用户名: 密码: 验证码:
金属合金材料光频介电性质及其表面等离激元性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离激元学能够在纳米尺度下控制光的传播,因此近些年被广泛的应用在一大批新型器件中。但是由于表面等离激元学存在的必要条件之一即是需要具有负介电函数的金属单质材料,最常用的材料为银和金,材料种类相对单一,并且由于材料本身的欧姆损耗的存在极大限制了其发展。本论文主要利用反射式椭圆偏振法对金属合金薄膜材料的光频介电性质进行深入的研究,探索材料的介电性能可调行为,寻找更多能用于表面等离激元学的基本材料。论文的主要创新点如下:
     提出了一种基于反射式椭圆偏振测量法来测量金属合金薄膜介电性能的测试方法,详细研究了铝银合金薄膜的光频介电函数和能带结构,并提出了合金成分、退火温度以及薄膜厚度等对介电函数的调节作用。随着铝银合金薄膜退火温度增加,薄膜的晶粒尺寸长大并呈现择优取向,而薄膜的介电函数虚部值也会逐渐减弱;铝银合金在1.5eV附近存在一个典型的带间跃迁过程,且该跃迁中心随退火温度升高而红移,而合金薄膜中银成分的增加将使其向高频移动,薄膜介电函数随着厚度增加而逐渐趋于稳定;铝银合金薄膜在可见光频段是一种很好的表面等离激元基本材料。
     首次对银铂合金体系的光频介电性能进行测试,并提出了利用退火作用以及合金成分实现对其介电性能的调节。银铂合金薄膜介电函数实部和虚部分别随着波长增加而逐渐减小与增大;通过联合态密度函数谱以及拟合参数知道,银铂合金分别在1.9eV和3.1eV附近有带间跃迁峰存在,位于3.1eV处的跃迁峰随着铂含量的增加将出现红移,且银铂合金的介电函数损耗随着铂合金含量的增加而增加;经过300oC退火后的Ag-25at%Pt合金介电函数值明显小于其他退火温度下的值,因此,适当的退火作用可以极大提高银铂合金的表面等离激元品质因子。
     探索了金属银铜以及铜锌合金体系的光频介电性能和内部能带结构,并且提出了薄膜厚度以及退火温度变化等对介电性能的调控作用。银铜合金中存在两个典型跃迁分别位于1.7eV和3.5eV附近,随着合金中铜含量增加,合金晶格常数逐渐减小,并且3.5eV处的峰值出现蓝移,随着退火温度增加薄膜晶粒尺寸增加,表面粗糙度增加;而铜锌合金体系中存在2.0eV和3.2eV附近带间跃迁,并且薄膜厚度的变化对铜锌合金体系介电函数有很大的影响。
Surface plasmon polariton phtonics or “Plasmonics” is considered for a promisingnew device technology that aims to exploit the unique optical properties of metallicnanostructures to enable routing and active manipulation of light at nanoscale. Thematerials with negative permittivity such as metals Ag and Au are the basic conditionfor the existence of plasmoncis. However, the large losses of metals arising from theohmic loss and interband transitions, seriously limit the applicability of plasmonics andmetamaterials. Therefore, more low-loss materials are needed for the development ofplasmonics. In this dissertation, the optical properties of metallic alloy films depositedby direct current magnetron sputtering are studied with variable angle spectroscopicellipsometry (VASE). The dielectric constants and band structure of metallic alloy flimsare analyzed in detail with the change of annealing temperature, composition and filmthickness, respectively. The key findings and conclusions of this dissertation are asfollows:
     A new method based on variable angle spectroscopic ellipsometry is used to studythe optical dielectric properties of metallic alloy films. The dielectric properties ofAl-Ag alloy films in optical range were studied with different annealing temperatureand composition. We also investigated the band structure and the microstructure of thealloy films. The results show that the grain size and the imaginary part of the dielectricfunctions for the Al-Ag alloy films are increased and decreased with the increase of theannealing temperature, respectively. A typical interband transition around1.5eV of theAl-Ag alloy films separately shift to the low and high energy part with the increae of theannealing temperature and the silver concentrations in aluminum. The permittivity ofalloy films was slightly changed to the same with increasing the film thickness. TheAl-Ag alloy films are good candidate for plasmonics.
     The optical dielectric constants of Ag-Pt alloy films were investigaged byellipsometry for the first time. The experiments show that the real and imaginary part ofdielectric constants are decreased and increased with improving the wavelength,respectively. By ananlyzing the joint density of states (JDOS) and fitting parameters ofthe model, we found that there are two typical interband transitions around1.9eV and3.1eV in the Ag-Pt alloy films. Furthermore, the centre of3.1eV transition shows a red shift and the imaginary part of permittivity is increased byincreasing the platinum addition in silver. The dielectric functions ofAg-25at%Pt alloy films annealed at300oC is clearly less than the one withother annealing temperature. Therefore, the quality factors of Ag-Pt alloy filmscan be greatly improved with the appropriate annealing effect.
     The optical dielectric properties and band structures of the silver copperand copper zinc alloy films are tunable with the change of annealingtemperature and film thickness. It has been shown that two typical interbandtransitions around1.7eV and3.5eV are presented in Ag-Cu alloy films. Withincreasing the copper composition in silver, the lattice constants of Ag-Cualloys are decreased and the interband transition at3.5eV shifts to high energy.In addition, the grain size and surface roughness of Ag-Cu alloy films aresimultaneously increased by increasing the annealing temperature. For thecopper zinc alloy films, there are two interband transtions around2.0eV and3.2eV which arising from the top of the d band to the Fermi level in the vicinity ofthe L point in the reciprocal space. The dielectric functions of the Cu-Zn alloyfilms are relative to the film thickness.
引文
[1] Brongersma M L, Shalaev V M. The Case for Plasmonics. Science,2010,328(5977):440-441.
    [2]赵凯华.再论plasma的译名.物理,2007,(11):888-889.
    [3] Rider A E, Ostrikov K, Furman S A. Plasmas meet plasmonics Everything old is new again.Eur Phys J D,2012,66(9):226.
    [4] Anonymous. Surface plasmon resurrection. Nature Photonics,2012,6(11):707.
    [5] Cai W, Shalaev V. Optical Metamaterials:Fundamentals and Applications. New York:Springer,2010.
    [6] Faraday M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) toLight. Phil Trans R Soc Lond,1857,147:145-181.
    [7] Drude P. Treatment of metals. Ann Phys,1900,1:566.
    [8] Mie G. Theory for scattering/absorption of EM radiation by a sphere. Ann Phys,1908,330:377-445.
    [9] Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited bylight. Z Naturf,1968(23A):2135.
    [10] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustratedtotal reflection. Z Physics,1968(216):398.
    [11] Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silverelectrode. Chem Phys Lett,1974,26(2):163-166.
    [12] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission throughsub-wavelength hole arrays. Nature,1998,391(6668):667-669.
    [13] Heber J. Plasmonics: Surfing the wave. Nature,2009,461(7265):720-722.
    [14] Zia R, Schuller J A, Chandran A, et al. Plasmonics: the next chip-scale technology. MaterialsToday,2006,9(7-8):20-27.
    [15] Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science,2006,311(5758):189-193.
    [16] Macdonald K F, Zheludev N I. Active plasmonics: current status. Laser&Photonics Reviews,2010,4(4):562-567.
    [17] Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonicwaveguides. Appl Phys Lett,2005,87(13):131102.
    [18] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguidecomponents including interferometers and ring resonators. Nature,2006,440(7083):508-511.
    [19] Cai W, White J S, Brongersma M L. Compact, high-speed and power-efficient electroopticplasmonic modulators. Nano Lett,2009,9(12):4403-4411.
    [20] Hochberg M, Baehr-Jones T, Walker C, et al. Integrated plasmon and dielectric waveguides.Opt Express,2004,12(22):5481-5486.
    [21] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics,2007,1(11):641-648.
    [22] Tian J, Ma Z, Li Q A, et al. Nanowaveguides and couplers based on hybrid plasmonic modes.Appl Phys Lett,2010,97(23):231121.
    [23] Yang X, Liu Y, Oulton R F, et al. Optical Forces in Hybrid Plasmonic Waveguides. Nano Lett,2011(11):321-328.
    [24] Berini P, De Leon I. Surface plasmon-polariton amplifiers and lasers. Nature Photonics,2012,6(1):16-24.
    [25] Raether H. Surface plasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer-Verlag,1988.
    [26] Shalaev V M, Kawata S. Nanophotonics with surface plasmons. New York: Elsevier,2007.
    [27] Berini P, Charbonneau R, Lahoud N, et al. Characterization of long-rangesurface-plasmon-polariton waveguides. J Appl Phys,2005,98(4):43109.
    [28] Barnes W L. Surface plasmon-polariton length scales: a route to sub-wavelength optics. J Opta-Pure Appl Op,2006,8(4):S87-S93.
    [29] Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer,2007.
    [30] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: Theinfluence of size, shape, and dielectric environment. J Phys Chem B,2003,107(3):668-677.
    [31] Zhang J Z, Noguez C. Plasmonic Optical Properties and Applications of Metal Nanostructures.Plasmonics,2008,3(4):127-150.
    [32]王振林.表面等离激元研究新进展.物理学进展,2009,(03):287-324.
    [33] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York:Wiley-Interscience,1983.
    [34] Solé J G, Bausá L E, Jaque D. An Introduction to the Optical Spectroscopy of InorganicSolids. Chichester: John Wiley&Sons, Ltd,2005.
    [35] Bouhelier A, Huser T, Tamaru H, et al. Plasmon optics of structured silver films. Phys Rev B,2001,63(15):155404.
    [36] Bouhelier A, Wiederrecht G P. Excitation of broadband surface plasmon polaritons:Plasmonic continuum spectroscopy. Phys Rev B,2005,71(19):195406.
    [37] Zia R, Chandran A, Brongersma M L. Dielectric waveguide model for guided surfacepolaritons. Opt Lett,2005,30(12):1473-1475.
    [38] Zia R, Selker M D, Brongersma M L. Leaky and bound modes of surface plasmonwaveguides. Phys Rev B,2005,71(16):165431.
    [39] Lakowicz J R. Radiative decay engineering: Biophysical and biomedical applications. AnalBiochem,2001,298(1):1-24.
    [40] Brolo A G. Plasmonics for future biosensors. Nature Photonics,2012,6(11):709-713.
    [41] Wilson W D. Analyzing biomolecular interactions. Science,2002,295(5562):2103.
    [42] Hayashi S, Okamoto T. Plasmonics: visit the past to know the future. J Phys D Appl Phys,2012,45(43):433001.
    [43] Boltasseva A, Atwater H A. Low-Loss Plasmonic Metamaterials. Science,2011,331(6015):290-291.
    [44] Sarid D. Long-range surface-plasma waves on very thin metal-films. Phys Rev Lett,1981,47(26):1927-1930.
    [45] Yang F Z, Bradberry G W, Sambles J R. Long-range surface-mode supported by very thinsilver films. Phys Rev Lett,1991,66(15):2030-2032.
    [46] Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Boundmodes of asymmetric structures. Phys Rev B,2001,63(12541712):125417.
    [47] Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Boundmodes of symmetric structures. Phys Rev B,2000,61(15):10484-10503.
    [48] Krasavin A V, Zayats A V. Passive photonic elements based on dielectric-loaded surfaceplasmon polariton waveguides. Appl Phys Lett,2007,90(21):211101.
    [49] Krasavin A V, Zayats A V. Three-dimensional numerical modeling of photonic integrationwith dielectric-loaded SPP waveguides. Phys Rev B,2008,78(4):45425.
    [50] Pile D, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface.Opt Lett,2004,29(10):1069-1071.
    [51] Boardman A D, Aers G C, Teshima R. Retarded edge modes of a parabolic wedge. Phys RevB,1981,24(10):5703-5712.
    [52] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon-polariton guiding bysubwavelength metal grooves. Phys Rev Lett,2005,95(4):46802.
    [53] Pile D, Ogawa T, Gramotnev D K, et al. Theoretical and experimental investigation ofstrongly localized plasmons on triangular metal wedges for subwavelength waveguiding.Appl Phys Lett,2005,87(6):61106.
    [54] Zia R, Selker M D, Catrysse P B, et al. Geometries and materials for subwavelength surfaceplasmon modes. Journal of the Optical Society of America A-Opitcs Image Science andVision,2004,21(12):2442-2446.
    [55] Dionne J A, Lezec H J, Atwater H A. Highly confined photon transport in subwavelengthmetallic slot waveguides. Nano Lett,2006,6(9):1928-1932.
    [56] Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic bragg reflector. OptExpress,2006,14(23):11318-11323.
    [57] Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits basedon surface plasmon polariton gap waveguides. Opt Express,2005,13(1):256-266.
    [58] Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transportbelow the diffraction limit in metal nanoparticle plasmon waveguides. Nature Materials,2003,2(4):229-232.
    [59] Quinten M, Leitner A, Krenn J R, et al. Electromagnetic energy transport via linear chains ofsilver nanoparticles. Opt Lett,1998,23(17):1331-1333.
    [60] Oulton R F. Surface plasmon lasers: sources of nanoscopic light. Materials Today,2012,15(1-2):26-34.
    [61] Hill M T, Marell M, Leong E, et al. Lasing in metal-insulator-metal sub-wavelengthplasmonic waveguides. Opt Express,2009,17(13):11107-11112.
    [62] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature,2009,461(7264):629-632.
    [63] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser.Nature,2009,460(7259):1110-1168.
    [64] Geddes C D, Lakowicz J R. Metal-enhanced fluorescence. J Fluoresc,2002,12(2):121-129.
    [65] Mcfarland A D, Young M A, Dieringer J A, et al. Wavelength-scanned surface-enhancedRaman excitation spectroscopy. J Phys Chem B,2005,109(22):11279-11285.
    [66] Dieringer J A, Lettan R B, Scheidt K A, et al. A frequency domain existence proof ofsingle-molecule surface-enhanced Raman Spectroscopy. J Am Chem Soc,2007,129(51):16249-16256.
    [67] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhancedRaman scattering (SERS). Phys Rev Lett,1997,78(9):1667-1670.
    [68] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering. Science,1997,275(5303):1102-1106.
    [69] Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics,2006,1(1):5-33.
    [70] Lakowicz J R. Radiative decay engineering5: metal-enhanced fluorescence and plasmonemission. Anal Biochem,2005,337(2):171-194.
    [71] Lakowicz J R, Malicka J, D'Auria S, et al. Release of the self-quenching of fluorescence nearsilver metallic surfaces. Biophys J,2003,84(2):291A.
    [72] Lakowicz J R, Maliwal B P, Malicka J, et al. Effects of silver island films on the luminescentintensity and decay times of lanthanide chelates. J Fluoresc,2002,12(3-4):431-437.
    [73] Zhang Y X, Aslan K, Previte M, et al. Metal-enhanced phosphorescence: Interpretation interms of triplet-coupled radiating plasmons. J Phys Chem B,2006,110(49):25108-25114.
    [74] Kauranen M, Zayats A V. Nonlinear plasmonics. Nature Photonics,2012,6(11):737-748.
    [75] Palomba S, Harutyunyan H, Renger J, et al. Nonlinear plasmonics at planar metal surfaces.Phil Trans R Soc A,2011,369(1950):3497-3509.
    [76] Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications. JPhys D Appl Phys,2011,44(28300128)
    [77] Tanabe K. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells:Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and PlasmonicNanometallic Structures. Energies,2009,2(3):504-530.
    [78] Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors. ChemRev,2008,108(2):494-521.
    [79] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-likesensitivity. J Am Chem Soc,2004,126(19):5932-5933.
    [80] Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles onglass: Optimization of nanoparticle size. Anal Chem,2004,76(18):5370-5378.
    [81] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticleprobes. Science,2000,289(5485):1757-1760.
    [82] Mcfarland A D, Van Duyne R P. Single silver nanoparticles as real-time optical sensors withzeptomole sensitivity. Nano Lett,2003,3(8):1057-1062.
    [83] Raschke G, Kowarik S, Franzl T, et al. Biomolecular recognition based on single goldnanoparticle light scattering. Nano Lett,2003,3(7):935-938.
    [84] Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing.Nature Materials,2009,8(11):867-871.
    [85] Escobedo C, Brolo A G, Gordon R, et al. Optofluidic Concentration: Plasmonic Nanostructureas Concentrator and Sensor. Nano Lett,2012,12(3):1592-1596.
    [86] Liao H W, Nehl C L, Hafner J H. Biomedical applications of plasmon resonant metalnanoparticles. Nanomedicine,2006,1(2):201-208.
    [87] Fritzsche W, Taton T A. Metal nanoparticles as labels for heterogeneous, chip-based DNAdetection. Nanotechnology,2003,14(12):R63-R73.
    [88] El-Sayed I H, Huang X H, El-Sayed M A. Surface plasmon resonance scattering andabsorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:Applications in oral cancer. Nano Lett,2005,5(5):829-834.
    [89] Pissuwan D, Valenzuela S M, Cortie M B. Therapeutic possibilities of plasmonically heatedgold nanoparticles. Trends Biotechnol,2006,24(2):62-67.
    [90] Veselago V G. The electrodynamics of substances with simultaneously negative values ofepsilon and mu. Sov Phys Usp,1968,10(4):509-514.
    [91] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction.Science,2001,292(5514):77-79.
    [92] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negativepermeability and permittivity. Phys Rev Lett,2000,84(18):4184-4187.
    [93] Yuan H, Chettiar U K, Cai W, et al. A negative permeability material at red light. Opt Express,2007,15(3):1076-1083.
    [94] Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in opticalmetamaterials. Opt Lett,2005,30(24):3356-3358.
    [95] Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes and negative refraction in metalnanowire composites. Opt Express,2003,11(7):735-745.
    [96] Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires andleft-handed materials (vol11, pg65,2002). J Nonlinear Opt Phys,2002,11(3):339.
    [97] Dolling G, Enkrich C, Wegener M, et al. Low-loss negative-index metamaterial attelecommunication wavelengths. Opt Lett,2006,31(12):1800-1802.
    [98] Dolling G, Wegener M, Soukoulis C M, et al. Negative-index metamaterial at780nmwavelength. Opt Lett,2007,32(1):53-55.
    [99] Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with anegative refractive index. Nature,2008,455(7211):332-376.
    [100] Alu A, Engheta N. Emission Enhancement in a Plasmonic Waveguide at Cut-Off. Materials,2011,4(1):141-152.
    [101] Alu A, Engheta N. The quest for magnetic plasmons at optical frequencies. Opt Express,2009,17(7):5723-5730.
    [102] Alu A, Salandrino A. Negative effective permeability and left-handed materials at opticalfrequencies. Opt Express,2006,14(4):1557-1567.
    [103] Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett,2000,85(18):3966-3969.
    [104] Pendry J B. Negative refraction. Contemp Phys,2004,45(3):191-202.
    [105] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens.Science,2005,308(5721):534-537.
    [106] Pendry J B. Perfect cylindrical lenses. Opt Express,2003,11(7):755-760.
    [107] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifyingsub-diffraction-limited objects. Science,2007,315(5819):1686.
    [108] Blaber M G, Arnold M D, Ford M J. Designing materials for plasmonic systems: thealkali-noble intermetallics. J Phys-Condens Mat,2010,22(9):95501.
    [109] West P R, Ishii S, Naik G V, et al. Searching for better plasmonic materials. Laser&Photonics Reviews,2010,4(6):795-808.
    [110] Pile D, Krenn J. Perspective on plasmonics. Nature Photonics,2012,6(11):714-715.
    [111] Melville D, Blaikie R J. Super-resolution imaging through a planar silver layer. Opt Express,2005,13(6):2127-2134.
    [112] Zhang Y X, Aslan K, Previte M, et al. Metal-enhanced fluorescence: Surface plasmons canradiate a fluorophore's structured emission. Appl Phys Lett,2007,90(5):53107.
    [113] Yang G, Wang T, Wang Y H, et al. Metal-enhanced fluorescence of lanthanide chelates nearsilver nanostructured films. Chinese Sci Bull,2010,55(33):3746-3749.
    [114] Wang Y H, Zhou X R, Wang T, et al. Enhanced luminescence from lanthanide complex bysilver nanoparticles. Mater Lett,2008,62(20):3582-3584.
    [115] Chowdhury M H, Ray K, Gray S K, et al. Aluminum Nanoparticles as Substrates forMetal-Enhanced Fluorescence in the Ultraviolet for the Label-Free Detection of Biomolecules.Anal Chem,2009,81(4):1397-1403.
    [116] Zhang Y X, Aslan K, Previte M, et al. Metal-enhanced fluorescence from copper substrates.Appl Phys Lett,2007,90(17):173116.
    [117] Palik E D. Handbook of Optical Constants of Solids. Orlando: Academic Press,1985.
    [118] Chan G H, Zhao J, Hicks E M, et al. Plasmonic properties of copper nanoparticles fabricatedby nanosphere lithography. Nano Lett,2007,7(7):1947-1952.
    [119] Blaber M G, Arnold M D, Ford M J. A review of the optical properties of alloys andintermetallics for plasmonics. J Phys-Condens Mat,2010,22(14):143201.
    [120] Rivory J. Comparative study of the electronic structure of noble-metal-noble-metal alloys byoptical spectroscopy. Phys Rev B,1977,15(6):3119-3135.
    [121] Irani G B, Huen T, Wooten F. Optical properties of Ag and alpha-phase Ag-Al alloys. PhysRev B,1971,3(8):2385-2390.
    [122] Rosei R, Modesti S, Prantera V, et al. Shift of electronics states at L in alpha-phase Cu-Zn andCu-Al alloys. J Phys-Metal Phys,1979,9(11):2275-2285.
    [123] Naik G V, Boltasseva A. Semiconductors for plasmonics and metamaterials. Physica StatusSolidi-Rapid Research Letters,2010,4(10):295-297.
    [124] Katsnelson M I. Graphene: carbon in two dimensions. Materials Today,2007,10(1-2):20-27.
    [125] Abergel D, Apalkov V, Berashevich J, et al. Properties of graphene: a theoretical perspective.Adv Phys,2010,59(4):261-482.
    [126] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics,2012,6(11):749-758.
    [127] Brewer S H, Franzen S. Calculation of the electronic and optical properties of indium tinoxide by density functional theory. Chem Phys,2004,300(1-3):285-293.
    [128] Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3films: Basic optical properties andapplications to energy-efficient windows. J Appl Phys,1986,60(11):R123-R159.
    [129] Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in theoptical range [Invited]. Optical Materials Express,2011,1(6):1090-1099.
    [130] Naik G V, Schroeder J L, Ni X, et al. Titanium nitride as a plasmonic material for visible andnear-infrared wavelengths. Optical Materials Express,2012,2(4):478-489.
    [131] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms. Science,2004,306(5696):666-669.
    [132] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infraredspectroscopy. Nature Physics,2008,4(7):532-535.
    [133]陈燕平,余飞鸿.薄膜厚度和光学常数的主要测试方法.光学仪器,2006,(6):84-88.
    [134] Wyncke B, Brehat F, Kozlov G V. Low-frequency dielectric response function of sodiumnitrate. Phys Status Solidi B,1985,129(2):531-538.
    [135] Hofmeister A M, Campbell K R. Infrared spectroscopy of yttrium aluminum, yttrium gallium,and yttrium iron garnets. J Appl Phys,1992,72(2):638-646.
    [136] Wang R, Sun J B, Zhou J. Indefinite permittivity in uniaxial single crystal at infraredfrequency. Appl Phys Lett,2010,97(3):31912.
    [137] Losurdo M, Bergmair M, Bruno G, et al. Spectroscopic ellipsometry and polarimetry formaterials and systems analysis at the nanometer scale: state-of-the-art, potential, andperspectives. Journal of Nanoparticle Research,2009,11(7):1521-1554.
    [138] Wan D, Chen H, Lin Y, et al. Using spectroscopic ellipsometry to characterize and apply theoptical constants of hollow gold nanoparticles. Acs Nano,2009,3(4):960-970.
    [139] Wu Ying-Li, Wu Zhen-Sen. Optical constant measurement of rough surface alloy steel byellipsometry. Journal of Applied Optics,2008,29(4):610-613613.
    [140] Urban F K, Hosseini-Tehrani A, Khabari A, et al. Optical properties of nanophase filmsmeasured by variable-angle spectroscopic ellipsometry. Thin Solid Films,2002,408(1-2):211-217.
    [141] Kim K J, Kang J H, Bahng J H, et al. Optical properties of Fe1-xSixalloys (x<=0.1) studied byspectroscopic ellipsometry. J Appl Phys,1997,82(8):4043-4046.
    [142]孙竞博,周济.各项异性材料中的负折射行为.科学通报,2012,57(4):231-238.
    [143] Jingbo S, Ji Z, Bo L, et al. Indefinite permittivity and negative refraction in natural material:Graphite. Appl Phys Lett,2011,98(10):101901.
    [144]田民波.薄膜技术与薄膜材料.北京:清华大学出版社,2006.
    [145]赵嘉学,童洪辉.磁控溅射原理的深入探讨.真空,2004,(4):74-79.
    [146]梁铨廷.物理光学(第三版).北京:电子工业出版社,2008.
    [147] Azzam R M A, Bashara N M. Ellipsometry and polarized light. Amsterdama: North-Holland,1977.
    [148] Tompkins H G, Mcgahan W A. Spectroscopic ellipsometry and reflectometry:a user's guide.New York: Wiley Inter-Science,1999.
    [149] Tompkins H G, Irene E A. Handbook of ellipsometry. New York: William Andrew,2005.
    [150] Theiss W. Optical properties of porous silicon. Surf Sci Rep,1997,29(3-4):95-192.
    [151] Yang G, Sun J B, Zhou J. Dielectric properties of aluminum silver alloy thin films in opticalfrequency range. J Appl Phys,2011,109(12):123105.
    [152] Barron L W, Neidrich J, Kurinec S K. Optical, electrical, and structural properties of sputteredaluminum alloy thin films with copper, titanium and chromium additions. Thin Solid Films,2007,515(7-8):3363-3372.
    [153] W ltgens H, Friedrich I, Njoroge W K, et al. Optical, electrical and structural properties ofAl-Ti and Al-Cr thin films. Thin Solid Films,2001,388(1-2):237-244.
    [154] Shalaev V M. Transforming light. Science,2008,322(5900):384-386.
    [155] Ramakrishna S A. Physics of negative refractive index materials. Rep Prog Phys,2005,68(2):449-521.
    [156] Peale R E, Lopatiuk O, Cleary J, et al. Propagation of high-frequency surface plasmons ongold. J Opt Soc Am B,2008,25(10):1708-1713.
    [157] Blaber M G, Engel C J, Vivekchand S, et al. Eutectic Liquid Alloys for Plasmonics: Theoryand Experiment. Nano Lett,2012,12(10):5275-5280.
    [158] Xiao S M, Drachev V P, Kildishev A V, et al. Loss-free and active optical negative-indexmetamaterials. Nature,2010,466(7307):735-736.
    [159] Noginov M A, Zhu G, Bahoura M, et al. The effect of gain and absorption on surfaceplasmons in metal nanoparticles. Appl Phys B-Lasers O,2007,86(3):455-460.
    [160] Noginov M A, Podolskiy V A, Zhu G, et al. Compensation of loss in propagating surfaceplasmon polariton by gain in adjacent dielectric medium. Opt Express,2008,16(2):1385-1392.
    [161] Kim H C, Alford T L. Improvement of the thermal stability of silver metallization. J ApplPhys,2003,94(8):5393-5395.
    [162] Kim J Y, Na S I, Ha G Y, et al. Thermally stable and highly reflective AgAl alloy forenhancing light extraction efficiency in GaN light-emitting diodes. Appl Phys Lett,2006,88(4):43507.
    [163] Wissmann P, Finzel H. Electrical Resistivity of Thin Metal Films. Berlin Heidelberg:Springer-Verlag,2007.
    [164] Song J T, Li H Y, Li J, et al. Fabrication and optical properties of metastable Cu-Ag alloys.Appl Optics,2002,41(25):5413-5416.
    [165]曲喜新,过壁君.薄膜物理.北京:电子工业出版社,1994.
    [166] Smith D Y, Segall B. Intraband and interband processes in the infrared spectrum of metallicaluminum. Phys Rev B,1986,34(8):5191-5198.
    [167] Rammohan L R, Wolff P A. Joint density of states in interband transitions in semiconductorsin a magnetic field. Phys Rev B,1982,26(12):6711-6718.
    [168]戴永年.二元合金相图集.北京:科学出版社,2009.
    [169] Oppitz L K. Optical constants of the binary alloys of silver with copper and platinum.Physical Review,1917,10(2):156-165.
    [170] Durussel P, Feschotte P. A revision of the binary system Ag-Pt. J Alloy Compd,1996,239(2):226-230.
    [171] Chen W, Chen K P, Thoreson M D, et al. Ultrathin, ultrasmooth, and low-loss silver films viawetting and annealing. Appl Phys Lett,2010,97(21):211107.
    [172]钱佑华,徐至中.半导体物理.北京:高等教育出版社,1999.
    [173]潘金生,仝健民,田民波.材料科学基础(修订版).北京:清华大学出版社,2011.
    [174] Ehrenreich H, Philipp H R. Optical properties of Ag and Cu. Physical Review,1962,128(4):1622-1629.
    [175] Stahrenberg K, Herrmann T, Wilmers K, et al. Optical properties of copper and silver in theenergy range2.5-9.0eV. Phys Rev B,2001,64(11):115111.
    [176] Bacalis N C, Anagnostopoulos G F, Papanicolaou N I, et al. Electronic structure of orderedand disordered Cu-Ag alloys. Phys Rev B,1997,55(4):2144-2149.
    [177] O'Leary S K. An analytical density of states and joint density of states analysis of amorphoussemiconductors. J Appl Phys,2004,96(7):3680-3686.
    [178] Jackson W B, Kelso S M, Tsai C C, et al. Energy dependence of the optical matrix element inhydrogenated amorphous and crystalline silicon. Phys Rev B,1985,31(8):5187-5198.
    [179] Liang W Y, Beal A R. Study of optical joint density-of states function. J Phys C-Solid StatePhys,1976,9(14):2823-2832.
    [180] Sasovskaya I I, Korabel V P. Optical properties of Alpha-CuZn and Beta-CuZn brasses in theregion of quantum absorption. Phys Status Solidi B,1986,134(2):621-630.
    [181] Baba K, Mizuno F, Takase F, et al. Optical and magneto-optical properties of copper-nickelcompound metal island films. Appl Optics,1998,37(1):98-102.
    [182] Nastasiandrews R J, Hummel R E. Optical properties and electronics structure of diluteCu-Au Cu-Zn Cu-Al Cu-Ga Cu-Si Cu-Ge Cu-Sn and Cu-As alloys. Phys Rev B,1977,16(10):4314-4323.
    [183] Savaloni H, Farid-Shayegan F. Film thickness dependence on the optical properties ofsputtered and UHV deposited Ti thin films. Vacuum,2010,85(3):458-465.
    [184] Savaloni H, Kangarloo H. Influence of film thickness, substrate temperature andnano-structural changes on the optical properties of UHV deposited Ti thin films. J Phys DAppl Phys,2007,40(1):203-214.
    [185] Sun X L, Hong R J, Hou H H, et al. Thickness dependence of structure and optical propertiesof silver films deposited by magnetron sputtering. Thin Solid Films,2007,515(17):6962-6966.
    [186] Pells G P, Montgomery H. The optical properties of alpha-phase Cu-Zn Cu-Ga Cu-Ge andCu-As alloys. J Phys C-Metal Phys,1970,3(3):S330-S340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700