposites were prepared. Andthe synergistic effect between each component ensures a maximum specific capacitanceof318F/g with excellent rate capability and cycling stability.
     Electrospun carbon nanofibers (CNF) fabric was used as conductive substrates foruniform grow MnO_2nanostructures on the surface of CNF by in-situ redox deposition.The as-prepared MnO_2@CNF nanocomposites showed unique coaxial configurationand exhibited good electrochemical performance when used as freestanding electrodes.Afterwards, three effective sythesis techniques were developed to further improve theutilization of MnO_2nanostructures, including the introduction of porous, ultrathinMnO_2nanflakes, the increase in the electrical conductivity of CNF cores by embedding carbon nanotubes and the nano-combination with polypyrrole. The three resultedfreestanding nanocomposites electrodes showed better electrochemical prepertiescompared to the counterparts. Moreover, the effect of temperature on thepseudo-capacitive behavior of the freestanding MnO_2@CNF was extensively studied.
     Finally, a novel aqueous asymmetric sucapacitors was proposed and designedrationally by using two completely freestanding electrodes, i.e., MnO_2@CNF as thepositive electrode and activated CNF as the negative electrode. The influence ofpositive electrode and negative electrode on the electrochemical performance ofthe asymmetric supercapacitors was investigated. The as-assembled asymmetricsupercapacitor with optimal mass ratio can be operated reversibly over a widevoltage range of0-2.0V, and presented both high energy density of30.6Wh/kgand high power density of20.8kW/kg. The high-performance asymmetricsupercapacitors based on freestanding electrodes may find great applications inthe increasing demands on energy storage systems with high energy/powerdelivery.
引文
[1] Yoda S, Lshihara K. The advent of battery-based societies and the global environment in the21stcentury. J. Power Sources,1997,68:3-7.
    [2]翟秀静,刘奎仁,韩庆.新能源技术.北京:化学工业出版社,2010.
    [3] Liu C, Li F, Ma L P, et al. Advanced Materials for Energy Storage. Adv. Energy Mater.,2010,22: E28-E62.
    [4] Liu J, Zhang J G, Yang Z, et al. Materials Science and Materials Chemistry for Large ScaleElectrochemical Energy Storage: From Transportation to Electrical Grid. Adv. Funt. Mater.,2012, doi:10.1002/adfm.201200690.
    [5]穆献中,刘炳义.新能源和可再生能源发展与产业化研究.北京:石油工业出版社,2009.
    [6] Conway B E. Electrochemical supercapacitors: scientific fundamentals and technologicalapplications. Kluwer Academic/Plenum Publishers: New York,1999.
    [7] Guo Y G, Hu J S, Wan L J. Nanostructured materials for advanced energy conversion andstorage devices. Adv. Mater.,2008,20:2878-2887.
    [8] Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta,2000,445:2483-2498.
    [9]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评.电源技术,2007,31:921-925.
    [10]刘红梅,黄志宇,张颖,等.超级电容器专利技术现状及其发展趋势分析.国家知识产权局专利局电力发明审查部.2008-2009.
    [11] Sino-report. Ultra Capacitor Technology and Market Forecast (~2020). Ultra CapacitorResearch Center, Oct2012, http://www.sino-report.com
    [12] Miller J R, Burke A F. Electrochemical Capacitors Challenges and Opportunities forReal-World Applications. The Electrocheom. Soc. Interface,2008(spr.),53-57:
    [13] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors.Chem. Soc. Rev.,2012,41:797-821.
    [14]中国能源经济研究院.中国新能源和可再生能源政策法规汇编(1986-2011).北京:经济管理出版社,2011.
    [15] Sharma P, Bhatti TS. A review on electrochemical double-layer capacitors. Energy Conv.Management,2010,51:2901-2912.
    [16] Davies A, Yu A. Material advancements in supercapacitors: From activated carbon to carbonnanotube and graphene. Can. J. Chem. Eng.,2011,89,1342-1357.
    [17] Conway B E. Transition from “supercapacitor” to “battery” behaviour in electrochemicalenergy storage. J. Electrochem. Soc.,1999,138:1539-1548.
    [18] Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: Areview. J. Hydrogen Energy,2009,34:4889-4899.
    [19] Conway B E, Pelll W G. Double-layer and pseudocapacitance types of electrochemicalcapacitors and their applications to the development of hybrid devices. J. Solid StateElectrochem.,2003,7:637-644.
    [20] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy incapacitors. Carbon,2001,39:937-950.
    [21] Hong M S, Lee S H, Kim S W. Use of KCl aqueous electrolyte for2V manganeseoxide/activated carbon hybrid capacitor. Electrochem. Solid-State Lett.,2002,5: A227-A-230.
    [22]李会巧.超级电容器及其相关材料的研究[博士学位论文].上海:复旦大学化学系,2008.
    [23]刘海晶,夏永姚.混合型超级电容器的研究进展.化学进展,2011,23:595-604.
    [24]李作鹏,赵建国,温雅琼,等.超级电容器电解质研究进展.化工进展.2012,8:1631-1640.
    [25]袁磊,王朝阳,付志兵,等.超级电容器电极材料的研究进展.材料导报,2009,24(9):11-14.
    [26] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev.,2009,38:2520-2531.
    [27] Zhai Y, Dou Y, Zhao D, F et al. Carbon Materials for Chemical Capacitive Energy Storage. Adv.Mater.,2011,23,4828-4850.
    [28] Su D S, Schlogl R. Nanostructured Carbon and Carbon Nanocomposites for ElectrochemicalEnergy Storage Applications. ChemSusChem,2010,3:136-168.
    [29] Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J. PowerSources,2010,195:7880-7903.
    [30] Chmiola J, Yushin G, Gogotsi, et al. Anomalous increase in carbon capacitance at pore size lessthan1nanometer. Sci.,2006,313:1760-1763.
    [31] Huang J S, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitorsapplicable to diverse pore regimes, carbon materials and electrolytes. Chem.-Eur. J.2008,14,6614-6626.
    [32] Huang J S, Sumpter B G, Meunier V. Theoretical model for nanoporous carbon supercapacitors.Angew. Chem. Int. Ed.2008,47:520-524.
    [33] Zhao L, Fan L Z, Zhou M Q, et al. Nitrogen-Containing Hydrothermal Carbons with SuperiorPerformance in Supercapacitors. Adv. Mater.,2010,22,5202-5206.
    [34] Kodama M, Yamashita J, Soneda Y, et al. Preparation and electrochemical characteristics ofN-enriched carbon foam. Carbon,2007,45:1105-1107.
    [35] Hulicova-Jurcakova D, Kodama M, Shiraishi S, et al. Nitrogen-Enriched Nonporous CarbonElectrodes with Extraordinary Supercapacitance. Adv. Funct. Mater.,2009,19:1800-1809.
    [36] Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined Effect of Nitrogen-andOxygen-Containing Functional Groups of Microporous Activated Carbon on itsElectrochemical Performance in Supercapacitors. Adv. Funct. Mater.,2009,19:438-447.
    [37] Guo H, Cao Q. Boron and nitrogen co-doped porous carbon and its enhanced properties assupercapacitor. J. Power Sources,2006,186:551-556.
    [38] Ma F, Zhao H, Sun L, et al. A facile route for nitrogen-doped hollow graphitic carbon sphereswith superior performance in supercapacitors. J. Mater. Chem.,2012,2012,22,13464.
    [39] Bleda-Martinez M J, Macia-Agullo J A, Lozano-Castello D, et al. Role of surface chemistry onelectric double layer capacitance of carbon materials. Carbon,2005,43:2677-2684.
    [40] Oha H, Yamashita A, Minoura S, et al. Modification of the oxygen-containing functional groupon activated carbon fiber in electrodes of an electric double-layer capacitor. J. Power Sources,2006,158:1510-1516.
    [41] Wang D W, Li F, Liu M, et al.3D Aperiodic Hierarchical Porous Graphitic Carbon Material forHigh‐R ate Electrochemical Capacitive Energy Storage. Angew. Chem.2008,120:379-382.
    [42]张熊,马衍伟.电化学超级电容器电极材料的研究进展.物理,2011,40(10):656-667.
    [43] Liu X, Pickup P G. Ru oxide supercapacitors with high loadings and high power and energydensities. J. Power Sources,1008,176:410-416.
    [44] Ghosh A, Ra E J, Jin M, et al. High Pseudocapacitance from Ultrathin V2O5Filmselectrodeposited on self-standing carbon-nanofiber paper. Adv. Funct. Mater.,2011,21,2541–2547.
    [45] Chen Z, Augustyn V, Wen J, et al. High-Performance Supercapacitors Based on IntertwinedCNT/V2O5nanowire nanocomposites. Adv. Mater.,2011,23,791–795.
    [46] Yan C, Zhang X, Hou L, et al. Lysine-assisted hydrothermal synthesis of urchin-like orderedarrays of mesoporous Co(OH)2nanowires and their application in electrochemical capacitors. J.Mater. Chem.,2010,20:10809-10816.
    [47] Shi W, Zhu J, Sim D H, et al. Achieving high specific charge capacitances in Fe3O4/reducedgraphene oxide nanocomposites. J. Mater. Chem.,2011,21:3422-3427.
    [48] Ghobane O, Pascal J L, B. Fraisse, et al. Structural in Situ Study of the Thermal Behavior ofManganese Dioxide Materials: Toward Selected Electrode Materials for Supercapacitors. ACSAppl. Mater.&Interfaces,2010,2:3493-3505.
    [49] Wei W, Cui X, Chen W, et al. Manganese oxide-based materials as electrochemicalsupercapacitor electrodes. Chem. Soc. Rev.,2011,40,1697-1721.
    [50] Zhang S W, Chen G Z. Manganese oxide based materials for supercapacitors. Energy Mater.,2008,3:186-200.
    [51] Mi H, Zhang X, Ye X, et al. Preparation and enhanced capacitance of core–shellpolypyrrole-polyaniline composite electrode for supercapacitors. J. Power Sources,2008,176:403-409.
    [52] Biswas S, Drzal L T. Multilayered Nanoarchitecture of Graphene Nanosheets and PolypyrroleNanowires for High Performance Supercapacitor Electrodes. Chem. Mater.,2010,22:5667-5671.
    [53]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展.材料导报,2007,21(3):29-31.
    [54] Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energydensity electrochemical supercapacitor. Electrochem. Commun.,2008,10:268-272.
    [55]陈光烨,徐建华,杨亚杰等.超级电容器有机导电聚合物电极材料的研究进展.材料导报,2009,109-113.
    [56] Mastragostino M, Arbizzani C, Soavi F. Conducting polymers as electrode materials insupercapacitors. Solid State Ionics,2002,148:493-498.
    [57] Arbizzani C, Mastragostino M, Meneghello L. Polymer-based redox supercapacitors: Acomparative study. Electrochim. Acta,1996,41:21-26.
    [58] Mastragostino M, Arbizzani C, Paraventi R, et al. Polymer selection and cell design forelectric-vehicle supercapacitors. J. Electrochim. Acta,1996,41:21-26.
    [59] Clemente A, Panero S, Spila E, et al. Solid-state, polymer-based, redox capacitors. Solid StateIonics,1996,85:273-277.
    [60] Hashmi S A, Upadhyaya H M. Polypyrrole and poly(3-emthylthiophene)-based solid stateredox supercapacitors usuing ion conduting polymer electrolyte. Solid State Ionics,2002,152-153:883-889.
    [61] Bobacka J, Lewenstam A, Ivaska A. Electrochemical impedance spectroscopy of oxidizedpoly(3,4-ethylenedioxythiophene) film electrodes in aqueous solution. J. Electroanyl. Chem.,2000,489:17-27.
    [62] Li W K, Chen J, Zhao J J, et al. Application of ultrasonic irradiation in preparing conductingpolymers as active materials for supercapacitors. Mater. Lett.,2005,59:800-803.
    [63] Lee H Y, Goodenough J B. Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem.,1999,144:220-223.
    [64]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1).电池,2004,33(6):411-414.
    [65]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2).电池,2004,35(1):27-30.
    [66]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(3).电池,2005,35(2):105-108.
    [67]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(4).电池,2005,35(3):199-204.
    [68]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(5).电池,2004,35(5):362-363.
    [69] Hu C C, Tsou T W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodicdeposition. Electrochem. Commun.,2002,4:105-109.
    [70] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitor:comparison of electrode properties of sol-gel-derived and electrodeposited manganese dioxide.J. Electrochem. Soc.,2000,147:444-450.
    [71] Toupin M, Brousse T, Belanger D. Influence of Microstucture on the Charge Storage Propertiesof Chemically Synthesized Manganese Dioxide. Chem. Mater.,2002,14:3946-3952.
    [72] Lee H Y, Manivannan V, Goodenough J B. Supercapacitor Behavior with KCl Electrolyte. C. R.Acad. Sci. Paris Serie IIC Chem.,1999,2:565-577.
    [73] Toupin M, Brousse T, Belanger D. Charge Storage Mechanism of MnO2Electrode Used inAqueous Electrochemical Capacitor. Chem. Mater.,2004,16:3184-3190.
    [74] Kuo S L, Wu N L. Investigation of pseudocapacitive charge-storage reaction of MnO2nH2Osupercapacitors in aqueous electrolytes. J. Electrochem. Soc.,2006,153: A1317-A1324.
    [75] Xu C, Du H, Li B, et al. The capacitive behavior and charge storage mechanism of manganesedioxide in aqueous mild solution containing bivalent cations. J. Electrochem. Soc.,2009,156(1):A73-A78.
    [76] Xu C, Wei C, Li B, et al. Charge storage mechanism of manganese dioxide for capacitorapplication-Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations.J. Power Sources.2011,196:7854-7859.
    [77] Zhai D, Li B, Xu C, et al. Y. A study on charge storage mechanism of α-MnO2by occupyingtunnels with metal cations (Ba2+, K+) J. Power Sources,2011,196:7860-7867.
    [78] Song M K, Cheng S, Chen H, et al. Anomalous pseudocapacitive behavior of a nanostructured,mixed-valent manganese oxide film for electrical energy storage. Nano Lett.,2012,12:3483-3490.
    [79] Xu C, Li B, Du H, et al. Electrochemical properties of nanosized hydrous manganese dioxidesynthesized by a self-reacting microemulsion method. J. Power Sources,2008,180:664-670.
    [80] Tang X, Liu Z, Zhang C, et al. Synthesis and capacitive property of hierarchical hollowmanganese oxide nanospheres with large specific surface area. J. Power Sources,2009,193:939-943.
    [81] Wang H E, Lu Z, Qian D, et al. Facile synthesis and electrochemical characterization ofhierarchical α-MnO2spheres. J. Alloys Compd.,2008,466:250-257.
    [82] Subramanian V, Zhu H, Wei B. Nanostructured MnO2: Hydrothermal synthesis andelectrochemical properties as a supercapacitor electrode material. J. Power Sources,2006,159:361-364.
    [83] Subramanian V, Zhu H, Vajtai R, et al. Hydrothermal Synthesis and PseudocapacitanceProperties of MnO2Nanostructures. J. Phys. Chem. B,2005,109:20207-20214.
    [84] Chen X, Li X, Jiang Y, et al. Rational synthesis of α-MnO2and γ-Mn2O3nanowires with theelectrochemical characterization of α-MnO2nanowires for supercapacitor. Solid State Commu.,2005,136:94-96.
    [85] Athouel L, Moser F, Dugas R, et al. Variation of the MnO2Birnessite Structure uponCharge-Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4Electrolyte. J. Phys. Chem. C,2008,112:7270-7277.
    [86] Devaraj S, Munichandraiah N. Effect of Crystallographic Structure of MnO2on ItsElectrochemical Capacitance Properties. J. Phys. Chem. C,2008,112:4406-4417.
    [87] Ghodbane O, Pascal J L, Favier F. Microstructural Effects on Charge-Storage Properties inMnO2-Based Electrochemical Supercapacitors. ACS Appl. Mater. Interfaces,2009,1(5):1130-1139.
    [88] Lee S W, Kim J, Chen S, et al. Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodesfor Electrochemical Capacitors. Acs Nano,2010,4:3889-3896.
    [89] Bordjiba T, Belanger D. Development of new nanocomposite based on nanosized-manganeseoxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim.Acta,2010,55:3428-3433.
    [90] Xie X, Gao L. Characterization of a manganese dioxide-carbon nanotube composite fabricatedusing an in situ coating method. Carbon,2007,45:2365-2373.
    [91] Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxidespontaneously coated on carbon nanotube. Carbon,2007,45:375-382.
    [92] Ma S B, Nam K W, Yoon W S, et al. Electrochemical properties of manganese oxide coatedonto carbon nanotubes for energy-storage applications. J. Power Sources,2008,179:483-489.
    [93] Yan J, Fan Z, Wei T, et al. Carbon nanotube/MnO2composites synthesized bymicrowave-assisted method for supercapacitors with high power and energy densities. J. PowerSources,2009,194:1202-1207.
    [94] Gong L, Su L, Jiang H. Rapid synthesis of homogeneous MnO2/multi-wall carbon nanotubesnanostructure and its electrochemical capacitive behavior. Mater. Lett.,2011,65:1588-1590.
    [95] Zhang H, Cao G, Wang Z, et al. Growth of Manganese Oxide Nanoflowers onVertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive EnergyStorage. Nano Lett.,2008,8(9):2664-2668.
    [96] Amade R, Jover E, Caglar B, et al. Optimization of MnO2/vertically aligned carbon nanotubecomposite for supercapacitor application. J. Power Sources,2011,196:5779-5883.
    [97] Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/Carbon NanotubeHybrid Coaxial Arrays for High-Power Supercapacitor Applications. J. Phys. Chem. C,2010,114:658-663.
    [98] Hu L, Chen W, Xie X, et al. Symmetrical MnO2–Carbon Nanotube–Textile Nanostructures forWearable Pseudocapacitors with High Mass Loading. ACS Nano,2011,5:8904-8913.
    [99] Kim J K, Lee K H, Overzet L J, et al. Synthesis and Electrochemical Properties of SpincapableCarbon Nanotube Sheet-MnOx Composites for High-Performance Energy Storage Devices.Nano Lett.,2011,11:2611-2617.
    [100] Chou S L, Wang J Z, Chew S Y, et al. Electrodeposition of MnO2nanowires on carbonnanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem. Commn.,2008,10:1724-1727.
    [101] Xia H, Wang Y, Lin J, et al. Hydrothermal synthesis of MnO2/CNT nanocomposite with aCNT core/porous MnO2sheath hierarchy architecture for supercapacitors. Nanoscale Res.Lett.,2012,7:33-42.
    [102] Teng F, Santhanagopalan S, Wang Y, et al. In-situ hydrothermal synthesis ofthree-dimensional MnO2–CNT nanocomposites and their electrochemical properties. J. AlloysCompd.,2010,499:259-264.
    [103] Teng F, Santhanagopalan S, Meng D D. Microstructure control of MnO2–CNT hybrid underin-situ hydrothermal conditions. Solid State Sci.,2010,12:1677-1682.
    [104] Subramanian V, Zhu H W, Wei B Q. Synthesis and electrochemical characterizations ofamorphous manganese oxide and single walled carbon nanotube composites as supercapacitorelectrode materials. Electrochem. Commu.,2006,8:827-832.
    [105] Fan Z, Chen J H, Cui K Z, et al. Preparation and capacitive properties of cobalt-nickeloxides/carbon nanotube composites, Electrochemica Acta,2007,52:2959-2965.
    [106] Fan Z, Chen J H, Zhang B, et al. Electrochemically induced deposition method to prepareγ-MnO2-multi-walled carbon nanotube composites as electrode material in supercapacitors.Mater. Res. Bull.,2008,43:2085-2091.
    [107] Cui X W, Hu F P, et al. Dense and long carbon nanotube arrays decorated with Mn3O4nanoparticles for electrodes of electrochemical supercapacitors. Carbon,2011,49:1225-1234.
    [108] Zheng H, Tang F, Jia Y, et al. Layer-by-layer assembly and electrochemical properties ofsandwiched film of manganese oxide nanosheet and carbon nanotube. Carbon,2009,47:1534-1542.
    [109] Chen W, Fan Z, Gu L, et al. Enhanced capacitance of manganese oxide via confinement insidecarbon nanotubes. Chem. Commun.,2010,46,3905-3907.
    [110] Lei Z, Shi F, Lu L. Incorporation of MnO2-Coated Carbon Nanotubes between GrapheneSheets as Supercapacitor Electrode. ACS Appl. Mater. Interfaces,2012,4(2):1058-1064.
    [111] Yuan C, Su L, Gao B, et al. Enhanced electrochemical stability and charge storage ofMnO2/carbon nanotubes composite modified by polyaniline coating layer in acidicelectrolytes. Electrochim. Acta,2008,53:7039-7047.
    [112] Hou Y, Cheng Y, Hobson T, et al. Design and Synthesis of Hierarchical MnO2Nanospheres-Carbon Nanotubes-Conducting Polymer Ternary Composite for HighPerformance Electrochemical Electrodes. Nano Lett.,2010,10:2727-2733.
    [113] Sharma R K, Zhai L. Multiwall carbon nanotube supported PEDOT/manganese oxidenano-composite electrode for super-capacitors. Electrochim. Acta,2009,54:7148-7155.
    [114] Sivakkumar S R, Ko J M, Kim D Y, et al. Performance evaluation of CNT/polypyrrole/MnO2composite electrodes for electrochemical capacitors. Electrochim. Acta,2007,52:7377-7385.
    [115] Li Q, Liu J, Zou J, et al. Synthesis and electrochemical performance of multi-walled carbonnanotube/polyaniline/MnO2ternary coaxial nanostructures for supercapacitors. J. PowerSources,2011,196:565-572.
    [116] Chen S, Zhu J, Wu X, et al. Granphene oxide-MnO2Nanocomposites for Supercapacitors.ACS Nano,2010,4(5):2821-2829.
    [117] Yan J. Fan Z, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2composites as supercapacitor electrodes. Carbon,2010,48:3825-3833.
    [118] Mao L, Zhang K, Chan H S O, et al. Nanostructured MnO2/graphene composites forsupercapacitor electrodes-the effect of morphology, crystallinity and composition. J. Mater.Chem.,2012,22:1845-1851.
    [119] Li Z, Wang J, Liu S, et al. Synthesis of hydrothermally reduced graphene-MnO2compositesand their electrochemical properties as supercapacitors. J. Power Sources,2011,196:8160-8165.
    [120] Li Z, Mi Y, Liu X, et al. Flexible graphene/MnO2composite papers for supercapacitorelectrodes. J. Mater. Chem.2011,21:14706-14711.
    [121] Li Z, Wang J, Liu X, et al. Electrostatic layer-by-layer self-assembly multilayer films basedon graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J.Mater. Chem.,2011,21:3397-3403.
    [122] Zhang J, Jiang J, Zhao X S. Synthesis and Capacitive Properties of Manganese OxideNanosheets Dispersed on Functionalized Graphene Sheets. J. Phys. Chem. C,2011,115,6448-6454.
    [123] Lee H, Kang J, Cho M S, et al. MnO2/graphene composite electrodes for supercapacitors-theeffect of graphene intercalation on capacitance. J. Mater. Chem.,2011,21:18215-18219.
    [124] Dong X, Wang X, Wang J, et al. Synthesis of a MnO2–graphene foam hybrid with controlledMnO2particle shape and its use as a supercapacitor electrode. Carbon,2012,50:4865-4870.
    [125] Cheng Q, Tang J, Ma J, et al. Graphene and nanostructured MnO2composite electrodes forsupercapacitors. Carbon,2011,49:2917-2925.
    [126] Kim S H, Kim Y I, Park J H, et al. Cobalt-Manganese oxide/Carbon-nanofiber compositeelectrodes for supercapacitors. Int. J. Electrochem. Sci.,2009,4:1489-1496.
    [127] Yoon Y L, Ko J M. CoNi oxide/Carbon-nanofiber composite electrodes for supercapacitors.Int. J. Electrochem. Sci.,2008,3:1340-1347.
    [128] Liu J, Essner J, Li J. Hybrid supercapacitor based on coaxially coated manganese oxide onvertically aligned carbon nanofiber arrays. Chem Mater.,2010,22:5022-5030.
    [129] Wu M S, Guo Z S, Jow J J. Highly Regulated Electrodeposition of Needle-Like ManganeseOxide Nanofibers on Carbon Fiber Fabric for Electrochemical Capacitors. J. Phys. Chem. C,2010,114:21861-21867.
    [130] Bordjiba T, Belanger D. Direct Redox Deposition of Manganese Oxide on MultiscaledCarbon Nanotube/Microfiber Carbon Electrode for Electrochemical Capacitor. J. Electrochem.Soc.,2009,156(5): A378-A384.
    [131] Zhu S, Zhou H, Hibino M, et al. Synthesis of MnO2Nanoparticles Confined in OrderedMesoporous Carbon Using a Sonochemical Method. Adv. Funct. Mater.,205,15:381-386.
    [132] Dong X, Shen W, Gu J, et al. MnO2-Embedded-in-Mesoporous-Carbon-Wall Structure forUse as Electrochemical Capacitors. J. Phys. Chem. B,2006,110:6015-6019.
    [133] Zhang L L, Wei T, Wang W, et al. Manganese oxide–carbon composite as supercapacitorelectrode materials. Microporous Mesoporous Mater.,2009,123:260-267.
    [134] Patel M N, Wang X, Slanac D A, et al. High pseudocapacitance of MnO2nanoparticles ingraphitic disordered mesoporous carbon at high scan rates. J. Mater. Chem.,2012,22:3160-3169.
    [135] Jiang H, Yang L, Li C, et al. High–rate electrochemical capacitors from highly graphiticcarbon/tipped manganese oxide/mesoporous carbon-manganese oxide hybrid nanowires.Energy Environ. Sci.,2011,4:1813-1819.
    [136] Fischer A E, Pettigrew K A, Rolison D R, et al. Incorporation of Homogeneous, NanoscaleMnO2within Ultraporous Carbon Structures via Self-Limiting Electroless Deposition-Implications for Electrochemical Capacitors. Nano Lett.,2008,7(2):281-286.
    [137] Li Z S, Wang H Q, Huang Y G, et al. Manganese dioxide-coated activated mesocarbonmicrobeads for supercapacitors in organic electrolyte. Colloids and Surfaces A: Physicochem.Eng. Aspects,2010,366:104-109.
    [138] Li J, Wang X, Huang Q, et al. A new type of MnO2·xH2O-CRF composite electrode forsupercapacitors. J. Power Sources,2006,160:1501-1505.
    [139] Li G, Feng Z, Ou Y, et al. Mesoporous MnO2/Carbon Aerogel Composites as PromisingElectrode Materials for High-Performance Supercapacitors. Langmuir,2010,26(4):2209-2213.
    [140] Prasad K R, Miura N. Polyaniline-MnO2composite electrode for high energy densityelectrochemical capacitor. Electrochem. Solid-State Lett.,2004,7(11): A425-428.
    [141] Chen L, Sun L J, Luan F, et al. Synthesis and pseudocapacitive studies of composite films ofpolyaniline and manganese oxide nanoparticles. J. Power Sources,2010,195:3742–3747.
    [142] Sun L J, Liu X X. Electrodepositions and capacitive properties of hybrid films of polyanilineand manganese dioxide with fibrous morphologies. Eur. Polym. J.,2008,44:219-224.
    [143] Zhou Z H, Cai N C, Zhou Y H. Capacitive of characteristics of manganese oxides andpolyaniline composite thin film deposited on porous carbon. Mater. Chem. Phys.,2005,94:371–375.
    [144] Pan L J, Pu L, Shi Y, et al. Synthesis of Polyaniline Nanotubes with a Reactive Template ofManganese Oxide. Adv. Mater.,2007,19:461-464.
    [145] Jaidev, Jafri R I, Mishra A K, et al. Polyaniline–MnO2nanotube hybrid nanocomposite assupercapacitor electrode material in acidic electrolyte. J. Mater. Chem.,2011,21:17601-17605.
    [146] Zhang X, Ji L Y, Zhang S C, et al. Synthesis of a novel polyaniline-intercalated layeredmanganese oxide nanocomposite as electrode material for electrochemical capacitor. J. PowerSources,2007,173:1017–1023.
    [147] Jiang H, Ma J, Li C. Polyaniline/MnO2coaxial nanofiber with hierarchical structure forhigh-performance supercapacitors. J. Mater. Chem.,2012,16939-16942.
    [148] Sharma R K, Rastogi A C, Desu S B. Manganese oxide embedded polypyrrolenanocomposites for electrochemical supercapacitor. Electrochim. Acta,2008,53:7690-7695.
    [149] Zhang A Q, Xiao Y H, Lu L Z, et al. Polypyrrole/MnO2composites and their enhancedelectrochemical capacitance. J. Appl. Polym. Sci.,2012, doi:10.1002/app.38153.
    [150] Li J, Cui L, Zhang X. Preparation and electrochemistry of one-dimensional nanostructuredMnO2/PPy composite for electrochemical capacitor. Appl. Surf. Sci.,2010,256:4339-4343.
    [151] Zang J, Li X. In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites forhigh-performance supercapacitors. J. Mater. Chem.,2011,21,10965-10969.
    [152] Dong Z H, Wei Y L, Shi W, et al. Characterisation of doped polypyrrole-manganese oxidenanocomposite for supercapacitor electrodes. Mater. Chem. Phys.,2011,131:529-534.
    [153] Chin S F, Pang S C. Tetrapropylammonium-manganese oxide-polypyrrole hybridnanocomposite thin films as novel electrode materials for supercapacitors. Mater. Chem.Phys.,2010,124:29–32.
    [154] Xiao W, Hu D, Peng C, et al. Interfacial Synthesis Amphiphilic Monomers AssistedUltrarefining of Mesoporous Manganese Oxide Nanoparticles and the ElectrochemicalImplications. ACS Appl. Mater. Interfaces,2011,3:3120–3129.
    [155] Zhang X, Yang W S, Ma Y W. Synthesis of Polypyrrole-Intercalated Layered ManganeseOxide Nanocomposite by a Delamination/Reassembling Method and Its ElectrochemicalCapacitance Performance. Electrochem. Solid-State Lett.,2009,12: A95–A98.
    [156] Lu Q, Zhou Y. Synthesis of mesoporous polythiophene/MnO2nanocomposite and itsenhanced pseudocapacitive properties. J. Power Sources,2011,196,4088-4094.
    [157] Liu R, Duay J, Lee S B. Redox Exchange Induced MnO2Nanoparticle Enrichment inPoly(3,4-ethylenedioxythiophene) Nanowires for Electrochemical Energy Storage. ACSNano.,2010,4(7):4299-4307.
    [158] Liu R, Lee S B. MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one stepcoelectrodepositon for Electrochemical Energy Storage. J. Am. Chem. Soc.,2008,130:2942-2943.
    [159] Rios E C, Rosario A V, Mello R M, et al. Poly(3-methylthiophene)/MnO2compositeelectrodes as electrochemical capacitors. J. Power Sources,2007,163:1137-1142.
    [160] Liu J, Jiang J, Cheng C, et al. Co3O4Nanowire@MnO2Ultrathin Nanosheet Core-ShellArrays-A New Class of High-Performance Pseudocapacitive Materials. Adv. Mater.,2011,23:2076-2081.
    [161] Liu J, Jiang J, Bosman M, et al. Three-dimensional tubular arrays of MnO2–NiO nanoflakeswith high areal pseudocapacitance. J. Mater. Chem.2012,22:2419-2426.
    [162] Sherrill S A, Duay J, Gui Z, et al. MnO2/TiN heterogeneous nanostructure design forelectrochemical energy storage. Phys. Chem. Chem. Phys.,2011,13:15221-15226.
    [163] Dong S, Chen X, Gu L, et al. One dimensional MnO2/titanium nitride nanotube coaxial arraysfor high performance electrochemical capacitive energy storage. Energy Environ. Sci.,2011,4:3502-3508.
    [164] Yan J, Khoo E, Sumboja A, et al. Facile Coating of Manganese Oxide on Tin OxideNanowires with High-Performance Capacitive Behavior. ACS Nano.,2010,4(7):4247-4255.
    [165] Bao L, Zang J, Li X. Flexible Zn2SnO4/MnO2core-shell nanocable-carbon microfiber hybridcomposites for high-performance supercapacitor electrodes. Nano Lett.,2011,11:1215-1220.
    [166] Yuan C Z, Bao B, Shen L F, et al. Hierarchically structured carbon-based composites-Design,synthesis and their application in electrochemical capacitors. Nanoscale,2011,3,529-545.
    [167] Zhang J, Zhao X S. On the Configuration of Supercapacitors for Maximizing ElectrochemicalPerformance. ChemSusChem,2012,5:818-841.
    [168] Simon P, Gogotsi Y. Materials for electrochemical capacitor. Nat. Mater.,2008,7:845-854.
    [169] Hong M S, Lee S H, Kim S W. Use of KCl aqueous electrolyte for2V manganeseoxide/activated carbon hybrid capacitor. Electrochem. Solid-State Lett.,2002,5: A227-A-230.
    [170] Fan Z, Yan J, Wei T, et al. Asymmetric Supercapacitors Based on Graphene/MnO2andActivated Carbon Nanofiber Electrodes with High Power and Energy Density. Adv. Funct.Mater.,2011,21,2366–2375.
    [171] Zhao X, Zhang L, Murali S, et al. Incorporation of Manganese Dioxide within UltraporousActivated Graphene for High-Performance Electrochemical Capacitors. ACS Nano,2012,6:5404-5412.
    [172] Wu Z S, Ren W, Wang D W, et al. High-Energy MnO2Nanowire/Graphene and GrapheneAsymmetric Electrochemical Capacitors. ACS Nano,2010,4(10):5835–5842.
    [173] Choi B G, Yang M, Hong W H, et al.3D Macroporous Graphene Frameworks forSupercapacitors with High Energy and Power Densities. ACS Nano,2012,6:4020–4028.
    [174] Yu G H, Hu L B, Vosgueritchian M, et al. Solution-processed graphene/MnO2nanostructuredtextiles for high-performance electrochemical capacitors Nano Lett.,2011,11,2905-2911.
    [175] Gao H, Xiao F, Ching C B, et al. High-Performance Asymmetric Supercapacitor Based onGraphene Hydrogel and Nanostructured MnO2. ACS Appl. Mater. Interfaces,2012,4(5):2801-2810.
    [176] Chen P C, Shen G, Shi Y, et al. Preparation and Characterization of Flexible AsymmetricSupercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon NanotubeHybrid Thin-Film Electrodes. ACS Nano,2010,4:4403-4411.
    [177] Jiang H, Li, C, Sun T, et al. A green and high energy density asymmetric supercapacitor basedon ultrathin MnO2nanostructures and functional mesoporous carbon nanotube electrodes.Nanoscale,2012,4,807-812.
    [178] Brousse T, Taberna P L, Crosnier O, et al. Long-term cycling behavior of asymmetricactivated carbon/MnO2aqueous electrochemical supercapacitor. J. Power Sources,2007,173:633-641.
    [179] Brousse T, Raymundo-Pinero E, Belanger D. Optimisation of an asymmetricmanganeseoxide/activatedcarboncapacitor working at2V in aqueous medium. J. PowerSources,2006,153:183-190.
    [180] Brousse T, Toupin M, Belanger D. A Hybrid Activated Carbon-Manganese Dioxide Capacitorusing a Mild Aqueous Electrolyte. J. Electrochem. Soc.,2004,151: A614-A622.
    [181] Xu C, Du H, Li B, et al. Asymmetric Activated Carbon-Manganese Dioxide Capacitors inMild Aqueous Electrolytes Containing Alkaline-Earth Cations. J. Electrochem. Soc.,2009,156: A435-A441.
    [182] Qu Q, Li L, Tian S, et al. A cheap asymmetric supercapacitor with high energy at high power:Activated carbon//K0.27MnO2·0.6H2O. J. Power Sources,2010,195:2789-2794.
    [183] Cottineau T, Toupin M, Delahaye T, et al. Nanostructured transition metal oxides for aqueoushybrid electrochemical supercapacitors. Appl. Phys. A,2006,82:599-606.
    [184] Jin W H, Cao G T, Sun J Y. Hybrid supercapacitor based on MnO2and columned FeOOHusing Li2SO4electrolyte solution. J. Power Sources,2008,175:686-691.
    [185] Ng K C, Zhang S, Peng C, et al. Individual and bipolarly stacked asymmetrical aqueoussupercapacitors of CNTs/SnO2and CNTs/MnO2nanocomposites. J. Electrochem. Soc.2009,156: A846-853.
    [186] Yuan A, Zhang Q L. Manganese oxide-carbon hybrid supercapacitor using LiOH solution.Electrochem. Commu.,2006,8:1173-1178.
    [187] Khomenko V, Raymundo-Pinero E, Frackowiak E, et al. High-voltage asymmetricsupercapacitors operating in aqueous electrolyte. Appl. Phys. A,2006,82:567-573.
    [188] Reddy R N, Reddy R G. Synthesis and electrochemical characterization of amorphous MnO2electrochemical capacitor electrode material. J. Power Sources,2004,132:315-320.
    [189] Wang H E, Li Z, Qian D, et al. Facile synthesis and electrochemical characterization ofhierarchical α-MnO2spheres. J. Alloys Compd.,2008,466:250-257.
    [190] Bao S J, He B L, Liang Y Y, et al. Synthesis and electrochemical charaeterization ofamorphous MnO2for electrochemical capacitor. Mater. Sci. Eng. A,2005,397:305-309.
    [191] Wang H E, Qian D. Synthesis and electrochemical properties of α-MnO2microspheres.Mater. Chem. Phys.,2008,109:399-403.
    [192] Yu P, Zhang Z, Wang D, et al. Shape-controlled synthesis of3D hierarchical MnO2nanostructures for electrochemical supercapacitors. Cryst. Growth Des.,2009,9(1):528-533.
    [193] Xiao W, Xia H, Fuh J Y, et al. Growth of single-crystal α-MnO2nanotubes prepared by ahydrothermal route and their electrochemical properties, J. Power Sources,2009,193:935-938.
    [194] Roberts A J, Slade R C T. Effect of specific surface area on capacitance in asymmetriccarbon/α-MnO2supercapacitors. Electrochem. Acta,2010,55:7460-7469.
    [195] Yu P, Zhang X, Chen Y, et al. Self-template route to MnO2hollow structures forsupercapacitors. Mater. Lett.,2010,64:1480-1482.
    [196] Yuan J, Li M, Gomez S, et al. Shape-Controlled Synthesis of Manganese Oxide OctahedralMolecular Sieve Three-Dimensional Nanostructures. J. Am. Chem. Soc.,2005,127(41):14184-14185.
    [197] Luo J Y, Xia Y Y. Effect of pore structure on the electrochemical capacitive performance ofMnO2. J. Electrochem. Soc.,2007,154: A987-A992.
    [198] Wang Y G, Wu W, Cheng L, et al. A Polyaniline-Intercalated Layered Manganese OxideNanocomposite Prepared by an Inorganic/Organic Interface Reaction and Its HighElectrochemical Performance for Li Storage. Adv. Mater.,2008,20(11):2166-2170.
    [199]生瑜,陈建定,朱德钦.导电聚苯胺/二氧化锰复合材料原位化学合成制备及表征.复合材料学报.2004,21(4),1-7.
    [200] Gemeay A H, El-Sharkawy R G, Mansour I A, et al. Preparation and characterization ofpolyaniline/manganese dioxide composites and their catalytic activity. J. Colloid Interface Sci.,2007,308(2):385-394.
    [201] Nuraje N, Su K, Yang N I, et al. Liquid/liquid interfacial polymerization to grow singlecrystalline nanoneedles of various conducting polymers. ACS Nano,2008,2:502–506.
    [202] Lowell S, Shields J E, Thomas M A, et al. Characterization of Porous Solids and Powders:Surface Area, Pore Size and Density, Springer Publisher, Netherlands,2006, pp.43–44.
    [203] Li Y, Gong J, He G. et al. Synthesis of polyaniline nanotubes using Mn2O3nanofibers asoxidant and their ammonia sensing properties. Synth. Met.,2011,161:56–61.
    [204] Fan L Z, Maier J. High-performance polypyrrole electrode materials for redoxsupercapacitorsElectrochem. Commun.,2006,8,937-940.
    [205] Wu Q F, He K X, Mi H Y, et al. Electrochemical capacitance of polypyrrole nanowireprepared by using cetyltrimethylammonium bromide (CTAB) as soft template. Mater. Chem.Phys.,2007,101:367-373.
    [206] Luo J, Zhu H T, Fan H M, et al. Synthesis of Single-Crystal Tetragonal α-MnO2Nanotubes. J.Phys. Chem. C,2008,112:12594-12598.
    [207] Xu M, Wang L, Zhou W, et al. Hydrothermal synthesis and pseudocapacitance properties ofα-MnO2hollow spheres and hollow urchins. J. Phys. Chem. C,2007,111:19141-19147.
    [208] Vayssieres L, Keis K, Hagfeldt A, et al. Three-Dimensional Array of Highly OrientedCrystalline ZnO Microtubes. Chem. Mater.,2001,13(12):4395-4398.
    [209] Jia C J, Sun D, Luo F, et al. Large-Scale Synthesis of Single-Crystalline Iron Oxide MagneticNanorings. J. Am. Chem. Soc.,2008,130(50):16968–16977.
    [210] Hu J Q, Bando Y, Zhan J H, et al. Growth of Single-Crystalline Cubic GaN Nanotubes withRectangular Cross-Sections. Adv. Mater.,2004,16:1465-1468.
    [211] Jang J, Yoo H. Formation Mechanism of Conducting Polypyrrole Nanotubes in ReverseMicelle Systems. Langmuir,2005,21:11484-11489.
    [212] Jakab E, Meszaros E, Omastova M. Thermal decomposition of polypyrroles. J. Therm. Anal.Calo.,2007,88:515-521.
    [213]魏艳丽,董泽华,杨汝佳.超级电容器用聚吡咯纳米粒子的比容量衰减机理研究.高分子学报.2012,4:410-417.
    [214] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater.,2004,16(14):1151-1170.
    [215] Yang Y, Centrone A, Chen L, et al. Highly porous electrospun polyvinylidene fluoride(PVDF)-based carbon fiber. Carbon,2011,49:33953403.
    [216] Zeng J H, Wang Y F, Yang Y, et al. Synthesis of sea-urchin shaped γ-MnO2nanostructuresand their application in lithium batteries. J. Mater. Chem.,2010,20:10915-10918.
    [217] Hou H, Ge J J, Zeng J, et al. Electrospun polyacrylonitrile nanofibers containing a highconcentration of well-aligned multiwall carbon nanotubes. Chem. Mater.,2005,17:967-973.
    [218] Ge J J, Hou H, Li Q, et al. Assembly of Well-Aligned Multiwalled Carbon Nanotubes inConfined Polyacrylonitrile Environments: Electrospun Composite Nanofiber Sheets. J. Am.Chem. Soc.,2004,126:15755-15761.
    [219] Liu P, Verbrugge M, Soukiazian S. Influence of temperature and electrolyte on theperformance of activated-carbon supercapacitors. J. Power Sources,2006,156:712-718.
    [220] Kotz P, Hahna M, Gallay R. Temperature behavior and impedance fundamentals ofsupercapacitors. J. Power Sources,2006,154:550–555.
    [221] Masarapu C, Zeng H F, Hung K H, et al. Effect of temperature on the capacitance of carbonnanotube supercapacitors. ACS Nano,2010,3:2199-2206.
    [222] Liu X R, Peter G, Pickup P G. Performance and low temperature behaviour of hydrousruthenium oxide supercapacitors with improved power densities. Energy Environ. Sci.,2008,1:494–500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700