用户名: 密码: 验证码:
二氧化钛和卤氧化铋的晶面调控合成及光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术在解决环境和能源两个世界性课题方面有着举足轻重的地位,提高光催化剂的光催化活性是该领域的终极目标。由于半导体光催化剂的不同晶面具有不同的表面原子和电子结构,因而晶面暴露严重影响了其光催化活性。为此,本论文开展了二氧化钛和卤氧化铋的晶面光催化活性研究。获得的主要研究内容和结论归纳如下:
     1.以六氟氧钛为钛源和氟源,成功合成了{001}-{101}和{001}-{010}锐钛矿TiO2双晶面共存样品。比较二者的光催化活性发现,{010}晶面取代{101}晶面后抑制了TiO2的光催化活性。机理研究表明,{101}-{001}晶面共存样品的光生载流子能够有效的分离,而{010}晶面取代{101}晶面后,光生载流子却不能够有效的分离,因而光催化活性下降。
     2.以钛酸盐为前驱体,通过无氟的方法成功合成了90%暴露{101}、{001}和{010}晶面的锐钛矿TiO2单晶面样品。首次研究了反应介质对低指数晶面光催化活性顺序的影响,发现在液体介质中,光催化生成羟基自由基顺序为:{001}>{101}>{010};但是在气体介质中,光催化还原CO2活性却为:{010}>{101}>{001}。机理研究表明,气相介质中光还原CO2的活性顺序主要由CO2分子在不同晶面的吸附能力决定,液体介质中光催化产羟基自由基由不同晶面在液体介质中光生载流子分离效率和H2O分子在不同晶面的吸附能力决定。
     3.以K2Ti6013为前驱体,合成了TiO2纳米双锥(TiO2-NP)和TiO2纳米带(TiO2-NB),二者暴露的晶面都为{101}晶面,可以用于研究相同晶面暴露但不同型貌锐钛矿TiO2(101)样品的光催化活性。ROS产量检测、瞬态PL光谱、XPS光谱和ATR-IR光谱显示三维的TiO2-NP比一维的TiO2-NB含更多的{101}晶面间的棱,吸附了更多的解离水,且光生载流子寿命比TiO2-NB更长。
     4.以Bin(Tu)xCl3n为前躯体,成功合成了BiOCl内米片,其暴露的{001}晶面百分比(从71%到87%)可以由BiCl3:Tu的投料比调控。光催化活性结果显示,{001}晶面暴露的越多,BiOCl纳米片的紫外光光催化活性就越高。机理研究表明,BiOCl{001}晶面上的高氧原子浓度和低的Bi-O键能导致其紫外诱导氧空穴浓度随着{001}晶面的比例增加而增加,最后使得BiOCl的紫外光催化活性与其{001}晶面暴露比例成正比。
     5.发现Bin(Tu)xCl3n可以作为光敏剂,并通过部分水解Bin(Tu)xCl3n,首次制备了Bin(Tu)xCl3n内部敏化的BiOCl (001)纳米片可见光光催化剂。在可见光下(λ≥420nm),其光催化降解活性RhB分别为P25和纯BiOCl勺112倍和13倍。光催化机理证实Bin(Tu)xCl3n的敏化作用增强了BiOCl的可见光催化活性,超氧自由基为该催化过程中的主要活性物种,而且可以无色的分子探针NBT来量化之。
     6.在氩气气氛下,通过简单的紫外光诱导BiOCl产生氧空位,成功制备了黑色BiOCl.其可见光催化降解RhB活性是白色BiOCl的20倍。活性物种捕获实验表明,在可见光照射下,光生空穴是黑色BiOCl光催化过程中的主要活性物种,同时也有少量的超氧自由基起生成。
     7.通过直接煅烧BiI3前驱体,成功合成了高度对称的BiOI单晶纳米片(BiOI SCNs),其{001}晶面暴露比例可以高达95%。BiOI纳米片的厚度和{001}晶面暴露比例可以通过改变煅烧温度和时间来调整。光催化实验结果显示{001}晶面为BiOI SCNs的活性晶面,其可见光催化降解RhB活性为不规则BiOI的7倍。该{001}晶面依赖的光催化活性原于{001}晶面的暴露可以提高BiOI光生载流子的分离效率。
     8.通过化学气相转化方法合成了BiOI纳米结构薄膜。该BiOI薄膜中的BiOI为高度对称的、暴露{001}晶面的纳米片。BiOI的层状结构、化学气相转化固定和{001}晶面100%的O终止原子分别导致BiOI薄膜表现出了比P25TiO2薄膜更高的光催化活性、稳定性和光催化选择性。最后,我们提出了BiOI光催化产生O2·-可能机理。
     9.通过低温液相沉积法制备出Ag/AgX/BiOX (X=Cl, Br)三元可见光催化剂,其可见光催化降解RhB活性比Ag/AgX和BiOX都要高很多。光催化活性物种捕获实验和超氧自由基量化实验表明纳米Ag粒子在Ag/AgCl/BiOCl和Ag/AgBr/BiOBr中作用是不同的。在Ag/AgCl/BiOCl中,纳米Ag粒子作用为SPR效应:在Ag/AgBr/BiOBr中,纳米Ag粒子作用为Z-机制桥。
     10.通过低温液相沉积法制备出BiOBr-g-C3N4复合光催化剂,其可见光催化降解RhB活性比BiOBr和g-C3N4都要高很多。光催化活性物种捕获实验和超氧自由基量化实验表明g-C3N4导带电子能够迁移到比BiOBr的导带底更高的位置,与O2反应生成O2·-。
Semiconductor photocatalytic technology plays a very important role in solving the energy crisis and environmental protection which are the world problems. And the enhanced photocatalytic activity of photocatalys is the ultimate goal of the field. In this case, we carried out the photocatalytic activity of TiO2and BiOX (X=Cl, Br and I) with active facts exposure. The main contents and conclusion are as follows:
     1. Anatase TiO2crystals with{101}-{001} and{010}-{001} two facets coexistence were synthesized by (NH4)2TiF6acting as titanium and fluorine sources and the photocatalytic activity of the samples were investigated. The replacement of{101} by{010} facets inhibits the photocatalytic activity of anatase TiO2. The mechanism study demonstrated that photoinduced charge transfer properties between{101} facets and{001} facets resulted in the efficient charge separation. Replacing{101} by{010}, the charge transfer mechanism was altered and the photoinduced electron-hole pairs cannot be separated well. The photocatalytic activity of it has thus been inhibited.
     2. Anatase TiO2nanocrystals with{101},{001} or{010} single facets90%exposing were controllable synthesized from potassium titanate without fluorine. The liquid phase photocatalytic activity order of anatase TiO2facets for·OH production is{001}>{101}>{010}. But the gaseous phase photocatalytic activity order for of anatase TiO2facets for photoreduction of CO2to CH4is{010}>{101}>{001}. DRS, PL and ATR-IR spectra analysis showed that the photoactivity order of the gas phase for the photoreduction of CO2to CH4mainly depends on the CO2molecule adsorption property on the different exposed facet, and the separation efficiency of photo-generated carriers determines the photoactivity order for the·OH production in liquid phase.
     3.3D TiO2nanobipyramids (TiO2-NP) and1D TiO2nanoblets (TiO2-NB) were synthesized potassium titanate K2Ti6O13. The as-synthesized3D TiO2nanobipyramids and1D TiO2nanoblets all show high{101} facet exposed percentages and were used to investigate the shape effect of TiO2with the same facets exposure.3D TiO2nanobipyramids (101) showed higher photocatalytic activity than1D TiO2nanoblets (101). The reasons were discussed using ROS (reactive oxygen species) production, time-resolved photoluminescence spectra, XPS (X-ray photoelectron spectroscopy) spectra and ATR-IR (attenuated total reflectance infrared spectroscopy) spectra. The postulated mechanism suggests that3D TiO2 nanobipyramids has more step edges which results in more-OH/H2O molecules adsorption and longer life times of photoinduced carriers than1D TiO2nanoblets.
     4. BiOCl nanosheets (BiOCl NSs) were synthesized by hydrolyzing a hierarchical flowerlike molecular precursor (Bin(Tu)xCl3n,Tu=thiourea). The{001} facets percentage was controlled from71%to87%, by adjusting the feed ratios of BiCl3:Tu in molecular precursors. The relationship between the percentage of{001} facets and the photoactivity of BiOCl was investigated and a positive correlation was found. The mechanism study showed that the high oxygen atom density in{001} facets is considered the fundamental cause for the increase of the UV-induced oxygen vacancies in the crystal lattice, that enhances, consequently, the photoactivity of BiOCl.
     5. Bismuth complexes, Bin(Tu)xCl3n, were found to be photosensitizers for the first time. BiOCl nanosheets with inner Bin(Tu)xCl3n were synthesized The as-synthesized BiOCl displayed high visible light (λ≥420nm) photocatalytic activity which was112and13times higher than P25and BiOCl without Bin(Tu)xCl3n, for degrading RhB, respectively. The investigation of the photocatalytic mechanism demonstrated that Bin(Tu)xCl3n sensitized the BiOCl and resulted in unusually high visible light photocatalytic activity. The superoxide radical was the main active species in the photodegradation process. Furthermore, the concentration of the superoxide radical was quantized by the molecular probe nitroblue tetrazolium.
     6. Black BiOCl with oxygen vacancies was prepared by UV light irradiation with Ar blowing. The as-prepared black BiOCl sample showed20times higher visible light photocatalytic activity than white BiOCl for RhB degradation. The trapping experiment showed that the superoxide radical (O2·-) and holes (h+) were the main active species in aqueous solution under visible light irradiation.
     7. Highly symmetrical BiOI single-crystal nanosheets (BiOI SCNs) with dominant exposed{001} facets (up to95%) have been synthesized by annealing Bil3. The thickness and the{001} facets percentage of BiOI SCNs can be tuned by changing the annealing temperature. BiOI SCNs exhibit higher photoactivity (about7times) than irregular BiOI for degradation of Rhodamine B (RhB) dye under visible light irradiation. The{001} facets are the reactive facets of BiOI. The origin of{001} facets-dependent photoactivity is due to an improvement of the separation efficiency of photo-induced electrons and holes.
     8. BiOI thin film (BiOI TF) was prepared via a low temperature chemical vapor transport (CVT) route for the first time. As-synthesized BiOI thin film was composed of high symmetrical BiOI nanosheets with dominant exposed{001} facets. It displayed better photocatalytic activity, durability and selectivity than benchmark P25TiO2thin film and the origin come from the layered structure and good photoelectrochemical performance, CVT immobilization, the100%terminal oxygen atoms of{001} facets, respectively. At end, the photocatalytic mechanism with O2·-production was studied.
     9. Ag/AgX/BiOX (X=Cl, Br) three-component visible-light-driven (VLD) photocatalysts were synthesized by a low-temperature chemical bath method. The Ag/AgX/BiOX composites showed enhanced VLD photocatalytic activity for the degradation of rhodamine B, which was much higher than Ag/AgX and BiOX. The photocatalytic mechanisms were analyzed by active species trapping and superoxide radical quantification experiments. It revealed that metallic Ag played a different role for Ag/AgX/BiOX VLD photocatalysts, surface plasmon resonance for Ag/AgCl/BiOCl, and the Z-scheme bridge for Ag/AgBr/BiOBr.
     10. BiOBr-g-C3N4inorganic-organic composite photocatalysts were synthesized by a one-step chemical bath method at low temperature The BiOBr-g-C3N4composite showed much higher visible-light-driven (VLD) photocatalytic activity than pure g-C3N4and BiOBr for rhodamine B (RhB) degradation. The active species trapping and quantification experiments indicated that the photoinduced charges transfer between g-C3N4and BiOBr resulted in the O2·-generation at a higher conduction band of BiOBr.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972,238,37-38.
    [2]S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297,2243-2245.
    [3]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature,2008,453,638-641.
    [4]X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science,2011,331,746-750.
    [5]H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic Materials: Possibilities and Challenges, Adv. Mater.,2012,24,229-251.
    [6]A. Kubacka, M. Fernandez-Garcia, G. Colan, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev.,2012,112,1555-1614.
    [7]N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates, Nat. Nanotechnol.,2008,106, 106-111.
    [8]T. K. Townsend, N. D. Browning, F. E. Osterloh, Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting, ACS Nano,2012,6,7420-7426.
    [9]A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results, Chem. Rev.,1995,95,735-758.
    [10]C. Pan, D. Li, X. Ma, Y. Chen, Y. Zhu, Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4, Catal. Sci. Technol.,2011,1,1399-1405.
    [11]H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P.Wang, T. Xie, Effect of BiVO4 Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity, J. Phys. Chem. C,2012,116,2425-2430.
    [12]Z. Y. Jiang, Q. Kuang, Z. X. Xie, L. S. Zheng, Syntheses and Properties of Micro/Nanostructured Crystallites with High-Energy Surfaces, Adv. Funct. Mater.2010,20,3634-3645.
    [13]G. Liu, J. C. Yu, G. Q. Lu, H. M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations,advances and unique properties, Chem. Commun.,2011,47,6763-6783
    [14]F. Amano, T. Yasumoto, O. O. Prieto-Mahaney, S. Uchida, T. Shibayama and B. Ohtani, Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium (IV) oxide, Chem. Commun.,2009,44,2311-2323.
    [15]N. Q. Wu, J.Wang, D. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. G. Liu, S. S. Leonard and A. Manivannan, Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts, J. Am. Chem. Soc.,2010,132,6679
    [16]A. Selloni, Anatase shows its reactive side, Nat. Mater.,2008,7,613-615.
    [17]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [18]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets, Chem. Commun.,2009,4381-4383.
    [19]D. Q. Zhang, G. S. Li, H. B. Wang, K. M. Chan, J. C. Yu, Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets, Cryst. Growth Des.,2010,10,1130-1137.
    [20]M. Liu, L. Y. Piao, L. Zhao, S. T. Ju, Z. J. Yan, T. He, C. L. Zhou, W. J. Wang, Anatase TiO2 single crystals with exposed{001} and{110} facets:facile synthesis and enhanced photocatalysis, Chem. Commun.,2010,46,1664-1666.
    [21]F. Amano, O. O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, B. Ohtani, Decahedral Single-Crystalline Particles of Anatase Titanium(IV) Oxide with High Photocatalytic Activity, Chem. Mater.,2009,21,2601-2603.
    [22]Y. Alivov, Z. Y. Fan, A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage,J. Phys. Chem. C,2009,113,12954-12957.
    [23]G. Liu, C. H. Sun, H. G. Yang, S. C. Smith, L. Z. Wang, G. Q. Lu, H. M. Cheng, Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity, Chem. Commun.,2010,46,755-757.
    [24]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng, Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc,2009, 131,3152-3153.
    [25]X. Han, X. Wang, S. Xie, Q. Kuang, J. Ouyang, Z. Xie, L. Zheng, Carbonate Ions-Assisted Syntheses of Anatase TiO2 Nanoparticles Exposed with High Energy (001) Facets, RSC Adv.,2012,2, 3251-3253.
    [26]T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T. Weber, P. Fornasiero, C. B. Murray, Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity, J. Am. Chem. Soc.,2012,134,6751-6761.
    [27]G. Liu, H. G. Yang, X. Wang, L. Cheng, J. Pan, G. Q. Lu, H. M. Cheng, Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant{001} Facets Derived from TiN, J. Am. Chem. Soc.,2009,131,12868-12869.
    [28]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, H. F. Lu, L. Z. Wang, G. Q. Lu, H. M. Cheng, Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant{001} Facets,J. Phys. Chem. C,2009,113,21784-21788.
    [29]X. W. Wang, G. Liu, L. Z. Wang, J. Pan, G. Q. Lu, H. M. Cheng, TiO2 films with oriented anatase {001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes, J. Mater. Chem.,2011,21,869-873.
    [30]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, P. Wang, M. H. Whangbo, Highly Efficient Photocatalyst:TiO2 Microspheres Produced from TiO2 Nanosheets with a High Percentage of Reactive{001} Facets, Chem. Eur. J.,2009,15,12576-12579.
    [31]S. W. Liu, J. G. Yu, M. Jaroniec, Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed{001} Facets, J. Am. Chem. Soc.,2010,132, 11914-11916.
    [32]J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage, J. Am. Chem. Soc.,2010,132, 6124-6130.
    [33]J. Li, D. Xu, Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active{100} facets, Chem. Commun.,2010,46,2301-2303.
    [34]J. Pan, G. Liu, G. Q. Lu, H. M. Cheng, On the True Photoreactivity Order of{001},{010}, and{101} Facets of Anatase TiO2 Crystals, Angew. Chem. Int. Ed.,2011,50,2133-2137.
    [35]X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, L. Qi, Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active{100} and{001} Facets, Adv. Funct. Mater., 2011,21,3554-3563.
    [36]J. Li, K. Cao, Q. Li, D, Xu, Tetragonal faceted-nanorods of anatase TiO2 with a large percentage of active{100} facets and their hierarchical structure, CrystEngComm,2012,14,83-85.
    [37]J. Pan, X. Wu, L. Wang, G. Liu, G. Q. Lu, H. M. Cheng, Synthesis of anatase TiO2 rods with dominant reactive{010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells, Chem. Commun.,2011,47,8361-8363.
    [38]L. Wang, L. Zang, J. Zhao, C. Wang, Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with{001} and{100} facets, Chem. Commun.,2012,48,11736-11738.
    [39]Z. Lai, F. Peng, Y. Wang, H. Wang, H. Yu, P. Liu, H. Zhao, Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly{100} and{001} faceted surfaces, J. Mater. Chem.,2012, 22,23906-23912.
    [40]Z. Zheng, B. Huang, J. Lu, X. Qin, X. Zhang, Y. Dai, Hierarchical TiO2 Microspheres:Synergetic Effect of{001} and{101} Facets for Enhanced Photocatalytic Activity, Chem. Eur. J.,2011,17, 15032-15038.
    [41]T. Tachikawa, S. Yamashita, T. Majima, Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis, J. Am. Chem. Soc.,2011,133,7197-7204.
    [42]M. D'Arienzo, J, Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals:A Probe To Evaluate the Role of Crystal Facets in Photocatalytic Processes, J. Am. Chem. Soc.,2011,133,17652-17661.
    [43]T. Ohno, K. Sarukawa, M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions, New J. Chem.,2002,26,1167-1170.
    [44]L. Sun, Y. Qin, Q. Cao, B. Hu, Z. Huang, L. Ye, X. Tang, Novel photocatalytic antibacterial activity of TiO2 microspheres exposing 100% reactive {111} facets, Chem. Commun.,2011,47,12628-12630
    [45]H. Zhang, X. Liu, Y. Wang, P. Liu, W. Cai, G. Zhu, H. Yang, H. Zhao, Rutile TiO2 film with 100% exposed pyramid-shaped (111) surface:photoelectron transport properties under UV and visible light irradiation, J. Mater. Chem. A.,2013,1,2646-2652.
    [46]J. S. Chen, X. W. Lou, Unusual rutile TiO2 nanosheets with exposed (001) facets, Chem. Sci.,2011,2, 2219-2223.
    [47]Y. Yang, Y. Jin, H. He, Q. Wang, Y. Tu, H. Lu, Z. Ye, Dopant-Induced Shape Evolution of Colloidal Nanocrystals:The Case of Zinc Oxide, J. Am. Chem. Soc.,2010,132,13381-13394.
    [48]J. Zhan, Y. Bando, J. Hu, D. Golberg, K. Kurashima, Fabrication of ZnO Nanoplate-NanoroJunctions, Small,2006,2, No.1,62-65.
    [49]Z. Pan, J. Tao, Y. Zhu, J. F. Huang, M. P. Paranthaman, Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment:Unstable ZnO Nanostructures, Chem. Mater., 2010,22,149-154.
    [50]X. G. Han, H. Z. He, Q. Kuang, X. Zhou, X. H. Zhang, T. Xu, Z. X. Xie, L. S. Zheng, Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites, J. Phys. Chem. C,2009,113,584-589.
    [51]S. Cho, J. W. Jang, J. S. Lee, K. H. Lee, Exposed Crystal Face Controlled Synthesis of 3D ZnO Superstructures, Langmuir,2010,26,14255-14262.
    [52]徐晨洪,韩优,迟名扬.基于Cu2O的光催化研究.化学进展,2010,12,2290-2297.
    [53]X. Lan, J. Zhang, H. Gao, T. Wang, Morphology-controlled hydrothermal synthesis and growth mechanism of microcrystal Cu2O, CrystEngComm,2011,13,633-636.
    [54]X. Meng, G. Tian, Y. Chen, Y. Qu, J. Zhou, K. Pan, W. Zhou, G. Zhang, H. Fu, Room temperature solution synthesis of hierarchical bow-like Cu2O with high visible light driven photocatalytic activity, RSCAdv.,2012,2,2875-2881.
    [55]Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai, Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions, J. Phys. Chem. C,2009,113,14448-14453.
    [56]S. Sun, X. Song, Y. Sun, D. Deng, Z. Yang, The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity, Catal. Sci. Technol.,2012,2,925-930
    [57]W. Fan, X. Wang, M. Cui, D. Zhang, Y. Zhang, T. Yu, L. Guo, Differential Oxidative Stress of Octahedral and Cubic Cu2O Micro/Nanocrystals to Daphnia magna, Environ. Sci. Technol.,2012,46, 10255-10262.
    [58]Q. Hua, D. Shang, W. Zhang, K. Chen, S. Chang, Y. Ma, Z. Jiang, J. Yang, W. Huang, Morphological Evolution of Cu2O Nanocrystals in an Acid Solution:Stability of Different Crystal Planes, Langmuir, 2011,27,665-671.
    [59]M. Leng, M. Liu, Y. Zhang, Z. Wang, C. Yu, X. Yang, H. Zhang, C. Wang, Polyhedral 50-Facet CU2O Microcrystals Partially Enclosed by{311} High-Index Planes:Synthesis and Enhanced Catalytic CO Oxidation Activity, J. Am. Chem. Soc,2010,132,17084-17087.
    [60]Y. Zhang, B. Deng, T. Zhang, D. Gao, A. W. Xu, Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity, J. Phys. Chem. C,2010,114,5073-50.
    [61]W. C. Huang, L. M. Lyu, Y. C. Yang, M. H. Huang, Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, J. Am. Chem. Soc, 2012,134,1261-1267.
    [62]K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, W. D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B.,2006,68,125-129.
    [63]W. L. Huang, Q. Zhu, DFT Calculations on the Electronic Structures of BiOX (X= F, Cl, Br, I) Photocatalysts With and Without Semicore Bi 5d States, J. Comput. Chem.,2008,30,183-90.
    [64]肖信.碘氧化铋分级微纳结构的合成、表征和可见光光催化活性研究.[博士学位论文].广州,华南理工大学,2011.
    [65]L. Zhao, X. Zhang, C. Fan, Z. Liang, P. Han, First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals, Physica B.,2012,407,3364-3370.
    [66]H. Zhang, L. Liu, Z. Zhou, First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs), RSC Adv.,2012,2,9224-9229.
    [67]K. Zhao, X. Zhang, L. Zhang, The first BiOI-based solar cells, Electrochem. Commun.,2009,11, 612-615.
    [68]M. A. Gondal, X. Chang, M. A. Ali, Z. H. Yamani, Q. Zhou, G. Ji, Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532 nm pulsed laser exposure, Appl. Catal. A.,2011,397,192-200.
    [69]X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X= Cl, Br, I) Nanoplate Microspheres, J. Phys. Chem. C,2008,112,747-753.
    [70]J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX (X= Cl, Br, I) Particles Synthesized in Reverse Microemulsions, Chem. Mater.,2007,19,366-373.
    [71]X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, BiOX (X= Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance, Catal. Commun.,2010,11,460-464.
    [72]Zhengtao Deng, Dong Chen, Bo Peng, Fangqiong Tang, From Bulk Metal Bi to Two-Dimensional Well-Crystallized BiOX (X= Cl, Br) Micro-and Nanostructures:Synthesis and Characterization, Crystal Growth & Design,2008,8,2995-3003.
    [73]Z. Ai, W. Ho, S. Lee, L. Zhang, Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light, Environ. Sci. Technol., 2009,43,4143-4150.
    [74]X. Zhang, L. Zhang, T. Xie, D. Wang, Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures, J. Phys. Chem. C,2009,113,7371-7378.
    [75]Y. Wang, K. Deng, L. Zhang, Visible Light Photocatalysis of BiOI and Its Photocatalytic Activity Enhancement by in Situ Ionic Liquid Modification,J. Phys. Chem. C,2011,115,14300-14308.
    [76]M. Liu, L. Zhang, K. Wang, Z. Zheng, Low temperature synthesis of a-Bi2O3 solid spheres and their conversion to hierarchical BiOI nests via the Kirkendall effect, CrystEngComm,2011,13,5460-5466.
    [77]M. Shang, W. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template, J. Hazard. Mater.,2009,167,803-809.
    [78]Z. Jianga, F. Yang, G. Yang, L. Kong, M. O. Jones, T. Xiao, P. P. Edwards, The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange, J. Photochem. Photobio. A.,2010,212,8-13.
    [79]W. Wang, F. Huang, X. Lin, J. Yang Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI, Catal. Commun.,2008,9,8-12.
    [90]S. Cao, C. Guo, Y. Lv, Y. Guo, Q. Liu, A novel BiOCl film with flowerlike hierarchical structures and its optical properties, Nanoteclmology,2009,20,275702-7pp.
    [81]K. Zhang, D. Zhang, J. Liu, K. Ren, H. Luo, Y. Peng, G. Li, X. Yu, A novel nanoreactor framework of iodine-incorporated BiOCl core-shell structure:enhanced light-harvesting system for photocatalysis CrystEngComm,2012,14,700-707
    [82]H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li, Controlled Hydrothermal Synthesis of Bismuth Oxyhalide Nanobelts and Nanotubes, Chem. Eur. J.,2005,11,6519-6524.
    [83]L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X= Cl, Br) Visible Light Photocatalysts:Surface Plasmon Resonance and Z-scheme Bridge, ACS Catal.,2012,2,1677-1683.
    [84]L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl, Phys. Chem. Chem. Phys.,2012,14,82-85.
    [85]J. M. Song, C. J. Mao, H. L. Niu, Y. H. Shen, S. Y. Zhang, Hierarchical structured bismuth oxychlorides:self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties, CrystEngComm,2010,12,3875-3881.
    [86]J. Ma, X. Liu, J. Lian, X. Duan, W. Zheng, Ionothermal Synthesis of BiOCl Nanostructures via a Long-Chain Ionic Liquid Precursor Route, Crystal Growth & Design,2010,10,2522-2527.
    [87]F. Chen H. Liu, S. Bagwasi, X. Shen, J. Zhang, Photocatalytic study of BiOCl for degradation of organic pollutants under UV Irradiation, J. Photochem. Photobio. A.,2010,215,76-80.
    [88]L. P. Zhu, G. H. Liao, N. C. Bing, L. L. Wang, Y. Yang, H. Y. Xie, Self-assembled 3D BiOCl hierarchitectures:tunable synthesis and Characterization, CrystEngComm,2010,12,3791-3796.
    [89]H. Peng, C. K. Chan, S. Meister, X. F. Zhang, Y. Cui, Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport, Chem. Mater.,2009,21, 247-252.
    [90]Z. Deng, F. Tang, A. J Muscat, Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates, Nanotechnology,2008,19,295705-6pp.
    [91]Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEngComm,2009,11,1857-1862.
    [92]M. A. Gondal, X. F. Chang, Z. H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J.,2010,165,250-257.
    [93]J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance, RSCAdv.,2011,1,1542-1553.
    [94]S. Peng, L. Lil, P. Zhu, Y. Wu, M. Srinivasan, S. G. Mhaisalkar, S. Ramakrishna, Q. Yan,Controlled Synthesis of BiOCl Hierarchical Self-Assemblies with Highly Efficient Photocatalytic Properties, Chem-Asian J.,2013,8,258-268.
    [95]L. Zhang, X. F. Cao, X. T. Chen, Z. L. Xue, BiOBr hierarchical microspheres:Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties, J. Colloid. Inter. Set, 2011,354,630-636.
    [96]D. Zhang, M. Wen, B. Jiang, G. Li, J. C. Yu, Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment, J. Hazard. Mater.,2012,211-212,104-111.
    [97]J. Xu, W. Meng, Y. Zhang, L. Li, C. Guo, Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway, Appl. Catal. B.,2011,107,355-362.
    [98]P. Xiao, L. Zhu, Y. Zhu, Y. Qian, Selective hydrothermal synthesis of BiOBr microflowers and Bi2O3 shuttles with concave surfaces, J. Solid. State. Chem.,2011,184,1459-1464.
    [99]Y. Huo, J. Zhang, M. Miao, Y. Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Appl. Catal. B.,2012,111-112,334-341.
    [100]Y. Feng, L. Li, J. Li, J. Wang, L. Liu, Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene, J. Hazard. Mater.,2011,192,538-544.
    [101]Z. Jiang, F. Yang, G. Yang, L. Kong, M. O. Jones, T. Xiao, P. P. Edwards, The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange, J. Photochem. Photobio. A.,2010,212,8-13.
    [102]Y. Fang, Y. Huang, J. Yang, P. Wang, G. Cheng, Unique Ability of BiOBr To Decarboxylate D-Glu and D-MeAsp in the Photocatalytic Degradation of Microcystin-LR in Water, Environ. Sci. Technol.,2011,45,1593-1600.
    [103]J. Xia, S. Yin, H. Li, H. Xu, Y. Yan, Q. Zhang, Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid, Langmuir,2011,27,1200-1206.
    [104]Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation, J. Mol. Catal. A.,2011,334, 116-122.
    [105]X. Chang, J. Huang, Q. Tan, M. Wang, G. Ji, S. Deng, G. Yu, Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation, Catal. Commun.,2009,10,1957-1961.
    [106]Y. Lei, G. Wang, S. Song, W. Fan, M. Pang, J. Tang, H. Zhang, Room temperature, template-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and electrochemical hydrogen storage properties, Dalton Trans.,2010,39,327-3278.
    [107]X. Xiao, W. D. Zhang, Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity, J. Mater. Chem.,2010,20,5866-5870.
    [108]N. T. Hahn, S. Hoang, J. L. Self, C. B. Mullins, Spray Pyrolysis Deposition and Photoelectrochemical Properties of n-Type BiOI Nanoplatelet Thin Films, ACS Nano,2012,6, 7712-7722.
    [109]A. Luz, C. Feldmann, Phase-transfer assisted synthesis of BiOI nanoplatelets, quantum-confined color and selective modification of surface conditioning, Solid. State. Sci.,2011,13,1017-1021.
    [110]J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets, J. Am. Chem. Soc,2012,134,4473-4476.
    [111]L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The{001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun.,2011,47,6951-6953.
    [112]L. Ye, L. Tian, T. Peng, L. Zan, Synthesis of highly symmetrical BiOI single-crystal nanosheets and their{001} facet-dependent photoactivity, J. Mater. Chem.,2011,21,12479-12484.
    [113]L. Ye, J. Chen, J. Liu, T. Peng, K. Deng, L. Zan, BiOI Thin Film via Chemical Vapor Transport: Photocatalytic Activity, Durability, Selectivity and Mechanism, Appl. Cataly. B.,2013,130-131,1-7.
    [114]D. H. Wang, G. Q. Gao, Y. W. Zhang, L. S. Zhou, A. W. Xu, W. Chen, Nanosheet-Constructed Porous BiOCl with Dominant{001} Facets for Superior Photosensitized Degradation, Nanoscale, 2012,4,7780-7785.
    [115]C. Wang, X. Zhang, B. Yuan, C. Shao, Y. Liu, Simple route to self-assembled BiOCl networks photocatalyst from nanosheet with exposed (001) facet, Micro & Nano Letters,2012,7,152-154.
    [116]X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites, Meter Chem. Phys,2011,125,59-65.
    [117]M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin, Nanosized BiVO4 with high visible-light-induced photocatalytic activity:Ultrasonic-assisted synthesis and protective effect of surfactant, J. Hazard. Mater,2009,172,338-344.
    [118]H. Fan, D. Wang, L. Wang, H. Li, P. Wang, T. Jiang, T. Xie, Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies:An efficient visible-light photocatalyst, Appl. Surf. Sci.,2011,257,7758-7762.
    [119]S. S. Dunkle, R. J. Helmich, K. S. Suslick, BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis, J. Phys. Chem. C,2009,113,11980-11983.
    [120]Y. Sun, B. Qu, Q. Liu, S. Gao, Z. Yan, W. Yan, B. Pan, S. Wei, Y. Xie, Highly Efficient Visible-Light-Driven Photocatalytic Activities in Synthetic Ordered Monoclinic BiVO4 Quantum Tubes-Graphene Nanocomposites, Nanoscale,2012,4,3761-3767.
    [121]S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, A. M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci.,2011,4,5028-5034.
    [122]M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation, J. Phys. Chem. B,2006,110, 20211-20216.
    [123]Y. Liu, Z. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, Enhanced photocatalytic degradation of organic pollutants over basic bismuth (111) nitrate/BiVO4 composite, J. Colloid. Inter. Sci.,2010,348, 211-215.
    [124]Y. Sun, Y. Xie, C. Wu, R. Long, First Experimental Identification of BiVO4-0.4H2O and Its Evolution Mechanism to Final Monoclinic BiVO4, Crystal Growth & Design,2010,10,602-607.
    [125]S. J. Hong, S. Lee, J. S. Jang, J. S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water Oxidation, Energy Environ. Sci.,2011,4,1781-1787.
    [126]W. J. Jo, J. W. Jang, K. J. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. S. Parmar, J. S. Lee, Phosphate Doping into Monoclinic BiVO4 for Enhanced Photoelectrochemical Water Oxidation Activity, Angew. Chem. Int. Ed.,2012,51,3147-3151,
    [127]F. Lin, D. Wang, Z. Jiang, Y. Ma, J. Li, R. Lia, C. Li, Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant, Energy Environ. Sci.,2012,5,6400-6406.
    [128]S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo, C. Xue, Preparation of Au-BiVO4 Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts, ACS Appl. Mater. Interfaces,2012,4,418-423.
    [129]M. Ge, L. Liu, W. Chen, Z. Zhou, Sunlight-driven degradation of Rhodamine B by peanut-shaped porous BiVO4 nanostructures in the H2O2-containing system, CrystEngComm,2012,14,1038-1044.
    [130]B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dyeindilute aqueous solutions, Appl. Catal.B.,2010,99,214-221.
    [131]L. Zhang, D. Chen, X. Jiao, Monoclinic Structured BiVO4 Nanosheets:Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties, J. Phys. Chem. B,2006,110, 2668-2673.
    [132]D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, Crystal Facet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation, Chem. Eur. J.,2011,17,1275-1282,
    [133]R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4, Nat. Commun., 2013, DOI:10.1038/ncomms2401.
    [134]M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity, CiystEngComm,2012,14, 605-612.
    [135]C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang, X. Li, Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6/nanosheet-based microspheres, CrystEngComm,2012,14, 3602-3608.
    [136]C. Kongmark, R. Coulter, S. Cristol, A. Rubbens, C. Pirovano, A. Lofberg, G. Sankar, W. Beek, E. Bordes-Richard, R. N. Vannier, A Comprehensive Scenario of the Crystal Growth of γ-Bi2MoO6 Catalyst during Hydrothermal Synthesis, Cryst. Growth Des.,2012,12,5994-6003.
    [137]Z. Q. Li, X. T. Chen, Z. L. Xue, Bi2MoO6 microstructures:controllable synthesis, growth mechanism, and visible-light-driven photocatalytic activities, CrystEngComm,2013,15,498-508.
    [138]T. Zhou, J. Hu, J. Li, Er3+ doped bismuth molybdate nanosheets with exposed {010} facets and enhanced photocatalytic performance, Appl. Catal. B.,2011,110,221-230.
    [139]Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation, J. Mol. Catal. A.,2009,303,9-14.
    [140]L. Zhang, T. Xu, X. Zhao, Y. Zhu, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in localstructure on photocatalytic activities, Appl. Catal. B.,2010,98,138-146.
    [141]H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, One-Pot Synthesis of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl in Ionic Liquid, ACS Appl. Mater. Interfaces,2011,3,22-29.
    [142]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. H. Whangbo, Ag@AgCl:A Highly Efficient and Stable Photocatalyst Active under Visible Light, Angew. Chem. Int. Ed.,2008,47, 7931-7933.
    [143]P. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, H. Jin, J. Wei, M. H. Whangbo, Composite Semiconductor H2WO4·H2O/AgCl as an Efficient and Stable Photocatalyst under Visible Light, Chem. Eur.J.,2008,14,10543-10546.
    [144]P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts withVarious Structures, Chem. Eur. J.,2010,16, 538-544.
    [145]P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M. H. Whangbo, Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr, Chem. Eur. J., 2009,15,1821-1824.
    [146]H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, One-Step Synthesis of the Nanostructured Agl/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances, Langmuir,2010,26 6618-6624.
    [147]Z. Lou, B. Huang, X. Qin, X. Zhang, H. Cheng, Y. Liu, S. Wang, J. Wang, Y. Da, One-step synthesis of AgCl concave cubes by preferential overgrowth along<111> and<110> directions, Chem. Commun.,2012,48,3488-3490.
    [148]C. An, S. Peng, Y. Sun, Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst, Adv. Mater.,2010,22,2570-2574.
    [149]M. Zhu, P. Chen, M. Liu, Graphene Oxide Enwrapped Ag/AgX (X= Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst, ACS Nano,2011,5,4529-4536.
    [150]J. Jiang, L. Zhang, Rapid Microwave-Assisted Nonaqueous Synthesis and Growth Mechanism of AgCl/Ag, and Its Daylight-Driven Plasmonic Photocatalysis, Chem. Eur. J.,2011,17,3710-3717.
    [151]L. Kuai, B. Geng, X. Chen, Y. Zhao, Y. Luo, Facile Subsequently Light-Induced Route to Highly-Efficient and Stable Sunlight-Driven Ag-AgBr Plasmonic Photocatalyst, Langmuir,2010,26, 18723-18727.
    [152]M. R. Elahifard, S. Rahimnejad, S. Haghighi, M. R. Gholami, Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria, J. Am. Chem. Soc.,2007,129,9552-9553.
    [153]S. Song, F. Hong, Z. He, Q. Cai, J. Chen, AgIO3-modified Agl/TiO2 composites for photocatalytic degradation of p-chlorophenol under visible light irradiation,J. Colloid. Interf. Sci.,2012,378,59-166.
    [154]H. Wang, J. Gao, T. Guo, R. Wang, L. Guo, Y. Liu, J. Li, Facile synthesis of AgBr nanoplates with exposed{111} facets and enhanced photocatalytic properties, Chem. Commun.,2012,48,275-277'.
    [155]H. Wang, X. Lang, J. Gao, W. Liu, D. Wu, Y. Wu, L. Guo, J. Li, Polyhedral AgBr Microcrystals with an Increased Percentage of Exposed{111} Facets as a Highly Efficient Visible-Light Photocatalyst, Chem. Eur. J.,2012,18,4620-4626.
    [156]H. Wang, J. Yang, X. Li, H. Zhang, J. Li, L. Guo, Facet-Dependent Photocatalytic Properties of AgBr Nanocrystals, Small,2012,8,2802-2806.
    [157]H. Wang, Y. Li, C. Li, L. He, L. Guo, Facile synthesis of AgBr nanocubes for highly efficient visible light Photocatalysts, CrystEngComm,2012,14,7563-7566.
    [158]Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao,W. Luo, Z. Li, Y. Liu, R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater.,2010,9,559-564.
    [159]Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye, Selective Growth of Ag3PO4 Submicro-Cube on Ag Nanowire to Fabricate Necklace-Like Heterostructure for Photocatalytic Applications, J. Mater. Chem., 2012,22,14847-14850,
    [160]W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem.,2012,22,4050-4055.
    [161]W. Teng, X. Li, Q. Zhao, J. Zhao, D. Zhang, In situ capture of active species and oxidation mechanism of RhB and MB dyes over sunlight-driven Ag/Ag3PO4 plasmonic nanocatalyst, Appl. Catal. B.,2012,125,538-545.
    [162]Y. Liu, L. Fang, H. Luc, Y. Li, C. Hu, H. Yu, One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4, Appl. Catal. B.,2012,115-116,245-252.
    [163]W. Wang, B. Cheng, J. Yu, G. Liu, W. Fan, Visible-Light Photocatalytic Activity and Deactivation Mechanism of Ag3PO4 Spherical Particles, Chem. Asian J.,2012,7,1902-1908.
    [164]Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye, Selective Growth of Metallic Ag Nanocrystals on Ag3PO4 Submicro-Cubes for Photocatalytic Applications, Chem. Eur. J.,2012,18,14272-14275.
    [165]Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties, J. Am. Chem. Soc.,2011,133,6490-6492.
    [166]J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, Facile synthesis of novel Ag3PO4 tetrapods and the{110} facets-dominated photocatalytic activity, CrystEngComm,2013,15,39-42.
    [167]Y. Bi, H. Hu, S. Ouyang, G. Lu, J. Cao, J. Ye, Photocatalytic and photoelectric properties of cubic Ag3PO4 submicrocrystals with sharp corners and edges, Chem. Commun.,2012,48,3748-3750.
    [168]H. Wang, Y. Bai, J. Yang, X. Lang, J. Li, L. Guo, A Facile Way to Rejuvenate Ag3PO4 as a Recyclable Highly Efficient Photocatalyst, Chem. Eur. J.,2012,18,5524-5529.
    [169]M. Y. Xing, D. Y. Qi, J. L. Zhang, F. Chen, One-Step Hydrothermal Method to Prepare Carbon and Lanthanum Co-Doped TiO2 Nanocrystals with Exposed{001} Facets and Their High UV and Visible-Light Photocatalytic Activity, Chem. Eur. J.,2011,17,11432-11436.
    [170]X. Zong, Z. Xing, H. Yu, Z. Chen, F. Tang, J. Zou, G. Q. Lu, L. Wang, Photocatalytic water oxidation on F, N co-doped TiO"2 with dominant exposed{001} facets under visible light, Chem. Commun.,2011,47,11742-11744.
    [171]W.Wang, C. Lu, Y. Ni, M. Su, Z. Xu, A new sight on hydrogenation of F and N-F doped{001} facets dominated anatase TiO2 for efficient visible light photocatalyst, Appl. Catal. B.,2012,127,28-35.
    [172]X. Liu, D. Geng, X. Wang, S. Ma, H. Wang, D. Li, B. Li, W. Liu, Z. Zhang, Enhanced photocatalytic activity of Mo-{001}TiO2 core-shell nanoparticles under visible light, Chem. Commun., 2010,46,6956-6958.
    [173]J. Zhang, J. Xi, Z. Ji, Mo+N Codoped TiO2 sheets with dominant{001} facets for enhancing visible-light photocatalytic activity, J. Mater. Chem.,2012,22,17700-17708.
    [174]Q. Xiang, J. Yu, M. Jaroniec, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed{001} facets:synthesis, characterization and visible-light photocatalytic activity, Phys. Chem. Chem. Phys., 2011,13,4853-4861.
    [175]J. Yu, G. Dai, Q. Xiang, M. Jaroniec, Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed{001} facets, J. Mater. Chem.,2011,21,1049-1057.
    [176]J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts, J. Am. Chem. Soc.,2009,131, 12290-12297.
    [177]Z. Xiong, X. S. Zhao, Nitrogen-doped titanate-anatase core-shell nanobelts with exposed{101} anatase facets and enhanced visible light photocatalytic activity, J. Am. Chem. Soc.,2012,134, 5754-5757.
    [178]B. Pare, B. Sarwan, S. B. Jonnalagadd, Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition, Appl. Sur. Sci.,2011, 258,247-253.
    [179]S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst, J. Catal.,2009,262,144-149.
    [180]L. Zhang, W. Wang, L. Zhou, M. Shang, S. Sun, Fe3O4 coupled BiOCl:A highly efficient magnetic photocatalyst,Appl. Catal. B.,2009,90,458-462.
    [181]X. Chang, G. Yu, J. Huang, Z. Li, S. Zhu, P. Yu, C. Cheng, S. Deng, G. Ji, Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy, Catalysis Today,2010,153,193-199.
    [182]F. Gao, D. Zeng, Q. Huang, S. Tian, C. Xie, Chemically bonded graphene/BiOCl nanocomposites as high-performance Photocatalysts, Phys. Chem. Chem. Phys.,2012,14,10572-10578.
    [183]L. Sun, Z. Zhao, Y. Zhou, L. Liu, Anatase TiO2 nanocrystals with exposed{001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity Nanoscale,2012,4,613-620.
    [184]B. Jiang, C. Tian, Q. Pan, Z. Jiang, J. Q. Wang, W. Yan, H. Fu, Enhanced Photocatalytic Activity and Electron Transfer Mechanisms of Graphene/TiO2 with Exposed{001} Facets, J. Phys. Chem. C, 2011,115,23718-23725.
    [185]X. Wang, G. Liu, L. Wang, J. Pan, G. Q. Lu, H. M. Cheng, TiO2 films with oriented anatase{001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes, J. Mater. Chem.,2011,21,869-873.
    [186]L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets, Phys. Chem. Chem. Phys., 2011,13,8915-8923
    [187]H. Cheng, B. Huang, X. Qin, X. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity, Chem. Commun.,2012,48,97-99
    [188]L. Ye, C. Gong, J. Liu, L. Tian, T. Peng, K. Deng, L. Zan, Bin(Tu)xCl3n:a novel sensitizer and its enhancement of BiOCl nanosheets'photocatalytic activity, J. Mater. Chem.,2012,22,8354-8360.
    [189]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, J. Am. Chem. Soc.,2008,130,1676-1680.
    [190]S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, Effect of Au supported TiO2 with dominant exposed{001} facets on the visible-light photocatalytic activity, Appl. Catal. B.,2012, 119-120,146-155.
    [191]Y. Zhu, W. Wei, Y. Dai, B. Huang, Tuning electronic structure and photocatalytic properties by Ag incorporated on (001) surface of anatase TiO2,Appl. Sur. Sci.,2012,258,4806-4812.
    [192]C. L. Yu, C. F. Fan, X. J. Meng, K. Yang, F. F. Cao, X. Li, A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes, Reac. Kinet. Mech. Catal.,2011,103, 141-151.
    [1]A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev.,2012,112,1555-1614.
    [2]X. Chen, S. L. Shen, L. Guo, S. S. Mao, Semiconductor-Based Photocatalytic Hydrogen Generation, Chem. Rev.,2010,110,6503-6570.
    [3]C. Chen, W. Ma, J. Zhao, Semiconductor-Mediated Photodegradation of Pollutants under Visible-light Irradiation, Chem. Soc. Rev.,2010,39,4206-4219.
    [4]A. Selloni, Anatase Shows Its Reactive Side, Nat. Mater.,2008,7,613-615.
    [5]Z. Y. Jiang, Q. Kuang, Z. X. Xie, L. S. Zheng, Syntheses and Properties of Micro/nanostructured Crystallites with High-energy Surfaces, Adv. Funct. Mater.,2010,20,3634-3645.
    [6]H. G. Yang, C. H. Sun, S.Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets, Nature,2008,453,638-641.
    [7]H.G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [8]X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties, J. Am. Chem. Soc.,2009,131, 3152-3153.
    [9]J. Pan, G. Liu, G. Q. Lu, H.M. Cheng, On the True Photoreactivity Order of {001},{010}, and {101} Facets of Anatase TiO2 Crystals, Angew. Chem. Int. Ed..,2011,50,2133-2137.
    [10]X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, L. Qi, Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active {100} and {001} Facets, Adv. Funct. Mater., 2011,21,3554-3563.
    [11]X. Wu, Z. Chen, G.Q. Lu, L. Wang, Nanosized Anatase TiO2 Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dye-Sensitized Solar Cells, Adv. Funct. Mater.,2011,21,4167-4172.
    [12]G. Liu, J.C. Yu, G.Q. Lu, H.M. Cheng, Crystal Facet Engineering of Semiconductor Photocatalysts: Motivations, Advances and Unique Properties, Chem. Commun.,2011,476763-6765.
    [13]H. Yu, B. Tian, J. Zhang, Layered TiO2 Composed of Anatase Nanosheets with Exposed{001} Facets: Facile Synthesis and Enhanced Photocatalytic Activity, Chem. Eur. J.,2011,17,5499-5502.
    [14]D. Zhang, G. Li, X. Yang, J. C. Yu, A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets, Chem. Commun.,2009,45,4381-4382.
    [15]G. Liu, C. Sun, H.G. Yang, S. C. Smith, L. Wang, G. Q. Lu, H. M. Cheng, Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity, Chem. Commun.,2010,46,755-757.
    [16]T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T. Weber, P. Fornasiero, C. B. Murray, Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity, J. Am. Chem. Soc,2012,134,6751-6761.
    [17]Z. Zheng, B. Huang, J. Lu, X. Qin, X. Zhang, Y. Dai, Hierarchical TiO2 Microspheres:Synergetic Effect of{001} and{101} Facets for Enhanced Photocatalytic Activity, Chem. Eur. J.,2011,17, 15032-15038.
    [18]Q. Xiang, K. Lv, J. Yu, Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air, Appl. Catal. B.,2010,96,557-564.
    [19]T. Tachikawa, S. Yamashita, T. Majima, Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis, J. Am. Chem. Soc,2011,133,7197-7204.
    [20]T. Tachikawa, N. Wang, S. Yamashita, S. Cui, T. Majima, Design of a Highly Sensitive Fluorescent Probe for Interfacial Electron Transfer on a TiO2 Surface, Angew. Chem.,2010,122,8775-8779.
    [21]M.M. Maitani, K. Tanaka, D. Mochizuki, Y. Wada, Enhancement of Photoexcited Charge Transfer by {001} Facet-Dominating TiO2 Nanoparticles, J. Phys. Chem. Lett.,2011,2,2655-2659.
    [22]N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, Shape-Controlled Anatase Titanium (IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol, J. Phys. Chem. C,2009,113,3062-3069.
    [23]T. Ohno, K. Sarukawa, M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions, New J. Chem.,2002,26,1167-1170.
    [24]M. D"Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals:A Probe To Evaluate the Role of Crystal Facets in Photocatalytic Processes, J. Am. Chem. Soc.,2011,133,17652-17661.
    [25]C. T. Dinh, T. D. Nguyen, F. Kleitz, T.O. Do, Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals, ACS Nano,2009,3,3737-3743.
    [26]F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman Spectroscopy:A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets, J. Phys. Chem. C,2012,116,7515-7519.
    [27]Y. Wang, K. Deng, L. Zhang, Visible Light Photocatalysis of BiOI and Its Photocatalytic Activity Enhancement by in Situ Ionic Liquid Modification, J. Phys. Chem. C,2011,115,14300-14308.
    [28]L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X= Cl, Br) Visible Light Photocatalysts:Surface Plasmon Resonance and Z-scheme Bridge, ACS Catal.,2012,2,1677-1683.
    [29]L. Ye, C. Gong, J. Liu, L. Tian, T. Peng, K. Deng, L. Zan, Bin(Tu)xCl3n:A Novel Sensitizer and Its Enhancement of BiOCl Nanosheets'Photocatalytic Activity,J. Mater. Chem.,2012,22,8354-8360.
    [30]L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The{001} Facets-Dependent High Photoactivity of BiOCl Nanosheets, Chem. Commun.,2011,47,6951-6953.
    [31]Y.P. Xie, G. Liu, L. Yin, H.M. Cheng, Crystal Facet-dependent Photocatalytic Oxidation and Reduction Reactivity of Monoclinic WO3 for Solar Energy Conversion, J. Mater. Chem.,2012,22, 6746-6751.
    [32]Y.F. Li, Z.P. Liu, L. Liu, W. Gao, Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings, J. Am. Chem. Soc,2010,132,13008-13015.
    [33]J. Lu, Y. Dai, H. Jin, B. Huang, Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation, Phys. Chem. Chem. Phys.,2011,13, 18063-18068.
    [34]T. Tachikawa, T. Majima, Photocatalytic oxidation surfaces on anatase TiO2 crystals revealed by single-particle chemiluminescence imaging, Chem. Commun.,2012,48,3300-3302.
    [35]W. C. Huang, L. M. Lyu, Y. C. Yang, M. H. Huang, Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, J. Am. Chem. Soc, 2012,134,1261-1267.
    [36]Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties, J. Am. Chem. Soc.,2011,133,6490-6492.
    [37]J. Jiang, K. Zhao, Y. Xiao, L. Zhang, Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets, J. Am. Chem. Soc.,2012,134,4473-4476.
    [38]H. Wang, J. Yang, X. Li, H. Zhang, J. Li, L. Guo, Facet-Dependent Photocatalytic Properties of AgBr Nanocrystals, Small,2012,8,2802-2806.
    [39]N. Wu, J. Wang, D. N. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. Liu, S. S. Leonard, A. Manivannan, Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts, J. Am. Chem. Soc.,2010,132,6679-6685.
    [40]X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science,2011,331,746-750.
    [41]X. Han, X. Wang, S. Xie, Q. Kuang, J. Ouyang, Z. Xie, L. Zheng, Carbonate Ions-Assisted Syntheses of Anatase TiO2 Nanoparticles Exposed with High Energy (001) Facets, RSC Adv.,2012,2, 3251-3253.
    [42]J. Pan, X. Wu, L. Wang, G. Liu, G. Q. Lu, H. M. Cheng, Synthesis of Anatase TiO2 Rods with Dominant Reactive{010} Facets for the Photoreduction of CO2 to CH4 and Use in Dye-sensitized Solar Cells, Chem. Commun.,2011,47,8361-8362.
    [43]P. D. Cozzoli, A. Kornowski, H. Weller, Low-temperature Synthesis of Soluble and Processable Organic-capped Anatase TiO2 Nanorods,J. Am. Chem. Soc.,2003,125,14539-14548.
    [44]A. J. Morris, G. J. Meyer, E. Fujita, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels, Accounts. Chem. Res.,2009,42,1983-1994.
    [45]M. Mikkelsen, M. Jorgensen, F.C. Krebs, The teraton challenge. A Review of Fixation and Transformation of Carbon Dioxide, Energy Environ. Sci.,2010,3,43-81.
    [46]X. Xu, X. Duan, Z. Yi, Z. Zhou, X. Fan, Y. Wang, Photocatalytic Production of Superoxide Ion in the Aqueous Suspensions of Two Kinds of ZnO under Simulated Solar Light, Catal. Commun.,2010,12, 169-172.
    [47]L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing Visible-Light Absorption for Photocatalysis with Black BiOCl, Phys. Chem. Chem. Phys.,2012,14,82-85.
    [48]L. Sun, Y. Qin, Q. Cao, B. Hu, Z. Huang, L. Ye, X. Tang, Novel Photocatalytic Antibacterial Activity of TiO2 Microspheres Exposing 100% Reactive{111} Facets, Chem. Commun.,2011,47, 12628-12630.
    [49]U. Diebold, The Surface Science of Titanium Dioxide, Sur. Sci. Rep.,2003,48,53-229.
    [50]Y. Zhao, W. Ma, Y. Li, H. Ji, C. Chen, H. Zhu, J. Zhao, The Surface-Structure Sensitivity of Dioxygen Activation in the Anatase-Photocatalyzed Oxidation Reaction, Angew. Chem.,2012,124,3242-3246.
    [51]A. Vittadini, A. Selloni, F. P. Rotzinger, M. Gratz, Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces, Phys. Rev. Lett.,1998,81,2954-2957.
    [52]M. Calatayud, C. Minot, Effect of Relaxation on Structure and Reactivity of Anatase (100) and (001) Surfaces, Surf. Sci.,2004,552,169-176.
    [53]L. Liu, H. Zhao, J. M. Andino, Y. Li, Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, ACS Catal.,2012,2,1817-1828.
    [54]J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V. H. Grassian, Carbon Dioxide Adsorption on Oxide Nanoparticle Surfaces, Chem. Eng. J.,2011,170,471-481.
    [55]D. C. Sorescu, W. A. Al-Saidi, K. D. Jordan, CO2 Adsorption on TiO2 (101) Anatase:A Dispersion-Corrected Density Functional Theory Study, J. Chem. Phys.,2011,135,124701 (12pp).
    [56]V. P. Indrakanti, J. D. Kubicki, H. H. Schobert, Quantum Chemical Modeling of Ground States of CO2 Chemisorbed on Anatase (001), (101), and (010) TiO2 Surfaces, Energy & Fuels,2008,22, 2611-2618.
    [57]V. P. Indrakanti, J. D. Kubicki, J. D. Kubicki, Quantum Mechanical Modeling of CO2 Interactions with Irradiated Stoichiometric and Oxygen-Deficient Anatase TiO2 Surfaces:Implications for the Photocatalytic Reduction of CO2, Energy & Fuels,2009,23,5247-5256.
    [58]C. C. Yang, G. Mul, Y. H. Yu, B. Van der Linden, J. C. S. Wu, Artificial Photosynthesis over Crystalline TiO2-Based Catalysts:Fact or Fiction?J.Am. Chem. Soc.,2010,132,8398-8406.
    [59]J. Rasko, F. Solymosi, Infrared Spectroscopic Study of the Photoinduced Activation of CO? on TiO? and Rh/TiO2 Catalysts, J. Phys. Chem.,1994,98,7147-7152.
    [60]W.G. Su, J. Zhang, Z.C. Feng, T. Chen, P. L. Ying, C. Li, Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy, J. Phys. Chem. C,2008,112, 7710-7716.
    [61]H. He, P. Zapol, L. A. Curtiss, Computational Screening of Dopants for Photocatalytic Two-electron Reduction of CO2 on Anatase (101) Surfaces, Energy Environ. Sci.,2012,5,6196-6205.
    [62]W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, Size and Structure Matter:Enhanced CO? Photoreduction Efficiency by Size-resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals, J. Am. Chem. Soc.,2012,134,11276-11281.
    [63]M. Lazzeri, A. Selloni, Stress-Driven Reconstruction of an Oxide Surface:The Anatase TiO2 (001)-(1×4) Surface, Phys. Rev. Lett.,2001,87,266105 (4pp).
    [64]N. Ruzycki, G. S. Herman, L. A. Boatner, U. Diebold, Scanning Tunneling Microscopy Study of the Anatase (100) Surface, Surf. Sci.,2003,529, L239.
    [65]U. Diebold, N. Ruzycki, G. S. Herman, A. Selloni, One Step Towards Bridging the Materials Gap: Surface Studies of TiO2 Anatase, Catal. Today.,2003,85,93-100.
    [66]H. Chen, C. E. Nanayakkara, V. H. Grassian, Titanium Dioxide Photocatalysis in Atmospheric Chemistry, Chem. Rev.,2012,112,5919-5948.
    [67]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemannt, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev.,1995,95,69-96.
    [68]A. L. Linsebigler, G. Lu, J. T. Yates Jr, Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [69]H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges, Adv. Mater,2012,24,229-251.
    [70]Y. Zhang, B. Deng, T. Zhang, D. Gao, A.W. Xu, Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity, J. Phys. Chem. C,2010,114,5073-5079.
    [71]F. Amano, T. Yasumoto, O. O. Prieto-Mahaney, S. Uchida, T. Shibayama, B. Ohtani, Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium (IV) oxide, Chem. Commun., 2009,45,2311-2313.
    [72]S. Xie, X. Han, Q. Kuang, J. Fu, L. Zhang, Z. Xie, L. S. Zheng, Solid state precursor strategy for synthesizing hollow TiO2 boxes with a high percentage of reactive{001} facets exposed, Chem. Commun.,2011,47,6722-6724.
    [73]C. Z. Wen, Q.H. Hu, Y. N. Guo, X. Q. Gong, S. Z. Qiao, H. G. Yang, From titanium oxydifluoride (TiOF2) to titania (TiO2):phase transition and non-metal doping with enhanced photocatalytic hydrogen (H2) evolution properties, Chem. Commun.,2011,47,6138-6140.
    [74]L. Wang, L. Zang, J. Zhao, C. Wang, Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with{001} and{100} facets, Chem. Commun.,2012,48,11736-11738.
    [75]X. Q. Gong, A. Selloni, M. Batzill, U. Diebold, Steps on anatase TiO2 (101), Nat. Mater.,2006,5, 665-670.
    [76]Y. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold, Local ordering and electronic signatures of submonolayer water on anatase TiO2 (101), Nat. Mater.,2009,8,585-589.
    [77]J. Li, K. Cao, Q. Li, D. Xu, Tetragonal faceted-nanorods of anatase TiO2 with a large percentage of active{100} facets and their hierarchical structure, CrystEngComm,2012,14,83-85.
    [78]G. S. Herman, Z. Dohnalek, N. Ruzycki, U. Diebold, Experimental Investigation of the Interaction of Water and Methanol with Anatase-TiO2(101), J. Phys. Chem. B,2003,107,2788-2795.
    [79]W. Hebenstreit, N. Ruzycki, G. S. Herman, Y. Gao, U. Diebold, Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface, Physical. Review. B.,2000,62, R16334-R16336.
    [80]A. Tilocca, A. Selloni, Vertical and lateral order in adsorbed water layers on anatase TiO2 (101), Langmuir,2004,20,8379-8384.
    [81]M. A. Henderson, The interaction of water with solid surfaces:Fundamental aspects revisited, Surf. Sci. Rep.,2002,46,1-308.
    [82]C. Morterra, An infrared spectroscopic study of anatase properties. Part 6-Surface hydration and strong Lewis acidity of pure and soleplate-doped preparations, J. Chem. Soc, Faraday Trans.,1988, 84,1617-1637.
    [1]Z. Y. Jiang, Q. Kuang, Z. X. Xie, L. S. Zheng, Syntheses and Properties of Micro/Nanostructured Crystallites with High-Energy Surfaces, Adv. Funct. Mater.2010,20,3634-3645.
    [2]X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy {221} Facets and Enhanced Gas-Sensing Properties, Angew. Chem. Int. Ed.,2009,48,9180;
    [3]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature,2008,453,638-641.
    [4]N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z. L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science,2007,316,732-735.
    [5]Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEngComm,2009,11,1857-1862.
    [6]J. Geng, W. H. Hou, Y. N. Lv, J. J. Zhu, H. Y. Chen, One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae:Fast low-temperature sonochemical synthesis, characterization, and growth mechanism, Inorg. Chem.,2005,44,8503-8509.
    [7]L. Li, N. Sun, Y. Huang, Y. Qin, N. Zhao, J. Gao, M. Li, H. Zhou, L. Qi, Topotactic Transformation of Single-Crystalline Precursor Discs into Disc-Like Bi2S3 Nanorod Networks, Adv. Funct. Mater,2008, 18,1194-1201.
    [8]N. Soltanzadeh, A. Morsali, Sonochemical synthesis of a new nano-structures bismuth(Ⅲ) supramolecular compound:New precursor for the preparation of bismuth(Ⅲ) oxide nano-rods and bismuth(Ⅲ) iodide nano-wires, Ultrason. Sonochem.,2010,17,139-144.
    [9]J. H. Thurston, K. H. Whitmire, Molecular Precursors for Ferroelectric Materials:Synthesis and Characterization of Bi2M2(μ-O)(sal)4(Hsal)4(OEt)2 and BiM4(μ-O)4(sal)4(Hsal)3(OiPr)4 (sal= O2CC6H4O, Hsal= O2CC6H4OH) (M= Nb, Ta), Inorg. Chem.,2003,42,2014-2023.
    [10]R. E. Bachman, K. H. Whitmire, J. H. Thurston, A. Gulea, O. Stavila, V. Stavila, Bismuth ladder polymers:structural and thermal studies of [Bi(OCH2CH2)3N]n and [(BixTb1-x(O2C2H2)3N-2H2O]n, Inorg. Chim. Acta.,2003,346,249-255.
    [11]J. Ma, X. Liu, J. Lian, X. Duan, W. Zheng, Ionothermal Synthesis of BiOCl Nanostructures via a Long-Chain Ionic Liquid Precursor Route, Crystal Growth & Design,2010,10,2522-2527.
    [12]S. Cao, C. Guo, Y. Lv, Y. Guo, Q. Liu, A novel BiOCl film with flowerlike hierarchical structures and its optical properties, Nanotechnology,2009,20,275702-7pp.
    [13]H. Peng, C. K. Chan, S. Meister, X. F. Zhang, Y. Cui, Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport, Chem. Mater.,2009, 21,247-252.
    [14]S. G. Bhat, S. M. Dharmaprakash, A New Metal-Organic Crystal:Bismuth Thiourea Chloride, Mater. Res. Bull.,1998,33,833-840.
    [15]A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite, J. Am. Chem. Soc.,2008,130,9658-9659.
    [16]M. Batzill, E. H. Morales, U. Diebold, Surface studies of nitrogen implanted TiO2, Chem. Phys.,2007, 339,36-43.
    [17]C. Rath, P. Mohanty, A. C. Pandey, N. C. Mishra, Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles, J. Phys. D.,2009,42,205101-6pp.
    [18]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, H. F. Lu, L. Z. Wang, G. Q. Lu, H. M. Cheng, Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant{001} Facets,/. Phys. Chem. C,2009,113,21784-21788.
    [19]C. Feng, Y. Wang, Z. Jin, J. Zhang, S. Zhang, Z. Wu, Z. Zhang, Photoactive centers responsible for visible-light photoactivity of N-doped TiO2, New J. Chem.,2008,32,1038-1047.
    [20]D. Pan, G. Xu, L. Lv, Y. Yong, X. Wang, J. Wan, G. Wang, Observation and manipulation of paramagnetic oxygen vacancies in Co-doped TiO2 nanocrystals, Phys. Rev. Lett.,2006,89, 082510-3pp.
    [21]F. Yan, T. J. Zhu, M. O. Lai, L. Lu, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films, Scripta Materialia,2010,63,780-783
    [22]Y. Zheng, F. Duan, M. Chen, Y. Xie, Synthetic Bi2O2CO3 nanostructures:Novel photocatalyst with controlled special surface exposed,J. Mol. Catal. A-Chem.,2010,317,30-40.
    [23]Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed{010} surface under visible light irradiation, J. Mol. Catal. A.,2009,303,9-14.
    [24]Z. Deng, F. Tang, A. J Muscat, Strong blue photo!uminescence from single-crystalline bismuth oxychloride nanoplates, Nanotechnology,2008,19,295705-6pp.
    [25]I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A-Chem.,2000,161,205-212.
    [26]M. Sugawara, Theory of spontaneous-emission lifetime of Wannier excitons in mesoscopic semiconductor quantum disks, Phys. Rev. B.,1995,51,10743-10754.
    [27]R. A. Jensen, H. V. Ryswyk, C. She, J. M. Szarko, L. X. Chen, J. T. Hupp, Dye-sensitized solar cells: sensitizer-dependent injection into ZnO nanotube electrodes, Langmuir,2010,26,1401-1404.
    [28]F. De Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin, M. Gratzel, Time-dependent density functional theory investigations on the excited states of Ru(Ⅱ)-dye-sensitized TiO2 nanoparticles:The role of sensitizer protonation, J. Am. Chem. Soc.,2007,129,14156-14157.
    [29]F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Gratzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, J. Am. Chem. Soc., 2008,130,10720-10728.
    [30]W. J. Youngblood, S. A. Lee, K. Maeda,T. E. Mallouk, Visible light water splitting using dye-sensitized oxide semiconductors, Acc. Chem. Res.,2009,42,1966-1973.
    [31]M. Gratzel, Recent advances in sensitized mesoscopic solar cells, Accounts Chem. Res.,2009,42, 1788-1798.
    [32]J. Tang, J. Hua, W. Wu, J. Li, Z. Jin, Y. Long, H. Tian, New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells, Energy Environ. Sci.,2010,3,1736-1745.
    [33]K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, W. D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B.,2006,68,125-129.
    [34]X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X= Cl, Br, I) Nanoplate Microspheres, J. Phys. Chem. C,2008,112,747-753.
    [35]R. Yuan, C. Lin, B. Wu, X. Fu, Synthesis of SnO2, Fe2O3, and BiOCl Fibers from Inorganic Salts by a Templating Route, Eur. J. Inorg. Chem.,2009,24,3537-3540.
    [36]W. L. Huang, Q. Zhu, DFT Calculations on the Electronic Structures of BiOX (X= F, CI, Br, I) Photocatalysts With and Without Semicore Bi 5d States, J. Comput. Chem.,2008,30,183-190.
    [37]L. Zhang, W. Wang, L. Zhou, M. Shang, S. Sun, Fe3O4 coupled BiOCl:A highly efficient magnetic photocatalyst, Appl. Catal. B.,2009,90,458-462.
    [38]S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst, J. Catal,2009,262,144-149.
    [39]X. Chang, G. Yu, J. Huang, Z. Li, S. Zhu, P. Yu, C. Cheng, S. Deng, G. Ji, Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy, Catalysis Today,2010,153,193-199.
    [40]K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO? photocatalysis using the fluorescence technique, Electroanal. Chem.,2000,2,207-210.
    [41]K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimotoa, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol. A-Chem.,2000,134,139-142.
    [42]H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, One-Step Synthesis of the Nanostructured Agl/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances, Langmuir,2010,26 6618-6624.
    [43]P. Ji, J. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation, Appl. Catal. B.,2009,85,148-154.
    [44]L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl, Phys. Chem. Chem. Phys.,2012,14,82-85.
    [45]X. Xu, X. Duan, Z. Yi, Z. Zhou, X. Fan, Y. Wang, Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light, Catal Commu.,2010,12, 169-172.
    [46]Y. Wang, K. Deng, L. Zhang, Visible Light Photocatalysis of BiOl and Its Photocatalytic Activity Enhancement by in Situ Ionic Liquid Modification, J. Phys. Chem. C,2011,115,14300-14308.
    [47]J. M. Song, C. J. Mao, H. L. Niu, Y. H. Shen, S. Y. Zhang, Hierarchical structured bismuth oxychlorides:self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties, CrystEngComm,2010,12,3875-3881.
    [48]S. Rajeswari, G. V. Prabhu, D. Tamilvendan, V. Ramkumar, Spectroscopic Studies and Crystal Structure of 1-[(2,5-dioxopyrrolidin-1-yl)(phenyl) methyl] Thiourea, J Chem Crystallogr,2009,39, 650-654.
    [49]V. Stavila, K. H. Whitmire, I. Rusakova, Synthesis of Bi2S3 nanostructures from bismuth (III) thiourea and thiosemicarbazide complexes, Chem. Mater.,2009,21,5456-5465.
    [50]G. A. Bowmaker, C. Pakawatchai, S. Saithong, B. W. Skelton, A. H. White,1:1 complexes of silver (I) thiocyanate with (substituted) thiourea ligands, Dalton Trans.,2009,14,2588-2598.
    [51]G. A. Bowmaker, B. W. Skelton, A. H. White, Structural and Infrared Spectroscopic Studies of Some Novel Mechanochemically Accessed Adducts of Silver (Ⅰ) Oxoanion Salts with Thiourea, Inorg. Chem.,2009,48,3185-3197.
    [52]L. Zhou, J. Liu, Z. Liu, Adsorption of platinum (IV) and palladium (II) from aqueous solution by thiourea-modified chitosan microspheres, J. Hazard. Mater.,2009,172,439-446.
    [53]S. A. Khan, N. Singh, K. Saleem, Synthesis, characterization and in vitro antibacterial activity of thiourea and urea derivatives of steroids, Eur. J. Med. Chem.,2008,43,2272-2277.
    [54]A. E. Bolzana, T. Iwasita, A. J. Arvia, In situ FTIRRAS study of the electro-oxidation reactions of thiourea and gold in aqueous acid solutions, J. Electroanal. Chem.,2003,55,49-60.
    [55]F. Chen H. Liu, S. Bagwasi, X. Shen, J. Zhang, Photocatalytic study of BiOCl for degradation of organic pollutants under UV Irradiation, J. Photochem. Photobio. A.,2010,215,76-80.
    [56]K. H. Ji, D. M. Jang, Y. J. Cho, Y. Myung, H. S. Kim, Y. Kim, J. Park, Comparative Photocatalytic Ability of Nanocrystal-Carbon Nanotube and-TiO2 Nanocrystal Hybrid Nanostructures, J. Phys. Chem. C,2009,113,19966-19972.
    [57]M. A.Gondal, X. Chang, M. A. Ali, Z. H. Yamani, Q. Zhou, G. Ji, Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532nm pulsed laser exposure, Appl. Catal.A.,2011,397,192-200.
    [58]G. Mele, R.D. Sole, G. Vasapollo, E. Garcia-Lopez, L. Palmisano, M. Schiavello, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine, J. Calal.,2003,217,334-342.
    [59]W. Sun, J. Li, G. Yao, M. Jiang, F. Zhang, Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO2 photocatalyst under visible light irradiation, Calal. Commun.,2011,16,90-93.
    [60]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [61]M. Liu, L. Y. Piao, L. Zhao, S. T. Ju, Z. J. Yan, T. He, C. L. Zhou, W. J. Wang, Anatase TiO2 single crystals with exposed{001} and{110} facets:facile synthesis and enhanced photocatalysis, Chem. Commun.,2010,46,1664-1666.
    [62]C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning, Scripta Mater.,2008,59,332-335.
    [63]J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX (X= Cl, Br, I) Particles Synthesized in Reverse Microemulsions, Chem. Mater.,2007,19,366-373.
    [64]M. D. Hernandez-Alonso, F. Fresno, S. Suarez, J. M. Coronado, Development of alternative photocatalysts to TiO2:Challenges and opportunities, Energy Environ. Sci.,2009,2,1231-1257.
    [65]T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B.,2003, 42,403-409.
    [66]X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science,2011,331,746-750.
    [67]L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The{001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun.,2011,47,6951-6953.
    [68]H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Photocatalytic properties of BiOX (X= Cl, Br, and I), Rare Metals,2008,27,243-250.
    [69]Y. Wu, M. Xing, J. Zhang, F. Chen, Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant, Appl. Catal. B.,2010,97,182-189.
    [70]W. E. Morgan, W. J. Stec, J. R. Van Wazer, Inner-orbital binding-energy shifts of antimony and bismuth compounds, Inorg. Chem.,1973,12,953-955.
    [71]Y. Kim, S. Kang, Calculation of Formation Energy of Oxygen Vacancy in ZnO Based on Photoluminescence Measurements, J. Phys. Chem. B,2010,114,7874-7878.
    [72]L. Jing, X. Sun, B. Xin, B. Wang, W. Cai, H. Fu, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, J. Solid State Chem.,2004,177,3375-3382.
    [73]S. Rehman. R. Ullah, A. M. Butt, N. D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater,2009,170,560-569.
    [1]W. L. Huang, Q. Zhu, Electronic structures of relaxed BiOX (X= F, Cl, Br, I) photocatalysts, Comput. Mater. Sci,.2008,43,1101-1108.
    [2]K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, W. D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B.,2006,68,125-129.
    [3]W. L. Huang, Q. Zhu, DFT Calculations on the Electronic Structures of BiOX (X= F, Cl, Br, I) Photocatalysts With and Without Semicore Bi 5d States, J. Comput. Chem.,2008,30,183-190.
    [4]J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX (X= Cl, Br, I) Particles Synthesized in Reverse Microemulsions, Chem. Mater.,2007,19,366-373.
    [5]X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, BiOX (X= Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance, Catal. Commun.,2010,11,460-464.
    [6]H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Photocatalytic properties of BiOX (X= Cl, Br, and I), Rare Metals,2008,27,243-250.
    [7]X. Chang, J. Huang, Q. Tan, M. Wang, G. Ji, S. Deng, G. Yu, Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation, Catal. Commun.,2009,10,1957-1961
    [8]Y. Lei, G. Wang, S. Song, W. Fan, M. Pang, J. Tang, H. Zhang, Room temperature, template-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and electrochemical hydrogen storage properties, Dalton Trans.,2010,39,3273-3278.
    [9]X. Xiao, W.D. Zhang, Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity, J. Mater. Chem.,2010,20,5866-5870.
    [10]X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X= Cl, Br, I) Nanoplate Microspheres, J. Phys. Chem. C,2008,112,747-753.
    [11]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature,2008,453,638-641.
    [12]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [13]M. Liu, L. Y. Piao, L. Zhao, S. T. Ju, Z. J. Yan, T. He, C. L. Zhou, W. J. Wang, Anatase TiO2 single crystals with exposed{001} and{110} facets:facile synthesis and enhanced photocatalysis, Chem. Commun.,2010,46,1664-1666.
    [14]G. S. Herman, M. R. Sievers, Y. Gao, Structure Determination of the Two-Domain (1×4) Anatase TiO2 (001) Surface, Phys. Rev. Lett.,2000,84,3354-3357.
    [15]E. Bae, T. Ohno, Exposed crystal surface-controlled rutile TiO? nanorods prepared by hydrothermal treatment in the presence of poly (vinyl pyrrolidone), Appl. Catal. B.,2009,91,634-639.
    [16]O. Bikondoa, C. Pang, R. Ithnin, C. A. Muryn, H. Onishi, G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2 (110), Nat. Mater.,2006,5,189-192.
    [17]J. Abad, O. Bohme, E. Roman, Dissociative Adsorption of NO on TiO2 (110)-(1×2) Surface:Ti2O3 Rows as Actives Sites for the Adsorption, Langmuir,2007,23,7583-7586.
    [18]S. C. Li, L. N. Chu, X. Q. Gong, U. Diebold, Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2 (110) surface, Science,2010,328,882-884
    [19]J. Guo, S. Watanabe, M. J. Janik, X. Ma, C. Song, Density functional theory study on adsorption of thiophene on TiO2 anatase (001) surfaces, Catalysis Today,2010,149,218-223.
    [20]D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, Crystal Facet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation, Chem. Eur. J.,2011,17,1275-1282.
    [21]W. D. Wang, F. Q. Huang, X. Q. Lin, J. Yang, Visible-light-responsive photocatalysts xBiOBr-(I-x)BiOI, Catal. Commun.,2008,9,8-12.
    [22]X. Zhang, L. Zhang, T. Xie, D. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C,2009,113,7371-7378.
    [23]S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin, M. Shang, Visible light-induced efficient contaminant removal by Bi5O7I, Environ. Sci. Technol.,2009,43,2005-2010.
    [24]Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation, J. Mol. Catal. A.,2011,334, 116-122.
    [25]H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, One-Step Synthesis of the Nanostructured Agl/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances, Langmuir,2010,26 6618-6624.
    [26]G. Xi, J. Ye, Synthesis of bismuth vanadate nanoplates with exposed{001} facets and enhanced visible-light photocatalytic properties, Chem. Commun.,2010,46,1893-1895.
    [27]Y. Zheng, F. Duan, J. Wu, L. Liu, M. Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed{010} surface under visible light irradiation, J. Mol. Catal. A.,2009,303,9-14.
    [28]L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The{001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun.,2011,47,6951-6953.
    [29]J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets, J. Am. Chem. Soc.,2012,134,4473-4476.
    [30]A. Kubacka, M. Fernandez-Garcia, G. Colan, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev.,2012,112,1555-1614.
    [31]X. Chen, S. L. Shen, L. Guo, S. S. Mao, Semiconductor-Based Photocatalytic Hydrogen Generation, Chem. Rev.,2010,110,6503-6570.
    [32]L. Ye, L. Tian, T. Peng, L. Zan, Synthesis of highly symmetrical BiOI single-crystal nanosheets and their{001} facet-dependent photoactivity, J. Mater. Chem.,2011,21,12419-12484.
    [33]Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities, Catal. Commun.,2011,12,660-664.
    [34]X. Zhang, L. Zhang, Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping:The case of BiOI, J. Phys. Chem. C,2010,114,18198-18206.
    [35]H. Peng, C. K. Chan, S. Meister, X. F. Zhang, Y. Cui, Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport, Chem. Mater.,2009, 21,247-252.
    [36]P. Dai, X. Shen, Z. Lin, Z. Feng, H. Xua, J. Zhan, Band-gap tunable (Cu2Sn)x3Zn1-xS nanoparticles for solar cells, Chem. Commun.,2010,46,5749-5751.
    [37]K. Ramasamy, M.A. Malik, P. O'Brien, The chemical vapor deposition of Cu2ZnSnS4 thin films, Chem. Sci.,2011,2,1170-1172.
    [38]C.S. Mcnally, D.P. Turner, A.N. Kulak, F.C. Meldrum, G. Hyett, The use of cationic surfactants to control the structure of zinc oxide films prepared by chemical vapour deposition, Chem. Commun., 2012,48,1490-1492.
    [39]Q. Mu, Q. Zhang, H. Wang, Y. Li, Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties, J. Mater. Chem.,2012,22, 16851-16857.
    [40]M. Zhang, C. Chen, W. Ma, J. Zhao, Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2 and TEMPO, Angew. Chem. Int. Ed.,2008,47, 9730-9733.
    [41]M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, J. Zhao, Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO2:Oxygen Isotope Studies, Angew. Chem.,2009,121,6197-6200.
    [42]S. W. Liu, J. G. Yu, M. Jaroniec, Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed{001} Facets,J. Am. Chem. Soc.,2010,132, 11914-11916.
    [43]Q. Xiang, J. Yu, M. Jaroniec, Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed{001} facets, Chem. Commun.,2011,47,4532-4534.
    [44]J. Zhang, W. Chen, J. Xi, Z. Ji,{001} Facets of anatase TiO2 show high photocatalytic selectivity, Materials Letters,2012,79,259-262.
    [45]L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X= Cl, Br) Visible Light Photocatalysts:Surface Plasmon Resonance and Z-scheme Bridge, ACS Catal.,2012,2,1677-1683.
    [46]L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl, Phys. Chem. Chem. Phys.,2012,14,82-85.
    [47]K. Wang, F. Jia, Z. Zheng, L. Zhang, Crossed BiOI flake array solar cells, Electrochem. Commun., 2010,12,1764-1767.
    [48]K. Zhao, X. Zhang, L. Zhang, The first BiOI-based solar cells, Electrochem. Commun.,2009,11, 612-615.
    [49]Q. Wang, C. Chen, D. Zhao, W. Ma, J. Zhao, Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation, Langmuir,2008,24, 7338-7345.
    [50]M. A. Gondal, X. Chang, M. A. Ali, Z. H. Yamani, Q. Zhou, G. Ji, Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532 nm pulsed laser exposure, Appl. Catal. A.,2011,397,192-200.
    [51]Z. Jianga, F. Yang, G. Yang, L. Kong, M. O. Jones, T. Xiao, P. P. Edwards, The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange, J. Photochem. Photobio. A.,2010,212,8-13.
    [I]C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev.,2010,39,4206-4219.
    [2]A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [3]L. Zhang, K.H. Wong, Z. Chen, J. C. Yu, J. Zhao, C. Hu, C.Y. Chan, P. K. Wong, AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components, Appl. Catal. A.,2009,363,221-229.
    [4]Y. Zhang, Z. R. Tang, X. Fu, Y. J Xu, Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase, Appl. Catal. B.,2011,106 445-452.
    [5]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. H. Whangbo, Ag@AgCl:a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed.,2008,47,7931-7933.
    [6]P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures, Chem. Eur. J.,2010,16, 538-544.
    [7]P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M.H, Whangbo, Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr, Chem. Eur. J.,2009,15, 1821-1824.
    [8]C. An, S. Peng, Y. Sun, Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst, Adv. Mater.,2010,22,2570-2574.
    [9]M. Zhu, P. Chen, M. Liu, Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst, ACS Nano,2011,5,4529-4536.
    [10]H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid, ACS applied materials & interfaces,2011,3,22-29.
    [11]Y. Li, Y. Ding, Porous AgCl/Ag nanocomposites with enhanced visible light photocatalytic properties, J. Phys. Chem. C,2010,114,3175-3179.
    [12]S. Linic, P. Christopher, D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater.,2011,10,911-921.
    [13]G. Tian, Y. Chen, H. L Bao, X. Meng, K. Pan, W. Zhou, C. Tian, J. Q. Wang, H. Fu, Controlled synthesis of thorny anatase TiO2 tubes for construction of Ag-AgBr/TiO2 composites as highly efficient simulated solar-light photocatalyst, J. Mater. Chem.,2012,22,2081-2088.
    [14]M. R. Elahifard, S. Rahimnejad, S. Haghighi, M. R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria, J. Am. Chem. Soc.,2007,129,9552-9553.
    [15]L. S. Zhang, K. H. Wong, H. Y. Yip, C. Hu, J. C. Yu, C. Y. Chan, P. K. Wong, Effective Photocatalytic Disinfection of E. coli K-12 Using AgBr-Ag-Bi2WO6 Nanojunction System Irradiated by Visible Light:The Role of Diffusing Hydroxyl Radicals, Environ. Sci. Technol.,2010,44,1392-1398
    [16]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, M. H. Whangbo, Ag/AgBr/WO3-H2O:visible-light photocatalyst for bacteria destruction, Inorg. Chem.,2009,48,10697-10702.
    [17]X. Zhang, Z. Ai, F. Jia, and L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X= Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C, 2008,112,747-753.
    [18]K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, W. D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B.,2006,68,125-129.
    [19]H. Cheng, B. Huang, Z. Wang, X. Qin, X. Zhang, Y. Dai, One-Pot Miniemulsion-Mediated Route to BiOBr Hollow Microspheres with Highly Efficient Photocatalytic Activity, Chem. Eur. J.,2011,17, 8039-8043.
    [20]L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The{001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun.,2011,47,6951-6953.
    [21]L. Ye, L. Tian, T. Peng, L. Zan, Synthesis of highly symmetrical BiOI single-crystal nanosheets and their{001} facet-dependent photoactivity,J. Mater. Chem.,2011,21,12479-12484.
    [22]L.Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl, Phys. Chem. Chem. Phys.,2012,14,82-85.
    [23]P. Ji, J. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation, Appl. Catal. B.,2009,85,148-154.
    [24]G. A. Bowmaker, B. W. Skelton, A. H. White, Structural and Infrared Spectroscopic Studies of Some Novel Mechanochemically Accessed Adducts of Silver (Ⅰ) Oxoanion Salts with Thiourea, Inorg. Chem.,2009,48,3185-3197.
    [25]L. Zhou, J. Liu, Z. Liu, Adsorption of platinum (IV) and palladium (Ⅱ) from aqueous solution by thiourea-modified chitosan microspheres, J. Hazard. Mater.,2009,172,439-446.
    [26]S. A. Khan, N. Singh, K. Saleem, Synthesis, characterization and in vitro antibacterial activity of thiourea and urea derivatives of steroids, Eur. J. Med. Chem.,2008,43,2272-2277.
    [27]A. E. Bolzana, T. Iwasita, A. J. Arvia, In situ FTIRRAS study of the electro-oxidation reactions of thiourea and gold in aqueous acid solutions, J. Electroanal. Chem.,2003,55,49-60.
    [28]F. Chen, H. Liu, S. Bagwasi, X. Shen, J. Zhang, Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation, J. Photochem. Photobiol. A.,2010,215,76-80.
    [29]J. Jiang, L. Zhang, Rapid Microwave-Assisted Nonaqueous Synthesis and Growth Mechanism of AgCl/Ag, and Its Daylight-Driven Plasmonic Photocatalysis, Chem. Eur. J.,2011,17,3710-3717.
    [30]H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants, Chem. Commun.,2011,47,7054-7056.
    [31]M. A. Gondal, X. F. Chang, Z. H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J.,2010,165,250-257.
    [32]H. Tada, T. Mitsu, T. Kiyonaga, T. Akita and K. Tanaka, All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater.,2006,5,782-786.
    [33]A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chem. Rev.,2012,112,1555-1614.
    [34]J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX (X= Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater.,2007,19,366-373.
    [35]M.A. Gondala, X. Chang, M.A. Ali, Z.H. Yamania, Q. Zhou, G. Ji, Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532nm pulsed laser exposure, Appl. Catal.A.,2011,397,192-200.
    [36]L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X= Cl, Br) Visible Light Photocatalysts:Surface Plasmon Resonance and Z-scheme Bridge, ACS Catal.,2012,2,1677-1683.
    [37]L. Ye, C. Gong, J. Liu, L. Tian, T. Peng, K. Deng, L. Zan, Bin(Tu)xCl3n:a novel sensitizer and its enhancement of BiOCl nanosheets'photocatalytic activity, J. Mater. Chem.,2012,22,8354-8360.
    [38]Y. Feng, L. Li, J. Li, J. Wang, L. Liu, Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene, J. Hazard. Mater.,2011,192,538-544.
    [39]Y. Fan, Y. Huang, J. Yang, P. Wang, G. Cheng, Unique Ability of BiOBr To Decarboxylate D-Glu and D-MeAsp in the Photocatalytic Degradation of Microcystin-LR in Water, Environ. Sci. Technol.,2011, 45,1593-1600.
    [40]J. Xu, W. Meng, Y. Zhang, L. Li, C. Guo, Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway, Appl. Catal. B.,2011,107,355-362.
    [41]W. L.Huang, Q. Zhu, Electronic structures of relaxed BiOX (X= F, Cl, Br, I) photocatalysts, Comp. Mate. Sci.,2008,43,1101-1108.
    [42]J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets, J. Am. Chem. Soc.,2012,134,4473-4476.
    [43]L. Zhang, X. F. Ca, X. T. Chen, Z. L. Xue, BiOBr hierarchical microspheres:Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties, J. Colloid. Interface Sci.,2011,354,630-636.
    [44]D. Zhang, M. Wen, B. Jiang, G. Lia, J.C. Yu, Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment,J. Hazard. Mater.,2012,212,104-111.
    [45]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater.,2009,8,76-80.
    [46]A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schloglb, J. M. Carlsson, Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem.,2008,18,4893-4908.
    [47]G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H. M. Cheng. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4, J. Am. Chem. Soc.,2010, 132,11642-11648
    [48]X. H. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles:hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step, Chem. Sci.,2012,3,2170-2174.
    [49]S. C. Yan, S. B. Lv, Z. S. Li, Z. G. Zou, Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans.,2010,39,1488-1491.
    [50]H. Yan, H. Yang, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation,J. Alloy. Comp.,2011,509, L26-L29.
    [51]X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance, Chem. Commun., 2011,47,10323-10325.
    [52]Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci.,2011,4,2922-2929.
    [53]J. X. Sun, Y. P. Yuan, L. G. Qiu, X. Jiang, A. J. Xie, Y. H. Shen, J. F. Zhu, Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light, Dalton Trans.,2012,41,6756-6763.
    [54]Y. Wang, X. Bai, C. Pan, J. He. Y. Zhu, Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4, J. Mater. Chem.,2012,22,11568-11573.
    [55]L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B.,2011,109,100-107.
    [56]X. Xu, G. Liu, C. Randorn, J. T. S. Irvine, Cu2O/Cu/TiO2 nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity, Int. J. Hydrogen. Energ.,2011,36, 13501-13507.
    [57]G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, J. Mater. Chem.,2012,22,8083-8091.
    [58]J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem.,2011,21,14398-14401.
    [59]G. Li, K. H. Wong, X. Zhang, C. Hu, J. C. Yu, R. C. Y. Chan, P. K. Wong, Degradation of Acid Orange 7 using magnetic AgBr under visible light:the roles of oxidizing species, Chemosphere,2009,76, 1185-1191.
    [60]Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobio. A.,2005,172,47-54.
    [61]M. Yin, Z. Li, J. Kou, Z. Zou, Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system, Environ. Sci. Technol.,2009,43,8361-8366.
    [62]A.N. Rao, B. Sivasankar, V. Sadasivam, Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst, J. Mol. Cata. A.,2009,306,77-81.
    [63]X. Zhang, L. Zhang, T. Xie, D. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C,2009,113,7371-7378.
    [64]L. Ye, J. Chen, L. Tian, J. Liu, T. Peng, K. Deng, L. Zan, BiOI Thin Film via Chemical Vapor Transport:Photocatalytic Activity, Durability, Selectivity and Mechanism, Appl. Catal. B.,2013, 130-131,1-7.
    [65]H. Fu, C. Pan, W. Yao, Y. Zhu. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B,2005,109,22432-22439.
    [66]Y. Cui, J. Huang, X. Fu, X. Wang, Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors, Catal. Sci. Technol.,2012,2,1396-1402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700