用户名: 密码: 验证码:
染料敏化POM及TiO_2可见光光催化制氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为光催化剂典型代表的TiO2,以其价廉、无毒、结构稳定、优良的物理、化学性质等众多优点,一直是光催化研究的热点。POM (polyoxometalate多金属氧酸盐)是除Ti02等半导体外,具有良好氧化还原能力和光电化学性质的另一类无机光催化剂。然而,POM和Ti02均只能利用紫外光,而太阳光中这部分光只占4%~6%,可见光却达到43-46%左右。染料敏化是一种拓展光催化剂激发波长范围、利用可见光的重要手段之一。
     染料敏化体系的一个重要问题就是稳定性问题,这也是制约染料敏化实际应用的重要因素。POM作为优良的电子受体,能够迅速转移染料激发态物种的电子,可以有效阻止敏化剂的降解,为构建高效、高稳定性的染料敏化制氢光催化剂或体系提供了可能。染料敏化体系的另一个重要问题是如何提高活性,通过金属离子或者非金属离子表面修饰Ti02可提高其敏化制氢活性。
     本论文研究了Eosin Y等占顿染料敏化POM及修饰后的Ti02光催化制氢,整个工作包括以下五个部分:
     (一)、研究了占吨染料(Eosin Y、 Erythrosin B、Rose Bengal)对完整Keggin结构的POM (SiW12O404-、PW12O403-等)的光敏化作用。实验以三乙醇胺为电子给体。可见光下,杂多蓝(POM-)的生成证明了染料与POM之间的电子转移。Pt共催化剂存在下,可见光照(λ≥420nm)20h,染料Eosin Y敏化PW12O403-和SiW12O404-显示了相对较高的产氢活性,平均产氢速率分别为53.3μmolh-1、51.8μmolh-1,表观量子效率分别为9.2%、8.9%。
     (二)、以EosinY(EY)敏化A13+取代的Keggin结构POMa-[AlSiW11(H2O)O39]5-(AlSiW,,)并用于可见光分解水制氢。Eosin Y与AlSiW11具有化学配位作用,这有利于它们之间的电荷转移,也大大提高了染料的光化学稳定性,抑制了EY的脱溴反应,因此体系显示了较高的制氢活性与很好的稳定性。结果表明,通过化学键(共价键或配位键)连接染料与POM分子可以提高光敏化体系的稳定性与活性。
     (三)、采用缺位的Keggin型POM SiW11O398-(SiW11)修饰TiO2,制备了SiW11/TiO2复合物。IR(红外光谱)、UV(紫外光谱)等光谱表征证明了SiW11与Ti02之的化学作用,SiW11的修饰促进了TiO2的晶化与晶粒尺寸的长大。Pt为共催化剂,EY敏化SiW11/TiO2具有高的可见光制氢的活性与稳定性,SiW11作为一个良好的电子传递剂,极大地促进了EY还原态自由基EY·-H(质子化形式)向Ti02导带的电子转移,有效抑制了EY·-的脱溴降解反应,从而大大提高了染料敏化体系的稳定性。考察了SiW11浓度、EY浓度以及Pt负载量等因素对光催化制氢的影响,优化的实验条件下,以上敏化体系在λ>420nm可见光下,20h得到了11.4%的平均表观量子效率。研究还讨论了光敏化电子转移的机理。
     (四)、制备了A13+偶联、Eosin Y敏化的Ti02催化剂。A13+偶联可以显著提高染料敏化Ti02催化剂的制氢活性。然而,此类催化剂的光催化稳定性却不甚如人意。考察了不同金属离子、不同含水量对光催化产生氢气的影响。以上产氢结果,再结合IR、XPS(X射线光电子能谱)、UV-Vis(紫外可见光谱)等的表征,发现催化剂在反应过程中存在水解、金属离子与TEOA络合、染料的降解等现象,从而导致光催化体系的活性降低,而在只有少量水(体积分数0.5%)存在的甲醇介质时能明显提高制氢稳定性。
     (五)、通过硫酸、磷酸处理TiO2,得到了S042-或P043-修饰的Ti02(记为S/TiO2、P/TiO2)。SO42-或PO43-与TiO2之间存在较强的化学配位作用。相比EY敏化TiO2,EY敏化S/TiO2、P/TiO2提高了可见光光催化制氢活性。S/TiO2与P/TiO2的导带较Ti02发生负移,键合的SO42-或P043-的诱导效应可使EY--H与S/TiO2、P/TiO2之间的氢键增强,以上均可增强光催化制氢活性。实验还考察了5042-与P043-浓度、EY浓度以及Pt负载量等因素对光催化制氢的影响。
As a typical photocatalyst, TiO2is most frequently employed owing to its cheapness, nontoxicity, structural stability and intriguing physical and chemical properties etc.. POMs (polyoxometalates) are other kind of photocatalysts with intriguing redox ability as well as photoelectrochemical property. Howerover, both TiO2and POM can only be excited under ultraviolet (UV) light, which occupies only4%~6%in the solar spectra, for visible light, this number reaches to43~46%around. Dye sensitization is a good strategy to broaden the excitation wavelength range of photocatalyst and to utilize visible light.
     A significant problem in dye sensitization systems is the stability issue, which is also a key factor that limits their pratical applications. POMs are good electron acceptors, they can quickly transfer the electron from photoinduced dye species and suppress the decomposition of the sensitizers. So they are expected to conduct efficient and stable dye-sensitized photocatalysts or systems for hydrogen evolution. How to enhance the activities of dye sensitization systems are the other important challenge, modification of TiO2by metal ions or nonmetal ions could improve its photosensitized activity for hydrogen production.
     In this dissertation, xanthene dyes, such as EosinY, sensitized POMs and modified TiO2for photocatalytic hydrogen production were studied, and the whole work includes the following five sections:
     (I). Photosensitization of Keggin POMs (SiW12O404-、PW12O403-etc) with xanthene dyes (EosinY、Erythrosin B、Rose Bengal) were studied. Triethanolamine (TEOA) was used as electron donor in the experiments. The formation of heteropoly blue (POM-) under visible light illumination demonstrated that the electron transfer occurs between the dye and POM. In the presence of Pt as co-catalyst, Eosin Y sensitized PW12O3-or SiW12O4-system displays relatively high activity for hydrogen production with the average rates of53.3μmol h-1,51.8μmol h-1and the apparent quantum yields of9.2%,8.9%during20h irradiation (k>420nm), respectively.
     (Ⅱ). Eosin Y (EY)-sensitized a-[SiAlW11(H2O)O39]5-(AlSiW11)(an Al3+substituted Keggin POM) for the hydrogen evolution under visible light irradiation (λ>420nm) was investigated. EY can coordinate with AlSiW11. The coordination association between AlSiW11and EY is beneficial to the charge transfer between them and to promote the photochemical stability of EY. Thus, the system displays efficient and stable photocatalytic hydrogen evolution. The research suggests that a chemical association (coordination or covalence) between POM and dye must make contribution to improve stability and activity of dye sensitization system.
     (Ⅲ). TiO2was modified with a lacunary Keggin-type POM SiW11O398-(SiW11) to obtain SiW11/TiO2composite SiW11is bound at TiO2by a chemical interaction, which was demonstrated by FT-IR (Infrared spectroscopy) and UV (Ultraviolet spectroscopy). SiW11modification promotes TiO2crystallization as well as growth of the particles. EY sensitized SiW11/TiO2displays stable and efficient visible-light H2generation using Pt as a co-catalyst. SiW11, as an excellent electron relay, greatly facilitates the electron transfer from the reduced dye species EY'-H (the protonated form) to conduction band (CB) of TiO2and suppresses effectively the decomposition of EY·-. Thus, the stability of dye-sensitized system is enhanced. The factors which influenced the photocatalytic hydrogen evolution such as concentration of SiW11, concentration of EY and Pt loading content etc. were investigated. Under the optimal conditions, an average apparent quantum yield of11.4%was obtained from the above system during20h irradiation (λ>420nm). The photosensitized electron transfer mechanism was also discussed.
     (IV). An Al3+coupled and EY-sensitized TiO2photocatalyst was prepared. The coupling of Al3+can markedly improve the visible-light activity of dye-sensitized catalyst. Nevertheless, the stability of the as-prepared catalyst is poor. The effects of different metal ion and water content in photocatalytic system on hydrogen evolution were investigated. The results of hydrogrn evolution combined with IR, XPS (X-ray photoelectron spectroscopy) and UV-Vis specra, suggest that hydrolysis, complexing between Al3+and TEOA as well as degradation of dye result in a decreased activity of the photocatalytic system, the photocatalyst exhibits a enhanced activity and stability when water content is very low (0.5%volume fraction).
     (V). TiO2was modified by sulfate and phosphate (denoted as S/TiO2and P/TiO2) by simply sulfur or phosphoric acid treatment. The strong chemical coordination occurs between sulfate or phosphate and TiO2. EY sensitized S/TiO2and P/TiO2exhibit enhanced photocatalytic activity for hydrogen evolution upon visible light illumination compared to that of EY sensitized TiO2. The CB edges of S/TiO2and P/TiO2shift toward the negative, and the hydrogen bond interaction between EY·-H and S/TiO2or P/TiO2is enhanced due to the inducing effect of bound sulfate and phosphate, thus, photocatalytic hydrogen evolution is promoted. The factors which influenced the photocatalytic hydrogen evolution such as concentration of sulfate or phosphate, concentration of EY, and Pt loading content were investigated.
引文
[1].汤桂兰,孙振钧.生物制氢技术的研究现状与发展[J].生物技术,2007,17(1):93-98.
    [2].顾忠茂.氢能利用与核能制氢研究开发综述[J].原子能科学技术,2006,40(1):30-35.
    [3]. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews,2009,38:253-278.
    [4]. Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews,2010,110:6503-6570.
    [5].黄昀,吴季怀.半导体氧化物光催化裂解水制氢[J].化学进展,2006,18:168-176.
    [6].李越湘,吕功煊,李树本.半导体光催化分解水研究进展[J].分子催化,2001,15(1):72-79.
    [7]. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,37:238-242.
    [8]. Muruganandham M, Kusumoto Y, Okamoto C, et al. Mineralizer-assisted shape-controlled synthesis, characterization, and photocatalytic evaluation of CdS microcrystals [J]. Journnal of Physical Chemistry C,2009,113:19506-19517.
    [9]. Zhang J S, Zhang M W, Sun R Q, et al. A Facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions [J]. Angewandte Chemie International Edition,2012,51:10145-10149.
    [10]. Lu D L, Takata T, Saito N, et al. Photocatalyst releasing hydrogen from water [J]. Nature,2006, 440:16.
    [11]. Li Y X, Dillert R, Bahnemann, D. Preparation of porous CdIn2S4 photocatalyst films by hydrothermal crystal growth at solid/liquid/gas interfaces [J]. Thin Solid Films,2008,516: 4988-4992.
    [12]. Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials,2011,10:912-921.
    [13]. Osterloh F E. Inorganic materials as catalysts for photochemical splitting of water [J]. Chemical Materals.2008,20:35-54.
    [14]. Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11:401-425.
    [15].李国防,曹广秀,赵彦保.TiO2光催化分解水制氢研究进展[J].2008,(9):672-678.
    [16]. Kurtoglu M. Effect of doping on the photocatalytic, electronic and mechanical properties of sol-gel titanium dioxide films [D]. Drexel University,2011.
    [17].黄翠英,张澜萃,李晓辉.稀土离子掺杂对纳米TiO2光催化制氢活性的影响.催化学报,2008,29(2):163-166.
    [18]. Hu C, Tang Y C, Tang H X. Characterization and photocatalytic activity of transition -metal-supported surface bond-conjugated TiO2/SiO2 [J]. Catalysis Today,2004,90:325-330.
    [19]. Asahi R,Morikawa T,Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293 (5528):269-271.
    [20]. Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625-627.
    [21]. Wang Q, Chen C C, Ma W H, et al. Pivotal role of fluorine in tuning band structure and visible-light photocatalytic activity of nitrogen-doped TiO2 [J]. Chemistry A European Journal, 2009,15:4765-4769.
    [22]. Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles [J]. Journal of Catalysis,2002,207 (2):151-157.
    [23]. Li Y X, Peng S Q, Li S B, et al. Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity [J]. Journal of the Serbian Chemical Society,2007,72 (4):393-402.
    [24]. Peng S Q, Li Y X, Jiang F Y, et al. Effect of Be2+ doping TiO2 on its photocatalytic activity [J]. Chemical Physics Letters,2004,398:235-239.
    [25]. Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. Journal of Physical Chemistry,1994,98 (51):13669-13679.
    [26].李越湘,王添辉,彭绍琴,等.Eu3+、Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报,2004,20(12):1434-1439.
    [27]. Li Y X, Ma G F, Peng S Q, et al. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution [J]. Applied Surface Science,2008,254: 6831-6836.
    [28]. Anil K, Arvind K J. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole [J]. Journal of Molecular Catalysis A: Chemical,2001,165:265-273.
    [29]. So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4 [J]. International Journal of Hydrogen Energy,2004,29: 229-234.
    [30]. Lo S C, Lin C F, Wu C H, Hsin P H. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol [J]. Journal of Hazardous Materials,2004,114(1-3):183-190.
    [31].施利毅,古宏晨,李春忠等. SnO2/TiO2复合光催化剂的制备和性能[J].催化学报1999,20(3):338-342.
    [32].彭绍琴,李越湘,江风益,潘勇辉,匡小军.复合催化刺TiO2/Fe2O3的制备及其光催化性能[J].有色金属,2004,(4):26-28.
    [33]. Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst [J]. Water Research,2004,38(13):3001-3008.
    [34]. Tomita K, Kadokawa J, et al. H2 evolution from aqueous solutions containing sacrificial reagents with photocatalytic reaction [J]. Transactions of the Materials Research Society of Japan,2000, 25(4):1147-1150.
    [35].李越湘,吕功煊,李树本.以草酸为电子给体在Pt-TiO2上光催化生成氢[J].催化学报,2001,22(2):212-214.
    [36].李越湘,吕功煊,李树本Pt-TiO2光催化还原罗丹明B[J].催化学报,2001,15(4):287-290.
    [37]. Linsebigler A L, Lu G X, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chemical Reviews,1995,95(3):735-758.
    [38]. Cui W Q, Feng L R, Xu C H. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film [J]. Catalysis Communications,2004,5:533-536.
    [39]. Li Y X, Lu G X, Li S B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2 [J]. Applied Catalysis A:General,2001,214:179-185.
    [40]. Li Y X, Lu G X, Li S B. Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,152:219-228.
    [41]. Ni M, Leung M K H, Leung D Y C.染料敏化分解水制氢技术进展[J]Chinese Journal of Power Sources(电源技术),2006,30(10):856-859.
    [42].吕笑梅,方靖淮,陆祖宏.敏化TiO2纳米晶太阳能电池[J].功能材料,1998,29(6):574-577.
    [43].王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.
    [44].王秀丽,赵岷.多酸电化学导论[M].北京:中国环境科学出版社,2006.
    [45]. Berzerius J. The preparation of the phosphomolybdate ion [PMo12O40]3- [J]. Poggendorffs Ann Phys Chem,1826,6:369-371.
    [46].梁建军.多酸化学简史[J].大学化学,2007,22(1):67-70.
    [47].宣照林.纳米多酸/二氧化钛复合催化剂制备及光催化降解有机染料[D].东北师范大学,2007.
    [48]. Lipscomb W N. Paratungstate ion [J]. Inorganic Chemistry,1965,4(1):132-134.
    [49]. Saito A. Formation and characterization of the non-crystalline lanthanoid (Ⅲ) hydrate salts of lacunary heteropolytungstates [J]. Journal of Alloys and Compounds,2006,408-412: 1037-1040.
    [50]. Assran A S, Mal S S, Izarova NV. Alpha and beta isomers of tetrahafnium (Ⅳ) containing decatungstosilicates, [Hf4(OH)6(CH3COO)2(x-SiW10O37)2]12 (x=a, b) [J]. Dalton Transactions, 2011,40:2920-2925.
    [51]. Texier I, Delouis J F, Delaire J A, et al. Dynamics of the first excited state of the decatungstate anion studied by subpicosecond laser spectroscopy [J]. Chemical Physics Letters,1999,311: 139-145.
    [52].李跃军,曹铁平,刘术伙.稀土缺位杂多酸配合物的结构及其性质研究[J].河北师范大学学报(自然科学版),2007,31(6):791-796.
    [53]. Haraguchi N, Okaue Y, Isobe T, et al. Stabilization of Tetravalent cerium upon coordination of unsaturated heteropolytungstate anions [J]. Inorganic Chemistry,1994,33:1015-1020.
    [54]. Tourne C M, Tourne G F, Malik S A, et al. Triheteropolyanions containing copper(Ⅱ), manganese(Ⅱ), or manganese(Ⅲ) [J]. Journal of Inorganic and Nuclear Chemistry,1970,32: 3875-3890.
    [55]. Wu Q Y, Xie X F. Preparation and conductivity of ternary undecatungstoferroaluminic heteropoly acid [J]. Materials Science and Engineering B96,2002,29-32.
    [56]. Keita B, Kortz U, Holzle L R B, et al. Efficient hydrogen-hvolving cathodes based on proton and electron reservoir behaviors of the phosphotungstate [H7P8W48O184]33- and the Co(II)-containing silicotungstates [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(α-SiW8O31)3}]5- and [{Co3(B-β-SiW9O33(OH))(B-β-SiW8O29OH)2}2]22- [J]. Langmuir,2007,23:9531-9534.
    [57].马荣华,彭军,牛增元,等.铝镓取代的钨硅杂多配合物位置异构体的合成表征及催化性能[J].无机化学学报,1996.12(3):278-283.
    [58]. Bonchio M, Carraro M, Scorrano G. Photooxidation in water by new hybrid molecular photocatalysts integrating an organic sensitizer with a polyoxometalate core [J]. Advanced Synthesis and Catalysis,2004,346:648-654.
    [59].孟路,刘景福.三缺位杂多阴离子XW9O3910-(X=Si, Ge)的稀十衍生物的合成与表征[J].化学学报,1997,55:1077-1083.
    [60]. Kuo M C, Stanis R J, Ferrell J R, et al. Electrocatalyst materials for fuel cells based on the polyoxometalates—K7 or H7[(P2W17O61)FeⅢ(H2O)] and Na12 or H12[(P2W15O56)2FeⅢ4(H2O)2] [J]. ElectrochimicaActa,2007,52:2051-2061.
    [61].岳斌,许静玉,金松林,姜鑫,谢高阳,多酸的光化学和光催化(上)[J].上海化工,2001,13:24-26.
    [62].任春霞.胶体铂的状态12-硅钨杂多酸光催化制氢影响及9-硅钨杂多酸的性能研究[D].南吕大学,2006.
    [63]. Kormali P, Troupis A, Triantis T, et al. Photocatalysis by polyoxometallates and TiO2:A comparative study [J]. Catalysis Today,2007,124:149-155.
    [64]. Papaconstantinou E. Inorganica Chimica Acta,1980,43:155-158.
    [65]. Akid R, Darwent J R. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water [J]. Journal of the Chemical Society, Dalton Transactions,1985; 395-399.
    [66]. Yamase T, Takabayashi N, Kaji M. Solution photochemistry of tetrakis(tetrabutylammonium) decatungtate (Ⅵ) and catalytic hydrogen evolution from alcohols [J]. Journal of the Chemical Society, Dalton Transactions,1984,793-799.
    [67]. Zhang Z Y, Lin Q P, Zheng S T, et al. A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity [J]. Chemical Communications,2011,47: 3918-3920.
    [68]付宁,吕功煊.杂多蓝在可见光照射下对TiO2的光敏作用研究[J].化学学报,2007,65(14):1325-1332.
    [69]. Fu N, Lu G X. Photo-catalytic H2 evolution over a series of Keggin-structure heteropoly blue sensitized Pt/TiO2 under visible light irradiation [J]. Applied Surface Science,2009,255: 4378-4383.
    [70]. Fu N, Lu GX. Hydrogen evolution over heteropoly blue-sensitized Pt/TiO2 under visible light irradiation [J]. Catalysis Letters,2009,127:319-322.
    [71].岳斌,许静玉,金松林,姜鑫,谢高阳,多酸的光化学和光催化(下)[J].上海化工,2001,14:15-21.
    [72]. Hill C L, Prosser-McCartha C M. Homogeneous catalysis by transition metal oxygen anion clusters [J]. Coordination Chemistry Reviews,1995,143:407-455.
    [73]. Guo Y H, Hu C H. Heterogeneous photocatalysis by solid polyoxometalates [J]. Journal of Molecular Catalysis A:Chemical,2007,262:136-148.
    [74]. Allaoui A, Malouki M A, Wong-Wah-Chung P. Homogeneous photodegradation study of 2-mercaptobenzothiazole photocatalysed by sodium decatungstate salts:Kinetics and mechanistic pathways [J]. Journal of Photochemistry and Photobiology A:Chemistry,2010,212: 153-160.
    [75]. Mylonas A, Hiskla A, Papaconstantinou E. Contribution to water purification using polyoxo-metalates, aromatiddenvatives, chloroacetieacids [J]. Journal of Molecular Catalysis A: Chemical,1996,114:191-196.
    [76]. You Y L, Gao S Y, Xu B, et al. Self-assembly of polyoxometalate-azure A multilayer films and their photocatalytic properties for degradation of methyl orange under visible light irradiation [J]. Journal of Colloid and Interface Science,2010,350:562-567.
    [77]. Guo Y, Hu C, Wang X, et al. Microporous decatungstates:synthesis and photochemieal behavior [J]. Chemical Materials,2001,13(11):4058-4064.
    [78]. Ozer R R, Ferry J L. Photocatalytic oxidation of aqueous 1,2—dichlorobenzene by polyoxomeatlates supported on the NaY zeolite [J]. Journal Physical Chemistry B,2002,106: 4336-4342.
    [79]. Jin H X, Wu Q Y, Pang W Q. Photocatalytic degradation of textile dye X-3B using polyoxometalate-TiO2 hybrid materials [J]. Journal of Hazardous Materials,2007,141:123-127.
    [80]. Gu C K, Shannon C. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems for the oxidation of methanol [J]. Journal of Molecular Catalysis A:Chemical,2007,262: 185-189.
    [81]. Marci G, E. Garcia-Lopez, Palmisano L. Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40:Photo-assisted degradation of 2-propanol in gas-solid regime [J]. Applied Catalysis B:Environmental,2009,90:497-506.
    [82]. Li D F, Guo Y H, Hu C W, et al. Preparation, characterization and photocatalytic property of the PW11O397-/TiO2 composite film towards azo-dye degradation [J]. Journal of Molecular Catalysis A:Chemical,2004,207:183-193.
    [83]. Li K X, Guo Y N, Ma F Y, et al. Design of ordered mesoporous H3PW12O40-titania materials and their photocatalytic activity to dye methyl orange degradation [J]. Catalysis Communications, 2010,11:839-843.
    [84]. Troupis A, Gkika E, Hiskia A, et al. Photocatalytic reduction of metals using polyoxometallates: recovery of metals or synthesis of metal nanoparticles [J]. C. R. Chimie,2006,9:851-857.
    [85]. Troupis A, Hiskia A, Papaconstantinou E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers [J]. Angewandte Chemie International Edition, 2002,41:1911-1914.
    [86]. Costa-Coquelard C, Schaming D, Lampre I, et al. Photocatalytic reduction of Ag2SO4 by the Dawson anion a-[P2W18O62]6- and tetracobalt sandwich complexes [J]. Applied Catalysis B: Environmental,2008,84:835-842.
    [87]. Zhang G C, Xu Y M. Polyoxometalate-mediated reduction of dichromate under UV irradiation [J]. Inorganic Chemistry Communications,2005,8:520-523
    [88]. Kim S, Yeo J, Choi W. Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst [J]. Applied Catalysis B:Environmental,2008,84:148-55.
    [89]. Yoon M, Chang J A, Kim Y, et al. Heteropoly acid-incorporated TiO2 colloids as novel photocatalytic systems resembling the photosynthetic reaction center [J]. Journal of Physical Chemistry B,2001,105:2539-2545.
    [90]. Fu N, Lu GX. Graft of lacunary Wells-Dawson heteropoly blue on the surface of TiO2 and its photocatalytic activity under visible light [J]. Chemical Communications,2009:3591-3593.
    [91]. O'Regan B, Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-739.
    [92].吕笑梅,方靖淮,陆祖宏.敏化Ti02纳米晶太阳能电池[J].功能材料,1998,29(6):574-577.
    [93].张力,孙岳明.染料敏化太阳能电池的研究进展[J].化工时刊,2008,22(10):95-99.
    [94].潘高峰TiO2、ZnO的改性及其可见光催化制氢性能[D].南吕大学,2007.
    [95].倪萌,Leung M K H, Leung D Y C.染料敏化分解水制氢技术进展[J].电源技术,2006,30(10):856-859.
    [96].吉仁.酞菁染料敏化纳米Ti02光解水制氢的研究[D].南京农业大学,2007.
    [97].曾隆月,戴松元,王孔嘉,等.染料敏化纳米ZnO薄膜太阳电池机理初探[J].物理学报,2005,54(1):53-57.
    [98]. Hannapple T, Burefindt B, Storck W, et al. Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film [J]. Journal of Physical Chemistry B,1997,101(35):6799-6802.
    [99]. Zang L, Lange C, Abraham I, et al. A new type of hybrid photocatalyst for visible light detoxification [J]. Journal of Physical Chemistry B,1998,102:10765-1077.
    [100]. Nazeerudin M K, Kay A, Rodicio I, et al. Conversion of light t o electricity by cis-Xz Bis (2,2'-bi pyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN, and SCN-) on nano-crystalline TiO2 electrodes [J]. Journal of the American Chemical Society,1993,115,6382-6390.
    [101]. Mohammad K N, Peter P, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J]. Journal of the American Chemistry Society,2001,123: 1613-1624.
    [102].秦元东,王晶晶,邹英华等.Ti02的联吡啶-钌化合物敏化及电子转移过成[J].物理化学学报,1998,14(6):520-526.
    [103]. Bi Z C, Tien H T. Photoproduction of hydrogen by dye-sensitized systems [J]. International Journal of Hydrogen Energy,1984,9(8):717-722.
    [104]. Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water [J]. International Journal of Hydrogen Energy,2001,26(7):669-674
    [105]. Peng T Y, Dai K, Yi H B, et al. Photosensitization of different ruthenium(Ⅱ) complex dyes on TiO2 for photocatalytic H2 evolution under visible-light [J]. Chemical Physics Letters,2008,460: 216-219.
    [106]. Bae E, Choi W. Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light [J]. Journal of Physical Chemistry B,2006,110:14792-14799.
    [107]. Zhang X H, Veikko U, Mao J, et al. Visible-light-induced photocatalytic hydrogen production over binuclear RuⅡ-bipyridyl dye-sensitized TiO2 without noble metal loading [J]. Chemistry A European Journal,2012,18:12103-12111.
    [108]. Oman E S, Navio J, Litter M. Photocatalysis with Fe/TiO2 semiconductors and TiO2 sensitized by phthalocyanines [J]. Journal of Advanced Oxidation Technologies,1998,3(3):261-269.
    [109]. Harriman A, Porter G, Richoux, Marie C. Photosensitized reduction of water to hydrogen using water-soluble zinc porphyrins [J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics,1981,77(5):833-844.
    [110]. Hagiwara H, Matsumoto H, Ishihara T. Improvement of photocatalytic activity of metal sulfide by organic dye for H2 formation from water [J]. Electrochemistry (Tokyo, Japan),2008,76(2): 125-127.
    [111].张先付,沈涛.占吨类染料敏化作用研究进展[J].化学通报,1995,(6):8-14.
    [112]. Lopez Arbeloa I. Aggregation of halofluorescein dyes [J]. Dyes and Pigments,1983,4: 211-220.
    [113]. Valdes-Aguiiera O, Neckers D C. Aggregation phenomena in xanthenes dye [J]. Accounts of Chemical Research,1989,22:171-177.
    [114]. De S, Das S, Girigoswami A. Environmental effects on the aggregation of some xanthene dyes used in lasers [J]. Spectrochimica Acta Part A,2005,61,1821-1833.
    [115]. Birla L, Cristian A M, Hillebrand M. Absorption and steady state fluorescence study of interaction between eosin and bovine serum albumin [J]. Spectrochimica Acta Part A,2004,60: 551-556.
    [116]. Kasche V, Lindqvist L. Transient species in the photochemistry of Eosin [J]. Photochemistry and Photobiology,1965,4:923-933.
    [117]. Pelet S, Gratzel M, Moser J E. Femtosecond dynamics of interfacial and intermolecular electron transfer at eosin-sensitized metal oxide nanoparticles [J]. Journal of Physical Chemistry B,2003, 107:3215-3224.
    [118]. Mau A W H, Johansen O, Sasse W H F. Xanthene dyes as sensitizers for the photoreduction of water [J]. Photochemistry and Photobiology,1985,41:503-509.
    [119]. Heleg V, Willner I. Photocatalysed CO2-fixation to formate and H2-evolution by Eosin-modified Pd-TiO2 powders [J]. Journal of the Chemical Society, Chemical Communications,1994, 2113-2114.
    [120]. Gurunathan K, et al. Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution [J]. International Journal of Hydrogen Energy,1997,22 (1):57-62.
    [121]. Abe R, Sayama K, Arakawa H. Efficient hydrogen evolution from aqueous mixture of I and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation [J]. Chemical Physics Letters,2002,362(5-6):441-444.
    [122]. Abe R, Sayama K, et al. Steady hydrogen evolutionfrom water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,137(1):63-69.
    [123].谢称福,李越湘,彭绍琴等.伊红Y敏化的Ti02制备及其可见光下光催化制氢性能[J].太阳能学报,2007,28(9):956-960.
    [124]. Chatterjee D. Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst [J]. Catalysis Communications,2010, 11:336-339.
    [125]. Jin Z L, Zhang X J, Li Y X, et al.5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications,2007,8:1267-1273.
    [126]. Li Y X, Xie C F, Peng S Q, et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution [J]. Journal of Molecular Catalysis A:Chemical,2008, 282:117-123.
    [127].郭苗苗,李越湘,彭绍琴等.Fe3+偶联吨染料敏化TiO2可见光催化制氢活性[J].功能材料,2009,5(40):802-805.
    [128]. Li Y X, Guo M M, Peng S Q, et al. Formation of multilayer-Eosin Y-sensitized TiO2 via Fe3+ coupling for efficient visible-light photocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy,2009,34 (14):5629-5636.
    [129]. Abe R, Sayama K, Arakawa H J. Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I-solution under visible light irradiation [J]. Journal of Photochemistry and Photobiology, A:Chemistry,2004,166(1-3),115-122.
    [130]刘福生,吉仁,吴敏等.苝染料敏化Pt/TiO2光催化分解水制氢[J].物理化学学报,2007,23(12):1899-1904.
    [131].张莉,杨迈之,高恩勤等.五甲川菁染料的敏化作用及其在Gratzel型太阳能电池中的应用[J].高等化学学报,2000,21(10):1543-1546.
    [132]. Zhao W, Hou Y J, Wang X S, et al. Study on squarylium cyanine dyes for photoelectric conversion [J]. Solar Energy Materials and Solar Cells,1999,58:173-183.
    [133]. Guo M, Diao P, Ren Y J, et al. Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes [J]. Solar Energy Materials and Solar Cells,2005,88: 23-35.
    [134]. Min S X, Lu G X. Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution [J]. International Journal of Hydrogen Energy,2012,37 (14):10564-10574.
    [135]. Perera V P S, Senadeera G K R, Tennakone K. S. Sensitization of aluminum chloride adsorbed tin(IV) oxide nanocrystalline films with Rose Bengal [J]. Journal of Colloid and Interface Science.2003,265:428-431.
    [136].穆劲,陈丽莉,康诗钊等.曙红-碳纳米管CuO/CoO体系的光催化还原水制氢性能[J].无机化学学报,2012,28(2):251-256.
    [137]. Zhang X J, Jin Z L, Li Y X, et al. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix. Journal of Power Sources,2007,166: 74-79.
    [138]. Zhang X J, Jin Z L, Li Y X, et al. Photosensitized reduction of water to hydrogen using novel Maya blue-like organic-inorganic hybrid material [J]. Journal of Colloid and Interface Science, 2009,333:285-293.
    [139].张晓杰,汤长青,靳治良等. EosinY/Pt/Si02催化剂光催化还原水制氢[J].物理化学学报,2011,27(5):1143-1148.
    [140]. Zhang X J, Jin Z L, Li Y X, et al. Photocatalytic hydrogen generation over Eosin Y-sensitized TS-1 zeolite. Applied Surface Science,2008,254(15),4452-4456.
    [141]. Li Q Y, Jin Z L, Peng Z G, et al. Highly-efficient photocatalytic hydrogen evolution on Eosin Y-sensitized Ti-MCM-41 Zeolite under visible-light irradiation [J]. Journal of Physical Chemistry C,2007,111(23):8237-8241.
    [142]. Li Q Y, Chen L, Lu G X. Visible-light-induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst [J]. Journal of Physical Chemistry C, 2007,111(30):11494-11499.
    [143]. Li Q Y, Lu G X. Visible-light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2 [J]. Journal of Molecular Catalysis A:Chemical 2007, 266(1-2):75-79.
    [144]. Min S X, Lu G X. Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction [J]. The Journal of Physical Chemistry C,2011,115: 13938-13945.
    [145]. Min S X, Lu G X. Enhanced electron transfer from the excited Eosin Y to mpg-C3N4 for high efficient hydrogen evolution under 550 nm irradiation [J]. The Journal of Physical Chemistry C, 2012,116(37):19644-19652.
    [146]. Abe R, Sayama K, Arakawa H. Significant influence of solvent on hydrogen production from aqueous I3/1 redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation [J]. Chemical Physics Letters,2003,379:230-235.
    [147]. Li Y X, Lu G X, Li S B. Photocatalytic transformation of Rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors[J]. Journal of Photochemistry and Photobiology, A:Chemistry,2002,152(1-3):219-228.
    [148]. Kalyanasundaram K, Kiwi J, Gratzel M. Hydrogen evolution from water by visible light, a homogeneous:three component test system for redox catalysis [J]. Helvetica Chimica Acta, 1978,61:2720-2730.
    [149]. Jin Z L, Zhang X J, Lu G X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2-Investigation of different noble metal loading. Journal of Molecular Catalysis A:Chemical,2006,259:275-280.
    [150]. Murakoshi K, Kano G, Wada Y, et al. Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell [J]. Journal of Electroanalytical Chemistry,1995,396(1-2):27-34.
    [151]. Regazzoni A E, Mandelbaum P, Matsuyoshi M, et al. Adsorption and photooxidation of salicylic acid on titanium dioxide:a surface complexation description [J]. Langmuir,1998,14:868-873.
    [152]. Peng TY, Ke DN, Cai P, et al. Influence of different ruthenium(Ⅱ) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures [J]. Journal of Power Sources,2008,180(1):498-505
    [153]. Ikeda S, Abe C, Torimoto T, et al. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(Ⅳ) oxide under visible-light irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,160: 61-67.
    [154]. Bae E, Choi W, Park J, et al. Effects of surface anchoring groups (carboxylate vs phosphonate) in Ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions [J]. Journal of Physical Chemistry B,2004,108:14093-14101.
    [155]. Bae E, Choi W. Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light [J]. Journal of Physical Chemistry B,2006,110:14792-14799.
    [156]. Khan S U M, Al-Shahry M, Ingler Jr W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [157]. Li Y X, Xie Y C, Peng S Q, et al. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2 [J]. Chemosphere,2006,63:1312-1318.
    [158]. Rustamov M I, Muradov N Z, Gusenova A D, et al. Photocatalytic hydrogen generation from water-organic solutions using polytungstates [J]. International Journal of Hydrogen Energy,1988, 13:533-538.
    [159]. Savinov E N, Saldkhanov S S, Parmon V N, et al. Evolution of hydrogen from aqueous solutions of 12-silicon-tungsten heteropolyacid [J]. Reaction Kinetics and Catalysis Letters,1981,17(3-4): 407-411.
    [160]. Min S X, Lu G X. Promoted photoinduced charge separation and directional electron transfer over dispersible xanthene dyes sensitized graphene sheets for efficient solar H2 evolution [J]. International Journal of Hydrogen Energy,2013,38:2106-2116.
    [161]. Bui D N, Kanga S Z, Qin L X, et al. Relationship between the electrochemical behavior of multiwalled carbon nanotubes (MWNTs) loaded with CuO and the photocatalytic activity of Eosin Y-MWNTs-CuO system [J]. Applied Surface Science,2013,266:288-293.
    [162]. Sreethawonga T, Junbuaa C, Chavadej S. Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst [J]. Journal of Power Sources,2009,190:513-524.
    [163]. Puangpetch T, Sommakettarin P, Chavadej S, et al. Hydrogen production from water splitting over EosinY-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation [J]. International Journal of Hydrogen Energy,2010,35: 12428-12442.
    [164]. Costa-Coquelard C, Sorgues S, Ruhlmann L. Photocatalysis with polyoxometalates associated to porphyrins under visible light:an application of charge transfer in electrostatic complexes [J]. Journal of Physical Chemistry A,2010,114:6394-6400.
    [165]. Song J, Luo Z, Zhu H M, et al. Synthesis, structure, and characterization of two polyoxometalate-photosensitizer hybrid materials. Inorganica Chimica Acta,2010,363:4381-386.
    [166]. Rocchiccioli-Deltcheff C, Fournier M, Franck R, et al. Vibrational investigations of polyoxometalates.2. evidence for anion-anion interactions in molybdenum(VI) and tungsten (VI) compounds related to the Keggin structure [J]. Inorganic Chemistry,1983,22:207-216.
    [167]. Fleming G R, Knight A W E, Morris J M, et al. Picosecond fluorescence studies of xanthene dyes [J]. Journal of the American Chemical Society,1977,99:4306-4311
    [168]. Moser J, Gratzel M. Photosensitized electron injection in colloidal semiconductors [J]. Journal of the American Chemical Society,1984,106:6557-6564.
    [169]. Henglein A, Ershov B G., Malow M. Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution [J]. Journal of Physical Chemistry,1995,99: 14129-14136.
    [170]. Rohatgi K K, Mukhopadhyay A K. Aggregation properties of anions of fluorescein and halofluorescein dyes [J]. Journal of Indian Chemical Society,1972,49:1311-1320.
    [171]. Chen X B, Liu L, Yu P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals [J]. Science,2011,331:746-750.
    [172]. Xu Z D, Li Y X, Peng S Q, et al. Composition, morphology and photocatalytic activity of Zn-In-S composite synthesized by a NaCl-assisted hydrothermal method [J]. CrystEngComm 2011,13:4770-4776.
    [173]. Li Y X, Gao D, Peng S Q, et al. Photocatalytic hydrogen evolution over Pt/Cd0.5Zn0.5S from saltwater using glucose as electron donor:an investigation of the influence of electrolyte NaCl [J]. International Journal of Hydrogen Energy,2011,36(7):4291-4297.
    [174]. Li Y X, Du J, Peng S Q, et al. Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching [J]. International Journal of Hydrogen Energy,2008,33(8): 2007-2013.
    [175]. Kozlova E A, Vorontsov A V. Photocatalytic hydrogen evolution from aqueous solutions of organophosphorous compounds [J]. International Journal of Hydrogen Energy,2010,35(14): 7337-7343.
    [176].王恩波,胡长文,许林,多酸化学导论[M].北京:化学工业出版社,1998,361-39.
    [177]. Li Y X, Ren C X, Peng S Q, et al. Effect of preparation method of colloidal platinum on performance of 12-tungstosilicate for photocatalytic hydrogen generation [J]. Journal of Molecular Catalysis A:Chemical,2006,246:212-217.
    [178]. Nada A A, Hamed H A, Barakat M H, et al. Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+[J]. International Journal of Hydrogen Energy,2008, 33:3264-3269.
    [179]. O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:737-359.
    [180]. Liu H S, Go'mez-Garc'a C J, Peng J, et al.3D-transition metal mono-substituted Keggin polyoxotungstate with an antenna molecule:synthesis, structure and characterization [J]. Dalton Transactions,2008,37:6211-6218.
    [181]. Tete A, Herve G. a-, (3, and y-dodecatungstosilicic acids:isomers and related lacunary compounds [J]. Inorgnic Synthesis,1990,27:85-96.
    [182]. Ma R H, Peng J, Niu Z Y, et al. Syntheses characterization and catalytic activity of alumium (gallium) substituted tungstosilicates positional isomers [J]. Chinese Jounal of Inorgnic Chemistry 1996,12:278-283.
    [183]. Tonogai Y, Ito Y, Iwaida M, et al. Studies on the toxicity of coal-tar dyes. I. photodecomposed products of four xanthene dyes and their acute toxicity to fish [J]. Journal of Toxicology Science 1979,4:115-126.
    [184]. Hu C W, He Q L, Zhang Y H, et al. Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiWn and ZnAl-SiW11Z [J]. Catalysis Today 1996, 30:141-146.
    [185]. Deacon G B, Huber F. Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbon-oxygen stretching frequencies [J]. Inorganica Chimica Acta,1985,104:41-45.
    [186]. Kimura K, Miwa T, Imamura M. The radiolysis and photolysis of methanolic solution of eosin. I.the y-radiolysis of neutral and alkaline solutions [J]. Bulletin of the Chemical Society of Japan, 1970,43:1329-36.
    [187]. Hazebroucq S, Labat F, Lincot D, Adamo C. Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications [J]. Journal of Physical Chemistry A,2008, 112:7264-7270.
    [188]. Valdes-Aguilera O, Neckers D C. Aggregation phenomena in xanthenes dyes [J]. Accounts of Chemical Research,1989,22:171-177.
    [189]. Li Y X, Ma G F, Peng S Q, et al. Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1-x-0.5yOx (OH)y) under visible light irradiation [J]. Applied Catallysis A,2009,363:180-187.
    [190]. Peng S Q, An R, Li Y X, et al. Remarkable enhancement of photocatalytic hydrogen evolution over Cdo.5Zno.5S by bismuth-doping [J]. International Journal of Hydrogen Energy,2012; 37:1366-1374.
    [191]. Du P W, Eisenberg R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges [J]. Energy Environmental Science 2012,5:6012-6021.
    [192]. Lin C H, Chao J H, Liu C H, et al. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2 [J]. Langmuir,2008,24: 9907-9915.
    [193]. Fu N, Wu Y Q, Jin Z L, et al. Structural-dependent photoactivities of TiO2 nanoribbon for visible-light induced H2 evolution:the roles of nanocavities and alternate structures [J]. Langmuir,2010,26:447-455.
    [194]. Gu Q, Long J L, Zhou Y G, et al. Single-site Tin-grafted anatase TiO2 for photocatalytic hydrogen production:Toward understanding the nature of interfacial molecular junctions formed in semiconducting composite photocatalysts [J]. Journal of Catalysis,2012,289:88-99.
    [195]. Shimidzu T, Iyoda T, Koide Y. An advanced visible-light-induced water reduction with dye-sensitized semiconductor powder catalyst [J]. Journal of the American Chemical Society, 1985,107:35-41.
    [196]. Zhang W, Hong J D, Zheng J W, et al. Nickel-thiolate complex catalyst assembled in one step in water for solar H2 production [J]. Journal of the American Chemical Society,2011, 133:20680-20683.
    [197]. Le T T, Akhtara M S, Parka D M, et al. Water splitting on rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light [J]. Applied Catalysis B:Environmental,2012,111-112: 397-401.
    [198]. Zhang W, Xu R. Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts [J]. International Journal of Hydrogen Energy,2012, 37:17899-17909.
    [199]. Lazarides T, McCormick T, Du P W, et al. Making hydrogen from water using a homogeneous system without noble metals [J]. Journal of the American Chemical Society,2009, 131:9192-9194.
    [200]. Han Z J, McNamara W R, Eum M, et al. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system [J]. Angewandte Chemie International Edition,2012,51:1667-1670.
    [201]. Hong J D, Wang Y B, Pan J S, et al. Self-assembled dye-layered double hydroxide-Pt nanoparticles:a novel H2 evolution system with remarkably enhanced stability [J]. Nanoscale, 2011,3:4655-4661.
    [202]. Zhu M S, Li Z, Du Y K, et al. Stable and efficient homogeneous photocatalytic H2 evolution based on water soluble pyrenetetrasulfonic acid functionalized platinum nanocomposites [J]. ChemCatChem,2012,4:112-117.
    [203]. McCormick T M, Calitree B D, Orchard A, et al. Reductive side of water splitting in artificial photosynthesis:New homogeneous photosystems of great activity and mechanistic insight [J]. Journal of the American Chemical Society,2010,132:15480-15483.
    [204]. Troupis A, Triantis T M, Gkika E, et al. Photocatalytic reductive-oxidative degradation of acid orange 7 by polyoxometalates [J]. Applied Catalysis B:Environmental,2009,86:98-107.
    [205]. Han Z G, Bond A M, Zhao C. Recent trends in the use of polyoxometalate-based material for efficient water oxidation [J]. Science in China, Series B Chemistry,2011,54:1877-1887.
    [206]. Pearson A, Bhargava S K, Bansal V. UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis [J]. Langmuir,2011, 27:9245-9252.
    [207]. Liu X, Li Y X, Peng S Q, et al. Photocatalytic hydrogen evolution under visible light irradiation by the polyoxometalate a-[AlSiW11(H2O)O39]5-EosinY system [J]. International Journal of Hydrogen Energy,2012,37:12150-12157.
    [208]. Yang Y, Guo Y H, Hu C W, et al. Lacunary Keggin-type polyoxometalates-based macroporous composite films:preparation and photocatalytic activity [J]. Applied Catalysis A:General,2003, 252:305-314.
    [209]. Kosmulski M. pH-dependent surface charging and points of zero charge III. Update [J]. Journal of Colloid and Interface Science,2006,298:730-741.
    [210]. Benko G, Skarman B, Wallenberg R, et al. Particle size and crystallinity dependent electron injection in fluorescein 27-sensitized TiO2 films [J]. Journal of Physical Chemistry B,2003,107: 1370-1375.
    [211]. Li Q Y, Chen L, Lu GX. Visible-light-induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst [J]. Journal of Physical Chemistry C, 2007,111:11494-11499.
    [212]. Zwicker E F, Grossweiner L I. Transient measurements of photochemical processes in dyes. Ⅱ.The mechanism of the photosensitizied oxidation of aqueous phenol by eosin [J]. Journal of Physical Chemistry,1963,67:549-555.
    [213]. Su F Z, Mathew S C, Lipner G, et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light [J]. Journal of the American Chemical Society,2010,132:16299-16301
    [214].秦宗会,刘绍璞,孔玲,等.曙红Y分光光度法测定盐酸异丙嗪[J].分析化学,2003,31(6):702-705.
    [215].彭绍琴,张伟,李越湘,吕功煊,李树本AlCl3修饰对虎红-TiO2光催化剂可见光制氢活性的影响[J].功能材料,2007,03:362-365.
    [216]. Zhang F L, Zhao J C, et al. TiO2-assisted photodegradation of dye pollutants Ⅱ. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B:Environmental,1998 (15):147-156.
    [217].尹忠环,李越湘,彭绍琴等.污染物乙醇胺Pt/TiO2光催化制氢[J].分子催化,2007,21(2):155-161.
    [218]. Pinkas J, Verkade J C. Alumatrane, A1(OCH2CH2)3N:A reinvestigation of its oligomeric behavior [J]. Inorganic Chemistry,1993,32:2711-2716.
    [219]. Whitmire K H, Hutchison J C, Gardberg A, et al. Triethanolamine complexes of copper [J]. Inorganica Chimica Acta,1999,294:153-162.
    [220]. Guo H X, Du Z X, Li X Z. Bis(triethanolamine)nickel(II) sulfate [J]. Acta Crystallographica Section E,2009, E65:m810-m811.
    [221].蔡加勤,周绍民.三乙醇胺在金属沉积中的基本效应[J].高等学校化学学报,1994,15:79-84.
    [222]. Kim W, Tachikawa T, Majima T, et al. Photocatalysis of dye-Sensitized TiO2 nanoparticles with thin overcoat of Al2O3:enhanced activity for H2 production and dechlorination of CCI4 [J]. Journal of Photochemistry and Photobiology C,2007,111 (23):8237-8241.
    [223].徐敏,谢国标,梁燕媚,等.双核铜配合物[Cu2(H2tea)2(dca)2]2·H2O的合成和晶体结构[J].化学试剂,2009,31(10):781-784.
    [224]. deKrafft K E, Wang C, Lin W B. Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production [J]. Advanced Materials,2012,24,2014-2018.
    [225]. Kang S Z, Chen L L, Li X Q, et al. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO:Mixed metal oxide as an active center of H2 evolution from water [J]. Applied Surface Science,2012,258:6029-6033.
    [226]. Zhang G, Choi W. A Low-cost sensitizer based on phenolic resin for charge-transfer type photocatalyst working under visible light [J]. Chemical Communications,2012, 48:10621-10623.
    [227]. Choi S K, Yang H S, Kim J H, et al. Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation [J]. Applied Catalysis B:Environmental,2012, 121-122:206-213.
    [228]. Zhao D, Chen C C, Wang Y F, et al. Surface modification of TiO2 by phosphate:effect on photocatalytic activity and mechanism implication [J]. Journal of Physical Chemistry C, 2008,112:5993-6001.
    [229]. Korosi L, Papp S, Bertoti I, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2 [J]. Chemical Materials,2007,19:4811-4819.
    [230]. Ma Y, Xu Q, Zong X, et al. Photocatalytic H2 production on Pt/TiO2-SO42 with tuned surface-phase structures:enhancing activity and reducing CO formation [J]. Energy Evironmental. Scince,2012,5:6345-6351.
    [231]. Kim J, Lee J, Choi W. Synergic effect of simultaneous fluorination and platinization of TiO2 surface on anoxic photocatalytic degradation of organic compounds [J]. Chemical Communications,2008,756-758.
    [232]. Kim J, Monllor-Satoca D, Choi W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components [J]. Energy Evironmental. Scince,2012,5:7647-7656.
    [233]. Wang X C, Yu J C, Liu P, et al. Probing of photocatalytic surface sites on SO42/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,179:339-347.
    [234]. Jin T, Machida M, Yamaguchi T, et al. Infrared study of sulfur-containing iron oxide, behavior of sulfur during reduction and oxidation [J]. Inorganic Chemistry,1984,23:4396-4398.
    [235]. Wang Y M, Chen C Z, Luo J H, et al. Studies on the acidity, structures and crystalline phases of SO42-/TiO2, PO43-/TiO2, BO33-/TiO2 solid acids [J]. Chinese Journal of Structural Chemistry, 1999,18:175-181.
    [236]. Lin L, Lin W, Xie J L, et al. Photocatalytic properties of phosphor-doped titania nanoparticles [J]. Applied Catalysis B:Environmental,2007,75:52-58.
    [237]. Bhaumik A, Inagaki S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity [J]. Journal of the American Chemical Society,2001,123:691-696.
    [238]. Jing L Q, Zhou J, Durrant J R, et al. Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting [J]. Energy Environmental Science,2012,5:6552-6558.
    [239], Sohn J R, Jang H J, Park M Y, et al. Physicochemical properties of TiO2-SiO2 unmodified and modified with H2SO4 and activity for acid catalysis [J]. Journal of Molecular Catalysis,1994,93: 149-167.
    [240]. Uchihara T, Matsumura M, Ono J, et al. Effect of ethylenediaminetetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide [J]. Journal of Physical Chemistry,1990,94:415-418.
    [241]. Hwang D W, Kim J, Park T J, et al. Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting [J]. Catalsis Letters,2002,80 (1-2):53-57.
    [242]. Fisher G J, Lewis C, Madill D. Laser flash photolysis of eosin and its complex with lysozyme [J]. Photochemistry and Pholobiology,1976,24:223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700