用户名: 密码: 验证码:
多孔阳极支撑中温固体氧化物燃料电池的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种把燃料的化学能直接转化为电能的全固态装置,在环境友好和能源高效利用方面显示出明显的优势,受到越来越多的关注。当前固体氧化物燃料电池发展的一个趋势是将其工作温度中低温化(工作温度在800℃以下)。为保证电池具有良好的输出性能,采用高电导率的电解质材料(La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM)和电解质层薄膜化技术是一种非常有前景的技术路线。
     本文采用多孔阳极材料作为支撑体,应用电解质层薄膜化技术制备单电池片。先采用甘氨酸-硝酸盐法(Glycine-Nitrate Process, GNP)合成了La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM)阳极粉末和La0.4Ce0.6O2-δ(LDC)粉末。采用Materials Studio软件计算模拟了LSCM材料的晶体结构,键长和态密度等。并把LSCM阳极粉末分别与三种不同种类和含量的造孔剂混合后,在5种不同制片压力下制备多孔阳极片。8wt.%淀粉造孔剂,造孔效果最好,制片压力为10MPa时,阳极片最大孔隙率为45%,比表面积达到1.256g/cm2。所制备的LDC粉末与不同含量的NiO混合制备复合阳极材料,加入造孔剂后在135℃烧结后得到颗粒接触较好的多孔阳极片,当NiO与LDC粉末比例为5:5时,NiO-LDC阳极片的孔隙率为30%左右,此时在800℃电导率最大。
     接下来分别在LSCM多孔阳极基底和NiO-LDC多孔阳极基底上采用射频磁控溅射法和浆料旋涂法制备了LSGM薄膜。并分别探讨了射频磁控溅射法和浆料旋涂法制备LSGM电解质薄膜的工艺参数。得出磁控溅射法沉积LSGM电解质薄膜的最佳工艺参数为:溅射压强为5Pa,射频功率为210W,基底温度为300℃,退火温度为1000℃,退火时间为2h。采用优化后的工艺参数获得的LSGM薄膜,致密度高,结晶性好,与阳极基底结合紧密。研究发现,沉积基底温度越高,LSGM电解质薄膜的沉积速率越小,薄膜材料颗粒越大。同时探索了LSGM薄膜沉积机理,分别采用lmin、3min和5min在单晶硅片上沉积LSGM电解质薄膜。研究表明,LSGM电解质薄膜沉积呈岛状生长模式,并呈择优生长现象,经退火后,不均匀现象和择优生长现象均消失。浆料旋涂法制备LSGM电解质薄膜研究结果表明,采用5wt.%乙基纤维素和5wt.%松油醇分别作为粘结剂和调和剂制备LSGM电解质浆料,经过重复旋涂9层后,在1400℃烧结4h,可以制备得到致密的LSGM电解质层。
     为了研究LSGM电解质材料中O2-传导过程,采用Materials Studio软件计算模拟LSGM晶体结构、键长和态密度等,并模拟了LSGM电解质材料中O2-传导的分子动力学过程。研究发现,LSGM晶体中与Ga和Mg成键的O2-很容易发生迁移,参与晶体中O2-的传导,并从过渡态计算中分析O2-迁移能,Sr和Mg掺杂后与Ga利Mg成键的O2-的迁移能分别为-0.152eV和-0.232eV,有利于晶体中与Ga和Mg成键的O2-传导,参与电化学反应。
     最后在LSCM和NiO-LDC阳极基底上,分别采用磁控溅射法和浆料旋涂法制备了4种不同体系的单电池片,并对单电池片截面形貌、交流阻抗、开路电压和功率密度进行了分析。研究表明,磁控溅射法制备的LSGM电解质层致密均匀,与基底粘结性好,单电池片的交流阻抗较小,尤其是在NiO-LDC体系单电池中,磁控溅射法制备的单电池在750℃的极化阻抗和欧姆阻抗分别为0.14Ω·cm2和0.74Ω·cm2,而浆料旋涂法制备单电池的极化阻抗和欧姆阻抗分别为3.23Ω·m2和1.81Ω·cm2,相差较大。研究还发现,不管是LSCM多孔阳极基底还是NiO-LDC多孔阳极基底单电池,磁控溅射法制备的单电池极化阻抗小于欧姆阻抗,而浆料旋涂法制备单电池极化阻抗大于欧姆阻抗。LSCM(支撑体)/LSGM/LSCF单电池片的开路电压(OCV)较高,最大达到1.09V,接近理论值。而NiO-LDC (支撑体)/LSGM/LSCF单电池片的OCV较低,高温时只有0.7V左右,而NiO-LDC (支撑体)/LSGM/LSCF单电池片的最大电流密度和功率密度较好。在NiO-LDC(支撑体)/LSGM/LSCF单电池片体系中磁控溅射法和浆料旋涂法制备单电池片的最大电流密度和功率密度分别为700℃的370.71mA/cm2,71.23mW/cm2和750℃的290.72mA/cm2,44.12mW/cm2。相比较而言,磁控溅射法制备的单电池的结构和性能优于浆料旋涂法制备的单电池。
Solid oxide fuel cell (SOFC), which is an all solid device to convert the chemical energy of the fuel into electrical energy directly, has been played great attention duo to high efficiency and environmental protection. Currently, the development tendency for SOFC is lower the operating temperature (the operating temperature below800℃). In order to obtain the excellent output performance, employing an electrolyte material with high conductivity (La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM)) and the technologies for electrolyte layer to be film is a very promising technology route.
     In this paper, the single cells were supported by porous anode substrates, and the electrolyte layers were prepared to be film by the film-technologies. Firstly. La0.7Sr0.3Cr0.5Mn0.5O3-δ (LSCM) anode powder and La0.4Ce0.6O2-δ(LDC) powder were synthesized by glycine nitrate process (GNP). And the LSCM crystal structure, bond length and density of states (DOS) were simulated by Materials Studio software. And the LSCM anode powder mixed with three types of pore-formers with different amounts, the mixtures were pressed into pellets by five pressures.8wt.%starch as the pore-former has the best the capability for porosity, when the pressure at10MPa, the maximum porosity of the anode was45%. LDC powders and NiO powders was mixed to be composite anode materials with different ratios, after mixing with pore formers, the mixtures were sintered to form pore anode pellets, and the particles of the anode materials were very well. When the ratio of LDC and NiO was5:5, the porosity was about30%, and the conductivity of the anode pellet was the highest at800℃
     Next, the LSGM electrolyte films were prepared by radio frequency magnetron sputtering and slurry spin coating on LSCM and NiO-LDC porous anode substrate, respectively, and the parameters of the preparing films were explored. In the sputtering process for LSGM film, the substrate temperature. Ar pressure and depositing power for the film were explored, and the optimum process parameters for the film deposited by magnetron sputtering:sputtering pressure is5Pa, depositing power is210W, substrate temperature is300℃, annealing temperature is1000℃, annealing time is2h. Depositing with the optimized process parameters. LSGM film was very dense, the crystallinity of the film was very good, and the film adhered to the substrate closely. The study illustrated that the deposited rate becomes less and the particle size of the film become greater when the substrate temperature was higher.
     The deposited mechanism was also discussed. The film was deposited on Si pellets in1,3and5min, respectively. The research showed that LSGM electrolyte film was deposited with island growth mode, and the film appeared phenomenon of preferential growth. After annealing, the phenomenon of preferential growth and the uneven film were disappeared. The results of slurry spin coating showed that a dense film can be obtained by employing the process parameters:5wt.%Ethyl cellulose as a binder.5wt.%Terpineol as moderator agent repeating spin9times and sintering at1400℃for4h.
     In order to research the process of O2-conduction in LSGM crystal, the LSGM crystal structure, bond length and density of state were calculated and simulated by the Materials Studio software, and the transfer process dynamics of O2-in LSGM crystal was also simulated. The research found that the O2-which formed bond with Ga/Mg in La90Sr10Ga80Mg20O287crystal was very easy to transfer. The transfer energy of the O2-was also calculated though analysis of the transition process. The transfer energies of the O2" which formed bond with Ga and Mg were-0.152eV and-0.232eV, respectively, which was benefit to the transfer of O2-
     Finally, the LSGM electrolyte layer were fabricated by magnetron sputtering and slurry spin coating on LSCM or NiO-LDC anode substrate, and four kinds of single cells were prepared, and the cross-sectional morphologies, AC impedance, open circuit voltage (OCV) and power density of the cells were explored. The studies illustrated that the film prepared by magnetron sputtering was dense and uniform, adhered to anode substrates closely, and the AC impedance of the single cell was small, especially for the single cell of NiO-LDC/LSGM/LSCF. If the cell prepared by sputtering, the polarization resistivty and ohmic resistivity of the single cell prepared by magnetron sputtering were0.14Ω·cm2and0.74Ω·cm2respectively. And the polarization resistivty and ohmic resistivity of the single cell prepared by spin coating were3.23Ω·cm2and1.8Ω·cm2respectively. Regardless of the LSCM or NiO-LDC porous anode substate. the polarization resistivity of the cell prepared by magnetron sputtering was less than the ohmic resistivity of it, however the polarization resistivity of the cell prepared by spin coating was larger than the ohmic resistivity of it.
     The open circuit voltage of the LSCM (supported)/LSGM/LSCF single cell was great, and the maximum was1.09V, which was very close to the theoretical value. The open circuit voltage of NiO-LDC (supported)/LSGM/LSCF single cell was small, the OCV at high temperature was about0.7V, however, the largest current and largest power of the NiO-LDC (supported)/LSGM/LSCF single cell were very well. The largest current density and power density of the single cells prepared by magnetron sputtering and slurry spin coating were370.71mA/cm2,71.23mW/cm2and290.72mA/cm2,44.12mW/cm2, respectively. In a word, the structure and performance of the single cell prepared by magnetron sputtering are better than those prepared by slurry spin coating.
引文
[1]M A Pena, J L G. Fierro. Chemical Structures and Performance of Perovskite Oxides[J]. Chemical Reviews,2001,101(7):1981-2018.
    [2]C Xia, M Liu. Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells[J]. Advanced Materials,2002.14(7):521-523.
    [3]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004.
    [4]李箭,肖建中,蒲f健.固体氧化物燃料电池——高效清洁的能源[J].中国科技成果,2006,(2):20-22.
    [5]S P Jiang, A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics,2002,146(1-2):1-22.
    [6]L Yang, Z Liu, S Wang, et al. A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors[J]. Journal of Power Sources,2010,195(2):471-474.
    [7]编辑部.新能源和可再生能源发展优先项目[J].新材料产业,2000,(6):6-7.
    [8]Joon K. Fuel cells-a 21st century power system[J]. Journal of Power Sources, 1998,71(1-2):12-18.
    [9]黄镇海.燃料电池及其应用[M].北京:电子工业出版社,2005.
    [10]Dufour A U. Fuel cells-a new contributor to stationary power[J]. Journal of Power Sources,1998,71 (1-2):19-25.
    [11]S P Harvey, H J Richter. Gas turbine cycles with solid oxide fuel cells. Part I: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology[J]. Journal of Energy Resources Technology,1994, 116(4):305-311.
    [12]Minh N Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society, 1993,76(3):563-588.
    [13]Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode[J], Nature.1999,400(6745):649-651.
    [14]查全性.燃料电池技术的发展与我国应有的对策[J].应用化学,1993,10(5):38-42.
    [15]Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications[J]. International Conference on Solid State Ionics, Cairns, Australia,2002,152-153:405-410.
    [16]李箭.固体氧化物燃料电池:发展现状与关键技术[J].功能材料与器件学报,2007,13(6):683-690.
    [17]A L Dicks. Advances in catalysts for internal reforming in high temperature fuel cells[J]. Journal of Power Sources,1998,71(1-2):111-122.
    [18]A L Lee, R E Zabransky, W J Huber. Internal reforming development for solid oxide fuel cells [J]. Industrial and Engineering Chemistry Research,1990, 29(5):766-773.
    [19]Y Hiei, T Ishihara. Y Takita. Partial oxidation of methane for internally reformed solid oxide fuel cell[J]. Solid State Ionics,1996,86-88, Part 2(0):1267-1272.
    [20]A U Dufour. Fuel cells—a new contributor to stationary power[J]. Journal of Power Sources,1998,71 (1-2):19-25.
    [21]P Aguiar, D J L Brett, N P Brandon. Feasibility study and techno—economic analysis of all SOFC/battery hybrid system for vehicle applications[J]. Journal of Power Sources,2007,171 (1):186-197.
    [22]McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews,2004,104(10):4845-4866.
    [23]Hirschenhofer J, Stauffer D, Engleman R, et al. Fuel cell handbook[J].1998.
    [24]Singhal S C, Advances in solid oxide fuel cell technology[J]. Solid State Ionics, 2000,135(1-4):305-313.
    [25]谢淑红.中温固体氧化物燃料电池的制备工艺[D].武汉:华中科技大学2004.
    [26]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells[M]: Elsevier,1995.
    [27]Miyamoto H, Takasago K M, Mizoguchi T, et al. Development of Molb Type Sofc.28th International Conference on Advanced Ceramics and Composites A: Ceramic Engineering and Science Proceedings:John Wiley & Sons, Inc.,2008: 229-238.
    [28]翟秀静,刘奎仁韩庆.新能源技术[M].北京:化学工业出版社,2005.
    [29]George R A. Status of tubular SOFC field unit demonstrations[J]. Journal of Power Sources,2000,86(1-2):134-139.
    [30]Herring J S, Obrien J E, Stoots CM, et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy,2007,32(4):440-450.
    [31]Majumdar S, Claar T, Flandermeyer B. Stress and fracture behavior of monolithic fuel cell tapes[J]. Journal of the American Ceramic Society,2005, 69(8):628-633.
    [32]刘凤军.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2004,180-201.
    [33]孙帆,郑勇,高小龙,等.固体氧化物燃料电池电解质利电极材料的研究进展[J].金属功能材料,2010,17:75-80.
    [34]Kimpton J, Randle T H, Drennan J. Investigation of Electrical Conductivity as a Function of Dopant-ion Radius in the Systems Zr0.75Ce0.08M0.17O1.92 (M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc)[J]. Solid State Ionics,2002,149(1-2):89-98.
    [35]Huang K, Tichy R S, Goodenough J B. Superior Perovskite Oxide-Ion Conductor Strontium-and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties[J]. Journal of the American Ceramic Society,1998, 81(10):2565-2575.
    [36]Huang K, Wan J H, Goodenough J B. Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials[J]. Journal of The Electrochemical Society,2001,148(7):A788-A794.
    [37]Ishihara T, Matsuda H, Takita Y. Effects of Rare Earth Cations Doped for La site on the Oxide Ionic Conductivity of LaGaO3-based Perovskite Type Oxide[J]. Solid State Ionics,1995,79:147-151.
    [38]Ishihara T, Eto H, Zhong H, et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Based Perovskite Oxide for Electrolyte[J]. Electrochemistry,2009,77:115-122.
    [39]Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001, 414(6861):345-352.
    [40]Fergus J W. Oxide anode materials for solid oxide fuel cells[J]. Solid State Ionics,2006,177(17-18),1529-1541.
    [41]Madsen B D, Barnett S A. Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes[J]. Solid State Ionics,2005, 176(35-36):2545-2553.
    [42]Pudmich G, Boukamp B A, Gonzalez-Cuenca M, et al. Chromite/Titanate based perovskites for application as anodes in solid oxide fuel cells [J]. Solid State Ionics,2000,135(3-4):433-438.
    [43]Wang S, Jiang Y, Zhang Y, et al. Electrochemical performance of mixed ionic-electronic conducting oxides as anodes for solid oxide fuel cell[J]. Solid State Ionics,1999,120(1-4):75-84.
    [44]Goodenough J B, Huang Y H. Alternative anode materials for solid oxide fuel cells[J]. Journal of Power Sources,2007,173(1):1-10.
    [45]Wan J, Goodenough J B, Zhu J H. Nd2-xLaxNiO4+δ, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material[J]. Solid State Ionics, 2007,178(3-4):281-286.
    [46]Xie Z, Zhu W, Zhu B, et al. FexCo0.5-xNi0.5-SDC anodes for low-temperature solid oxide fuel cells[J]. Electrochimca Acta,2006,51(15):3052-3057.
    [47]Wang Z C, Weng W J, Cheng K, et al. Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells[J]. Journal of Power Sources,2008, 179(2):541-546.
    [48]Park S, Craciun R, Vohs J M, et al. Direct oxidation of hydrocarbons in a solid oxide fuel cell I. Methane oxidation[J]. Journal of Electrochemical Society, 1999,146(10):3603-3605.
    [49]Weber A, Sauer B, Muller A C, et al. Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes[J]. Solid State Ionics,2002,152-153: 543-550.
    [50]Grgicak C M, Pakulska M M, O'Brien.1 S, et a. Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S[J]. Journal of Power Sources,2008, 183(1):26-33.
    [51]Nabae Y, Yamanaka 1, Takenaka S, et al. Direct oxidation of methane by Pd-Ni bimetallic catalyst over lanthanum chromite based anode for SOFC[J]. Chemistry Letters,2005,34(6):774-775.
    [52]Kim H, Lu C, Worrell WL, et al. Cu-Ni cermet anodes for direct oxidation of methane in solid oxide fuel cells[J]. Journal of Electrochemical Society,2002, 149(3):A247-A250.
    [53]Park S D, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature,2000,404(6775):265-267.
    [54]McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews,2004,104(10):4845-4866.
    [55]Chen X J, Liu Q L, Chan S H, et al. High-performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane[J]. Fuel Cells Bulletin,2007,2007(6):12-16.
    [56]李松丽,王绍荣,聂怀文,等.La0.85Sr0.15Cr0.9Ni0.1O3-δ-Ce0.8Sm0.2O1.9作为SOFC阳极材料的研究[J].无机材料学报,2006,21(5):1121-1126.
    [57]A N PeSov, O E Kononchuk, A V Andreev, et al. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y[J]. Solid State Ionics,1995, 80(3-4):189-199.
    [58]X G Zhang, S O hara, R Maric, et al. Interface reactions in the NiO-SDC-LSGM system[J]. Solid State Ionics,2000,133(3-4):153-160.
    [59]S Tanasescu, N D Totir, D I Marchidan. Thermodynamic properties of some perovskite type oxides used as SOFC cathode materials[J]. Solid State Ionics, 1999,119(1-4):311-315.
    [60]G C Kostogloudis, C Ftikos, A Ahmad-Khanlou, et al. Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte[J]. Solid State Ionics,2000,134(1-2):127-138.
    [61]S P Simner, M D Anderson, J W Stevenson. La(Sr)FeO3 SOFC Cathodes with Marginal Copper Doping[J]. Journal of American Ceramic Society,2004, 87(8):1471-1476.
    [62]M D Anderson, J W Stevenson, S P Simner. Reactivity of lanthanide ferrite SOFC cathodes with YSZ electrolyte[J]. Journal of Power Sources, 2004,129(2):188-192.
    [63]H Kishimoto, N Sakai, T Horita, et al. Cation transport behavior in SOFC cathode materials of La0.gSr0.2CoO3 and La0.8Sr0.2FeO3 with perovskite structure[J]. Solid State Ionics,2007,178(21-22) 1317-1325.
    [64]D Waller, L G Coccia, J A Kilner, et al. The effect of pulse duration and oxygen partial pressure on La0.7Sr0.3CoO3-delta and La0.7Sr0.3Co0.2Fe0.8O3-delta films prepared by laser ablation[J]. Solid State Ionics,2000,134(1-2):119-125.
    [65]A Y Yan, M Yang, Z F Hou, et al. Investigation of Ba1-xSrxCo0.8Fe0.2O3-δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2[J]. Journal of Power Sources,2008,185(1):76-84.
    [66]Z R Shao, S M Haile. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature,2004,431:170-173.
    [67]N P Bansal, Z M Zhong. Combustion synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x nanopowders for solid oxide fuel cell cathodes[J]. Journal of Power Sources,2006,158(1):148-153.
    [69]Mobius H H. On the history of solid electrolyte fuel cells[J]. Journal of Solid State Electrochemistry,1997,1(1):2-16.
    [70]奥海尔,车硕源,科莱拉.燃料电池基础[M].北京:电子工业出版社,2007.
    [71]彭珍珍,杜洪兵,陈广乐,等.国外SOFC研究机构及研发状况[J].硅酸盐学报,2010,38(3):542-548.
    [72]郭廷杰.日本加速燃料电池技术实用化[J].节能与环保,2004,(6):44-46.
    [73]Steinberger-Wilckens R, Bucheli O, De Haart L G J, et al. Real-SOFC-A Joint European Effort to Improve SOFC Durability[J]. ECS Transactions,2009, 25(2):43-56.
    [74]Rietveld B G, Van Berkel F P, Zhang-Steenwinkel Y, et al. The Integrated Project SOFC 600 Development of Low-temperature SOFC[J]. ECS Transactions,2009,25(2):29-34.
    [75]Steinberger-Wilckens R. European SOFC R&D Status and Trends[J]. ECS Transactions,2009,25(2):3-10.
    [76]王绍荣.固体氧化物燃料电池的发展形势和任务[J].科学中国人,2011,F0003(14):80-80.
    [77]毕道治.中国燃料电池的发展[J].电源技术,2000,24(2):103-107.
    [78]贾旭平.美国Bloom energy公司推出固体氧化物燃料电池微型电站[J].电源技术,2010,34(6):525-528.
    [79]侯丽萍,张暴暴.固体氧化物燃料电池的系统结构及其研究进展[J].西安工程科技学院学报,2007,21(2):267-270.
    [80]王绍荣.固体氧化物燃料.电池简介[J].上海节能,2007,(3):32-34.
    [81]Wang W G, Guan W, Li H, et al. Solid Oxide Fuel Cell Development at NIMTE[J]. ECS Transactions,2009,25(2):85-90.
    [82]http://www.nimte.ac.cn/xwzx/tpxw/201205/t20120530_3587646.html.
    [83]http://news.bjx.com.cn/html/20130717/446408.shtml.
    [84]谢淑红,崔崑,夏风,等.阳极支撑型固体氧化物燃料电池的研制[J].陶瓷学报,2004,25(1):38-42.
    [85]张耀辉,刘江,黄喜强,等.湿粉末法制备阳极支撑型固体氧化物燃料电池及其性能[J].功能材料,2008,39(5):827-829,833.
    [86]Yan J-W, Dong Y-L, Yu C-Y, et al. Fabrication and characterization of anode substrates and supported electrolyte thin films for intermediate temperature solid oxide fuel cells[J]. Journal of Inorganic Materials 2001,16(5):804-814.
    [87]Liu Q L, Khor K A, Chan S H, et al. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process[J]. Journal of Power Sources,2006, 162(2):1036-1042.
    [88]Huijsmans J P P, van Berkel F P F, Christie G M. Intermediate temperature SOFC-a promise for the 21st century[J]. Journal of Power Sources.1998. 71(1-2):107-110.
    [89]Goodenough J B. Ceramic technology:Oxide-ion conductors by design[J]. Nature,2000.404(6780):821-823.
    [90]Tao S, Irvine J T S. A red ox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater,2003,2(5):320-323.
    [91]Liu Y, Compson C, Liu M. Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2004,138(1-2):194-198.
    [92]Lee J H, Heo J W, Lee D S, et al. The impact of anode micro structure on the power generating characteristics of SOFC[J]. Solid State Ionics,2003, 158(3-4):225-232.
    [93]Wen T L, Wang D, Chen M, et al. Material research for planar SOFC stack[J]. Solid State Ionics,2002,148(3-4):513-519.
    [94]Will J, Mitterdorfer A, Kleinlogel C, et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells[J]. Solid State Ionics,2000, 131(1-2):79-96.
    [95]Patcharavorachot Y, Arpornwichanop A, Chuachuensuk A. Electrochemical study of a planar solid oxide fuel celk-Role of support structures[J]. Journal of Power Sources,2008,177(2):254-261.
    [96]Leng Y J, Chan S H, Khor K A, et al. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte[J]. International Journal of Hydrogen Energy,2004,29(10):1025-1033.
    [97]Gu H, Ran R, Zhou W, et al. Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA-citrate complexing synthesis process[J]. Journal of Power Sources,2007,172(2):704-712.
    [98]Yamaguchi T, Shimizu S, Suzuki T, et al. Fabrication and evaluation of cathode-supported small scale SOFCs[J]. Materials Letters,2008, 62(10-11):1518-1520.
    [99]Y. L, S. h, H. N, et al. Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3-δ cathode-supported Ce0.9Gd0.101.95 thin-film for IT-SOFCs[J]. Journal of Power Sources,2007,164(1):56-64.
    [1 00]李彦,闫水保,赵大治,等.阳极支撑平板状SOFC过电势模型及分析[J].电源技术,2008,32(1):52-55.
    [101]Bao W, Chang Q, Meng G. Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell[J]. Journal of Membrane Science,2005, 259(1-2):103-109.
    [102]Matsuzaki Y, Yasuda I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode:Part I. Dependence on temperature, time, and impurity concentration[J]. Solid State Ionics,2000,132(3-4):261-269.
    [103]Steele B C H, Kelly 1, Middleton H, et al. Oxidation of methane in solid state electrochemical reactors[J]. Solid State Ionics,1988,28-30, Part 2:1547-1552.
    [104]Sahu A K, Ghosh A, Suri A K. Characterization of porous lanthanum strontium manganite (LSM) and development of yttria stabilized zirconia (YSZ) coating[J]. Ceramics International,2009,35(6):2493-2497.
    [105]Liu M, Yu B, Xu J, et al. Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy,2010,35(7):2670-2674.
    [106]Sanson A, Pinasco P, Roncari E. Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs[J]. Journal of the European Ceramic Society,2008,28(6):1221-1226.
    [107]孙薇薇,芦颖.固体氧化物燃料电池阳极基底造孔剂含量的研究[J].佳木斯大学学报(自然科学版),2009,27(5):718-720.
    [108]于建国,王玉璋,惠宇,等.阳极孔隙率对固体氧化物燃料电池性能影响的数值分析[J].硅酸盐学报,2010,38(2):246-251.
    [109]单耕,由宏新,丁信伟,等.固体氧化物燃料电池阳极结构研究进展[J].电源技术,2005,29(7):488-490.
    [110]徐献芝,朱梅,苏润,等.多孔电极三相界面形态的研究[J].化学通报(印 刷版),2004,67(10):768-770.
    [111]Hu J, Lu Z, Chen K, et al. Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs[J]. Journal of Membrane Science,2008,318(1-2):445-451.
    [112]琚晨辉,叶建东,宋贤良,等.淀粉及改性淀粉在高性能陶瓷制备中的应用[J].材料导报,2006,20(1):84-88.
    [113]孙长庚,刘宗章,张敏华.甲烷催化部分氧化制合成气的研究进展[J].化学工业与工程,2004,21(4):276-280.
    [114]金荣超,陈燕馨,崔巍,等.甲烷催化部分氧化制合成气的反应机理[J].物理化学学报,1999,(4):313-318.
    [115]井强山,方林霞,楼辉,等.甲烷临氧催化转化制合成气研究进展[J].化工进展,2008,27(4):503-507.
    [116]井强山,刘鹏,郑小明.甲烷临氧催化转化制合成气研究进展[J].化学通报(印刷版),2008,71(9):643-649.
    [117]Lahl N, Bahadur D, Singh K, et al. Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells[J]. Journal of The Electrochemical Society,2002, 149(5):A607-A614.
    [118]Ishihara T, Shibayama T, Nishiguchi H, et al. Nickel-Gd-doped CeO:cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte[J].. Solid State Ionics,2000, 132(3-4):209-216.
    [119]Miiller A C, Herbstritt D, Ivers-Tiffee E. Development of a multilayer anode for solid oxide fuel cells[J]. Solid State Ionics,2002,152-153(0):537-542.
    [120]Huang K, Feng M, Goodenough J B, et al. Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr-and Mg-Doped LaGaO3[J]. Journal of The Electrochemical Society,1997,144(10):3620-3624.
    [121]Choi J-J, Cho K-S, Choi J-H, et al. Electrochemical effects of cobalt doping on (La,Sr)(Ga,Mg)O3-δ electrolyte prepared by aerosol deposition[J]. International Journal of Hydrogen Energy,2012,37(8):6830-6835.
    [122]Wan J-H, Yan J-Q, Goodenough J B. LSGM-Based Solid Oxide Fuel Cell with 1.4 W/cm2 Power Density and 30 Day Long-Term Stability[J]. Journal of The Electrochemical Society,2005,152(8):A1511-A1515.
    [123]毕忠合,衣宝廉,程谟杰.多层电解质型中温SOFC[J].电池,2005,35(1):10-11.
    [124]Bi Z, Dong Y, Cheng M, et al. Behavior of lanthanum-doped ceria and Sr-Mg-doped LaGaO3 electrolytes in an anode-supported solid oxide fuel cell with a La0.6Sr0.4CoO3 cathode[J]. Journal of Power Sources,2006,161(1):34-39.
    [125]朱晓东,孙克宁,张乃庆,等.固相反应法和共沉淀法制备SOFC阻挡层La0.30Ce0.70O2-δ.功能材料.敦煌;2006.p 563-565.
    [126]Liu R, Du Q, Ma W, et al. Preparation and Characterization of Component Materials for Intermediate Temperature Solid Oxide Fuel Cell by Glycine-Nitrate Process[J]. Journal of Rare Earths,2006,24(Supplement 1):98-103.
    [127]宋晓岚,邱冠周,曲鹏,等.沉淀法合成纳米Ce02及其性能[J].湖南大学学报(自然科学版),2004,31(6):13-17.
    [128]吴淑荣,熊为淼,何明安,等.六水合硝酸镧和六水合硝酸铈的热分解[J].西北大学学报(自然科学版).1981,(03):32-38.
    [129]Ringuede A, Bronin D, Frade J. Electrochemical Behaviour of Ni/YSZ Cermet Anodes Prepared by Combustion Synthesis[J]. Fuel cells,2001, 1(3-4):238-242.
    [130]Chen M, Kim B H, Xu Q, et al. Preparation and electrochemical properties of Ni-SDC thin films for IT-SOFC anode[J]. Journal of Membrane Science,2009, 334(1-2):138-147.
    [131]刘荣辉,马文会,王华,等La0.9Sr0.1Ga0.8Mg0.2O3-δ电解质材料的合成及性能研究[J].有色金属(冶炼部分),2006,(4):36-39.
    [132]刘荣辉.中温固体氧化物燃料电池材料制备及性能研究[D].昆明:昆明理工大学2007.
    [133]马文会.固体氧化物燃料电池复合掺杂阴极材料的研究[D].昆明:昆明理工大学2001.
    [134]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.
    [135]Li Z-C. Zhang H, Bergman B, et al. Synthesis and characterization of La0.85Sr0.15Ga0.85Mg0.15O3-δ electrolyte by steric entrapment synthesis method[J]. Journal of the European Ceramic Society,2006,26(12):2357-2364.
    [136]Liu N, Yuan Y, Majewski P, et al. Synthesis of La0.85Sr0.15Ga0.85Mg0.15O2.85 materials for SOFC applications by acrylamide polymerization[J]. Materials research bulletin.2006,41(3):461-468.
    [137]Marrero Lopez D, Martin Sedeno M C, Pena Martinez J, et al. Microstructure and Conductivity of La1-xSrxGa0.8Mg0.2O3-δ Electrolytes Prepared Using the Freeze-Drying Method[J]. Journal of the American Ceramic Society,2011, 94(4):1031-1039.
    [138]白翠琴,吴平,潘礼庆,等.真空热处理对CoFe薄膜结构及电磁特性的影响[J].真空科学与技术学报,2006,26(3):219-222.
    [139]Todi R, Sundaram K, Warren A, et al. Investigation of oxygen annealing effects on RF sputter deposited SiC thin films[J]. Solid-state electronics,2006, 50(7):1189-1193.
    [140]李强,杨瑞霞,潘国峰,等.工作压强和退火温度对SiC薄膜结构的影响[J].微纳电子技术,2009,46(5):292-295.
    [141]Sasaki K, Muranaka M, Suzuki A, et al. Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS[J]. Solid State Ionics,2008,179(21-26):1268-1272.
    [142]洪剑寒,王鸿博,魏取福.氩气压强对PET基磁控溅射银膜结构及导电性能的影响[J].材料导报,2006,20(z2):83-85.
    [143]Yoo Y. Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells[J]. Journal of Power Sources,2006,160(1):202-206.
    [144]许宁,刘正堂,刘文婷,等.射频磁控溅射法制备氧化镱薄膜[J].稀有金属材料与工程,2007,(S3):82-85.
    [145]黄佳木,董建华,张兴元.工艺参数对RF磁控溅射沉积铝掺杂氧化锌薄膜特性的影响[J].材料科学与工程学报,2003,(02):174-177.
    [146]Dangtip S, Sripongphan N, Boonyopakorn N, et al. Effects of rf-power and working pressure on formation of rutile phase in rf-sputtered TiO2 thin film[J]. Ceramics International,2009,35(3):1281-1284.
    [147]柳志民.磁控溅射法制备YSZ电解质薄膜及其在SOFC中的应用[D].哈尔滨:哈尔滨工业大学2008.
    [148]Yang J, Ma W, Yu J, et al. Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ thin film deposited by radio frequency magnetic sputtering[J]. Journal of Rare Earths,2013,31 (6):582-588.
    [149]Ohyama M, Kouzuka H, Yoko T. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution[J]. Thin Solid Films,1997,306(1):78-85.
    [150]Abadias G Stress and preferred orientation in nitride-based PVD coatings[J]. Surface and Coatings Technology,2008,202(11):2223-2235.
    [151]Long M D, Xiao X, Jiang Z, et al. Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D"[J]. Physics of the Earth and Planetary Interiors,2006,156(1-2):75-88.
    [152]Cregan V, O'Brien S B G A note on spin-coating with small evaporation[J]. Journal of Colloid and Interface Science,2007,314(1):324-328.
    [153]陈孔发.氧化锆电解质薄膜燃料电池及其电极优化研究[D].哈尔滨:哈尔滨工业大学2009.
    [154]Wang J, Lu Z, Chen K, et al. Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFCs[J]. Journal of Power Sources,2007,164(1):17-23.
    [155]Ai N, Lu Z, Chen K, et al. Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC[J]. Journal of Membrane Science,2006,286(1-2):255-259.
    [156]叶飞.固体氧化物燃料电池梯度阴极材料的制备与表征[D].浙江:浙江大学2008.
    [157]Simner S P, Bonnett J F, Canfield N L, et al. Development of lanthanum ferrite SOFC cathodes[J]. Journal of Power Sources,2003,113(1):1-10.
    [158]Zhu X, Sun K, Le S. et al. Improved electrochemical performance of NiO-La0.45Ce0.55O2-δ composite anodes for IT-SOFC through the introduction of a La0.45Ce0.55O2-δ interlayer[J]. Electrochimica acta,2008,54(2):862-867.
    [159]Jie Z, Er-Jun L. Qiang S, et al. Oxygen vacancy formation and migration in Sr-and Mg-doped LaGaO3:a density functional theory study[J]. Chinese Physics B,2012,21(4):047201 (1-7).
    [160]Kuwabara A, Tanaka I. First Principles Calculation of Defect Formation Energies in Sr-and Mg-Doped LaGaO3[J]. The Journal of Physical Chemistry B,2004,108(26):9168-9172.
    [161]Carter J D, Anderson H U, Shumsky M G. Structure and phase transformation of lanthanum chromate[J]. Journal of Materials Science,1996,31 (2):551-557.
    [162]Becke A D. Density Functional Calculations of Molecular Bond Energies// Erdahl R, Smith V, Jr. Density Matrices and Density Functionals:Springer Netherlands.1987:443-455.
    [163]Perdew J P, Yue W. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Physical Review B, 1986,33(12):8800-8802.
    [164]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,1990,41(11):7892-7895.
    [165]Francis G, Payne M. Finite basis set corrections to total energy pseudopotential calculations[J]. Journal of Physics:Condensed Matter,1990,2(19):4395.
    [166]Pfrommer B G, Cote M, Louie S G, et al. Relaxation of Crystals with the Quasi-Newton Method[J]. Journal of Computational Physics,1997, 131(1):233-240.
    [167]陈秀敏.氧化铝真空碳热还原氯化歧化反应的理论研究[D].昆明:昆明理工大学2012.
    [168]Kerker G. Non-singular atomic pseudopotentials for solid state applications[J]. Journal of Physics C:Solid State Physics,1980,13(9):L189.
    [169]Oikawa K, Kamiyama T, Hashimoto T, et al. Structural Phase Transition of Orthorhombic LaCrO3 Studied by Neutron Powder Diffraction[J]. Journal of Solid State Chemistry,2000,154(2):524-529.
    [170]Estemirova S, Fetisov A, Balakirev V, et al. Crystal Structure and Magnetic Properties of (La1-xSrxMnO3)N(LaCr03)1-N Solid Solutions[J]. Journal of Superconductivity and Novel Magnetism,2007,20(2):113-116.
    [171]颜秀茹.无机化学与化学分析[M].天津:天津大学出版社,2004.
    [172]Morozov A, Morozova O, Ponomarev N. Real structure of single crystals of LaGaO3 grown by the Czochralski method. I:X-ray diffraction and x-ray topographic methods[J]. Crystallography reports,1993,38(3):368-373.
    [173]Slater P R, Irvine J T S, Ishihara T, et al. The structure of the oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 by powder neutron diffraction[J]. Solid State Ionics,1998,107(3-4):319-323.
    [174]Liu D, Chen X, Li D, et al. Simulation of MoS2 crystal structure and the experimental study of thermal decomposition[J]. Journal of Molecular Structure,2010,980(1-3):66-71.
    [175]Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J], The Journal of chemical physics,1980,72(4):2384.
    [176]Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I[J]. Physical Review B,1991,44(3):943-954.
    [177]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters,1996,77(18):3865-3868.
    [178]Nose S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular physics,1984,52(2):255-268.
    [179]Islam M S. Computer modelling of defects and transport in perovskite oxides[J]. Solid State Ionics,2002,154-155:75-85.
    [180]Islam M S. Ionic transport in ABO3 perovskite oxides:a computer modelling tour[J]. Journal of Materials Chemistry,2000,10(4):1027-1038.
    [181]Jones A, Islam M S. Atomic-scale insight into LaFeO3 perovskite:Defect nanoclusters and ion migration[J]. The Journal of Physical Chemistry C,2008, 112(12):4455-4462.
    [182]Mather G C, Islam M S. Defect and dopant properties of the SrCeO3-based proton conductor[J], Chemistry of materials,2005.17(7):1736-1744.
    [183]Lerch M, Boysen H, Hansen T. High-temperature neutron scattering investigation of pure and doped lanthanum gallate[J]. Journal of Physics and Chemistry of Solids,2001,62(3):445-455.
    [184]Giinter M M, Boysen H, Corte C, et al. In-situ investigation of oxygen diffusion in Sr, Mg-doped LaGaO3 superionic conductors with a simultaneously applied electric field[J]. Crystalline materials.2005, 220(2-3):218-224.
    [185]Yashima M, Nomura K, Kageyama H, et al. Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8M0.15Co0.05) O2.8[J]. Chemical physics letters,2003,380(3-4):391-396.
    [186]Dean J A兰氏化学手册(第二版)[M].北京:科学出版社,2003.
    [187]杨兵初,钟心刚.固体物理学[M].湖南:中南大学出版社,2002.
    [188]于洁.固体氧化物燃料电池钙钛矿型复合氧化物阴极材料的研究[D].昆明:昆明理工大学2009.
    [189]雷泽,朱庆山.纳米La0.6Sr0.4Co0.2Fe0.8O3-δ阴极粉体的溶液燃烧法合成与性能表征[J].物理化学学报,2007,23(2):232-236.
    [190]Wang W, Yang Z, Wang H, et al. Desirable performance of intermediate-temperature solid oxide fuel cell with an anode-supported La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte membrane[J]. Journal of Power Sources, 2011,196(7):3539-3543.
    [191]Wilson J R, Barnett S A. Solid Oxide Fuel Cell Ni-YSZ Anodes:Effect of Composition on Microstructure and Performance[J]. Electrochemical and Solid-State Letters,2008,11 (10):B181-B185.
    [192]Lin Y, Zhan Z, Liu J, et al. Direct operation of solid oxide fuel cells with methane fuel[J]. Solid State Ionics,2005,176(23-24):1827-1835.
    [193]Murray E, Tsai T, Barnett S. Oxygen transfer processes in (La, Sr) MnO3/Y2O3-stabilized ZrO2 cathodes:an impedance spectroscopy study[J]. Solid State Ionics,1998,110(3-4):235-243.
    [194]Bastidas D M, Tao S, Irvine J T. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes[J]. Journal of Materials Chemistry,2006,16(17):1603-1605.
    [195]Chen K, Tian Y, Lii Z, et al. Behavior of 3% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating[J]. Journal of Power Sources,2009,186(1):128-132.
    [196]安雷,张玢,彭军,等.固体氧化物燃料电池La0.7Sr0.3Cr1-xMnxO3-δ阳极性能研究[J].中国稀土学报,2012,30(5):599-604.
    [197]安雷,张玢,郜建全,等.固体氧化物燃料电池La0.7Sr0.3Cr0.5Mn0.5O3-δ-SDC复合阳极性能研究[J].稀土,2013,(3):7-1 2.
    [198]张振宇.固体氧化物燃料电池阳极材料锶、锰掺杂铬酸镧的制备和性能研究[D]:吉林大学2010.
    [199]Bi Z, Yi B, Wang Z, et al. A High-Performance Anode-Supported SOFC with LDC-LSGM Bi layer Electrolytes[J]. Electrochemical and Solid-State Letters, 2004,7(5):A105-A107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700