用户名: 密码: 验证码:
低温下结构陶瓷的相变、断裂机理与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温技术的不断发展使其应用于越来越多的领域中,例如航空航天、超导、核聚变等。在一些低温工程应用中,结构陶瓷有着其他材料不可替代的应用前景。然而,十分遗憾的是,目前关于结构陶瓷低温性能还缺乏系统和深入的研究。本文从低温与结构陶瓷中典型增韧机制的关系入手,研究了几种典型结构陶瓷在低温下的相变、断裂模式以及残余应力与其性能变化的关系。
     研究发现3Y-TZP陶瓷低温下R曲线行为显著增强,这是传统理论没有预测到的,同时伴随着稳态断裂韧性、抗弯强度和韦伯模数同时提高,这是由于3Y-TZP陶瓷在低温下的相变增韧效应更加显著。此外,在测定材料室温及低温下相变区参数的基础上,从理论上计算了相变增韧对裂纹的屏蔽效应,并通过与实验结果的对比以及断裂形貌学的分析揭示了材料低温下断裂韧性的影响因素。
     测定了2Y-TZP陶瓷在室温及低温下的临界晶粒尺寸,并发现在临界晶粒尺寸附近,材料的断裂韧性最大。此外,基于相变的形核和热力学理论,解释了室温下一定晶粒尺寸范围内材料断裂韧性保持不变的原因,同时还建立了温度与临界晶粒尺寸之间的关系,为制备低温下高韧性的2Y-TZP陶瓷提供了一条有效途径。
     77K下Si_3N_4和RBSiC陶瓷的断裂韧性较室温明显升高,这是由于低温下材料中的残余应力增大:一方面导致低温下Si_3N_4陶瓷中的晶界弱化、沿晶断裂比例上升,强化了裂纹偏转、分枝等增韧效应,提高了其低温断裂韧性;另一方面增大了RBSiC陶瓷中裂纹扩展通过第二相Si时的阻力,使RBSiC陶瓷的低温断裂韧性升高。研究还发现没有明显增韧机制的Al_2O_3陶瓷在低温下抗弯强度变化很小,而99%Al_2O_3陶瓷的断裂韧性随温度降低有升高趋势。
     综上,可以看出,结构陶瓷材料在低温下力学性能仍可保持较高水平甚至有显著提高,加之其在低温下的低热导率和良好的热稳定性,是低温工程中绝热和支撑部件的理想候选材料。
Currently, the rapid development of cryogenic techniques makes them required fora wide range of applications such as aeronautics&astronautics, superconducting fields,nuclear fusion and so on. Structural ceramics are promising cryogenic structuralmaterials which are prior to some kinds of metals and polymer materials in somespecific applications. However, more systematical and intensive researches on theproperties of structural ceramics at cryogenic temperatures are quite required becauseonly a small quantity of researches have been reported on such issues.
     By considering the relationship between cryogenic temperatures and typicaltoughening mechanisms of structural ceramics, the correlation between cryogenicproperties and several important issues including transformation, fracture mechanismsand residual stress have been investigated.
     A more pronounced R-curve behavior of3Y-TZP unanticipated by theconventional interpretation was found at cryogenic temperatures, which wasaccompanied by the concomitant increment of the fracture strength, toughness andWeibull modulus at cryogenic temperatures. This is due to the enhanced transformationtoughening effects at cryogenic temperatures. In addition, the transformation zoneparameters, discerned from accurate measurements with Raman microprobespectroscopy, were used to evaluate the shielding stress intensity factors. Bycomparison with the obtained experimental parameters from R-curve measurement andanalysis from the viewpoint of fractography at room and cryogenic temperatures, thefactors which may affect the cryogenic fracture toughness of3Y-TZP have beendiscussed.
     The critical grain sizes of2Y-TZP at ambient and cryogenic temperatures havebeen determined. The grain size dependence of fracture toughness revealed that themaximum toughness value corresponds to the critical grain size at each temperature. Onthe basis of nucleation and thermodynamic theories, an established linear relationshipbetween inverse critical grain size and temperature has been explained and a basicunderstanding of grain size dependence of toughness at room temperature has been alsogained. It is believed that this relationship can provide an effective way to optimize the fracture toughness of2Y-TZP ceramics at cryogenic temperatures.
     Fracture toughness values of Si_3N_4and RBSiC ceramics were found to beenhanced at cryogenic temperatures, respectively. On application of higher residualstress at77K, a larger number of Si_3N_4grains become involved in the crack deflectionprocess, leading to a larger percentage of intergranular fracture and thus enhancedfracture toughness of Si_3N_4ceramics. Moreover, the enhanced fracture toughness ofRBSiC ceramics at77K could be explained by the stronger resistance to crackpropagation resulting from higher residual stress at77K. Flexural strengths of Al_2O_3ceramics with no obvious toughening mechanisms were also found to be similar at bothcryogenic and ambient temperatures. However, fracture toughness of99%Al_2O_3ceramics tended to increase with decreasing temperatures.
     As discussed above, the mechanical properties of structural ceramics can be similaror even higher compared to those at ambient temperatures. Therefore, such favorableperformances coupled with low thermal conductivity and good thermal stability makestructural ceramics candidate materials for thermal insulation and supportingapplications in cryogenic engineering.
引文
[1]陈国邦.低温工程材料.杭州:浙江大学出版社,1998.
    [2] Vanstone R H, Low J R, Shannon J L. Investigation of fracture mechanism of Ti-5Al-2.5Sn atcryogenic temperatures. Metal Trans A,1978,9:539-552.
    [3] Schutz J B. Properties of composite materials for cryogenic applications. Cryo,1998,38:3-12.
    [4] Garvie R C, Hannink R H, Pascoe R T. Ceramic steel. Nat,1975,258:703-704.
    [5]黄康明,李伟信,饶平根,等.陶瓷增韧技术的研究进展.中国陶瓷,2007,43:6-9.
    [6]罗学涛,张立同.氮化硅陶瓷自增韧技术进展.复合材料学报,1997,14:254-256.
    [7] Salem J A, Choi S R, Freedman M R, et al. Mechanical-behavior and failure phenomenon ofan insitu toughened silicon-nitride. J Mater Sci,1992,27:4421-4428.
    [8]王柏昆.结构陶瓷韧化机理的研究进展.中国科技信息,2007,19:264-273.
    [9] Davidge R W. Mechanical behavior of ceramics. Oxford: Cambridge University Press,1979.
    [10]龚江宏.陶瓷断裂力学.北京:清华大学出版社,2001.
    [11] Westbrook P. Ceramics microstructure. New York: John Wiley&Sons. Inc,1968.
    [12]李来风.陶瓷材料低温韧性与其微观组织结构之关联[博士学位论文].北京:中国科学院物理研究所低温技术实验中心,1996.
    [13] Leach C, Lambov N. Ceramics today-tomorrow's ceramics. Montecatini Terme, Italy:Elsevier Science Publishers,1991.
    [14] Cook R F, Lawn B R, Fairbanks C J. Microstructure-strength properties in ceramics.1. Effectof crack size on toughness. J Am Ceram Soc,1985,68:604-615.
    [15] Cook R F, Lawn B R, Fairbanks C J. Microstructure-strength properties in ceramics.2.Fatigue relations. J Am Ceram Soc,1985,68:616-623.
    [16] Sakai M, Bradt R C. The crack-growth resistance curve of non-phase-transforming ceramics.J Ceram Soc Jpn1988,96:801-809.
    [17] Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containingceramics. J Am Ceram Soc,2000,83:461-487.
    [18] Nishijima S, Okada T, Kanamaru M, et al. Research-and-development of thermal shieldsupport under radiation environment in large helical device. Cryo,1992,32:195-198.
    [19] Excell J A, Marmach M. Reversible cryogenically induced tetragonal to monoclinicphase-transformation in Mg-PSZ. Am. Ceram. Soc. Bull.,1986,65:1404-1407.
    [20] Marshall D B, James M R, Porter J R. Structural and mechanical property changes intoughened magnesia-partially-stabilized zirconia at low-temperatures. J Am Ceram Soc,1989,72:218-227.
    [21] Srinivasan S, Scattergood R O, Pfeiffer G, et al. Low-temperature treatment oftransformation-toughened partially stabilized magnesia-doped zirconia-a solid particleerosion study. J Am Ceram Soc,1990,73:1421-1424.
    [22] Veitch S, Marmach M, Swain M V. Strength and toughness of Mg-PSZ and Y-TZP materialsat cryogenic temperatures. Mater Res Soc,1987,97-106.
    [23] Becher P F, Swain M V, Ferber M K. Relation of transformation temperature to thefracture-toughness of transformation-toughened ceramics. J Mater Sci,1987,22:76-84.
    [24] Yoshimura M, Sekino T, Ueno S, et al. Mechanical properties of Mg-PSZ at cryogenictemperature. Scrip Mater,1998,40:171-175.
    [25] Heuer A H, Ruhle M. Overview.45. On the nucleation of the martensitic-transformation inzirconia. Acta Metall,1985,33:2101-2112.
    [26] Heuer A H, Claussen N, Kriven W M, et al. Stability of tetragonal ZrO2particles in ceramicmatrices. J Am Ceram Soc,1982,65:642-650.
    [27] Hannink R H J. Growth morphology of tetragonal phase in partially stabilized zirconia. JMater Sci,1978,13:2487-2496.
    [28] Brooks H. Metal interfaces. Cleveland, Ohio: American Society for Metals,1962.
    [29]古乐,王黎钦,李秀娟.氮化硅轴承球超低温承载特性试验研究.哈尔滨工业大学学报,2002,34:148-151.
    [30] Nakanishi N, Shigematsu T. Bainite-like transformation in zirconia ceramics. Mater TransJIM,1991,32:778-784.
    [31] Nakanishi N, Shigematsu T. Martensitic transformations in zirconia ceramics. Mater TransJIM,1992,33:318-323.
    [32] Becher P F, Swain M V. Grain-size-dependent transformation behavior in polycrystallinetetragonal zirconia. J Am Ceram Soc,1992,75:493-502.
    [33] Reyesmorel P E, Chen I W. Transformation plasticity of CeO2-stabilized tetragonal zirconiapolycrystals.1. Stress assistance and auto-catalysis. J Am Ceram Soc,1988,71:343-353.
    [34] Claussen N H A H, Ruhle M. Advances in ceramics, vol.12. Science and technology ofzirconia ii. Columbus, OH: American Ceramic Society,1985.
    [35] Hai-Yan Z. X-ray diffraction study of the t-to-m phase transformation in12-mol%-ceria-doped zirconia at low temperatures. J Am Ceram Soc,1994,77:2458-24602460.
    [36] Li L F, Hong C S, Li Y Y, et al. Martensitic transformation in ZrO2-based ceramics atcryogenic temperatures. Cryo,1996,36:7-11.
    [37] Li L F, Hong C S, Zhang Z, et al. Microstructure of a sintered16.5mol%CeO2-ZrO2alloy atcryogenic temperature. J Mater Sci,1997,32:6395-6398.
    [38] Li L F, Li Y Y, Sbaizero O, et al. ZrO2-CeO2alloys as candidate structural materials forcryogenic application. J Am Ceram Soc,1997,80:1005-1008.
    [39] Lange F F. Transformation toughening.5. Effect of temperature and alloy onfracture-toughness. J Mater Sci,1982,17:255-262.
    [40]陈海波,谢志鹏.3Y-TXP陶瓷低温下相变与特殊的力学性能.稀有金属材料与工程,2009,38(S2):157-160.
    [41] Lai T R, Hogg C L, Swain M V. Evaluation of fracture-toughness and R-curve behavior ofY-TZP ceramics. ISIJ Int.,1989,29:240-245.
    [42] Becher P F, Alexander K B, Bleier A, et al. Influence of ZrO2grain-size and content on thetransformation response in the Al2O3-ZrO2(12mol-percent CeO2) system. J Am Ceram Soc,1993,76:657-663.
    [43] Suzuki N, Uchida T, Suzuki K. Test method and strength characteristics of alumina ceramicsat cryogenic temperatures. Cryo,1998,38:363-366.
    [44] Ota K. Elastic-modulus and the measurement of structural ceramics at cryogenic temperatures.Cryo,1995,35:735-737.
    [45] Nosaka M, Kikuchi M, Oike M, et al. Tribo-characteristics of cryogenic hybrid ceramic ballbearings for rocket turbopumps: Bearing wear and transfer film. Trib Trans,1999,42:106-115.
    [46] Nosaka M, Oike M, Kikuchi N, et al. Tribo-characteristics of cryogenic hybrid ceramic ballbearings for rocket turbopumps: Self-lubricating performance. Trib Trans,1997,40:21-30.
    [47] Nosaka M, Oike M, Kikuchi M, et al. Self-lubricating performance and durability ofball-bearings for the le-7liquid-oxygen rocket-turbopump. LubEn,1993,49:677-688.
    [48] Gibson H G. An evaluation of bearing operating in a cryogenic environment with siliconnitride rolling elements. NASA TM-103524,1991,
    [49] Bursey R W C H A, Olinger J B. Advanced hybrid rolling element bearings for the spaceshuttle main engine high pressure alternate turbopumps.32nd AIAA/ASME/SAE/ASEE JointPropulsion Conference and Exhibit,1996,
    [50]周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995.
    [51] Eichler J, Hoffman M, Eisele U, et al. R-curve behaviour of2Y-TZP with submicron grainsize. J Eur Ceram Soc,2006,26:3575-3582.
    [52] Niihara K, Morena R, Hasselman D P H. Evaluation of KICof brittle solids by the indentationmethod with low crack-to-indent ratios. J Mater Sci Lett,1982,1:13-16.
    [53] Anstis G R, Chantikul P, Lawn B R, et al. A critical-evaluation of indentation techniques formeasuring fracture-toughness.1. Direct crack measurements. J Am Ceram Soc,1981,64:533-538.
    [54] Bennison S J, Lawn B R. Flaw tolerance in ceramics with rising crack resistancecharacteristics. J Mater Sci,1989,24:3169-3175.
    [55] Kendall K, Alford N M, Tan S R, et al. Influence of toughness on Weibull modulus of ceramicbending strength. J Mater Res,1986,1:120-123.
    [56] Ramachandran N, Chao L Y, Shetty D K. R-curve behavior and flaw insensitivity ofCe-TZP/Al2O3composite. J Am Ceram Soc,1993,76:961-969.
    [57] Shetty D K, Wang J S. Crack stability and strength distribution of ceramics that exhibit risingcrack-growth-resistance (R-curve) behavior. J Am Ceram Soc,1989,72:1158-1162.
    [58] Steinbrech R W, Heuer A H. R-curve behavior and the mechanical properties oftransformation-toughened ZrO2-containing ceramics. Defect Properties and Processing ofHigh-Technology Nonmetallic Materials Symposium,1986,469-481.
    [59] Casellas D, Alcala J, Llanes L, et al. Fracture variability and R-curve behavior inyttria-stabilized zirconia ceramics. J Mater Sci,2001,36:3011-3025.
    [60] Marshall D B, Swain M V. Crack resistance curves in magnesia-partially-stabilized zirconia.J Am Ceram Soc,1988,71:399-407.
    [61] Swain M V, Rose L R F. Strength limitations of transformation-toughened zirconia alloys. JAm Ceram Soc,1986,69:511-518.
    [62] Wang J, Stevens R. Zirconia-toughened alumina (ZTA) ceramics. J Mater Sci,1989,24:3421-3440.
    [63] Lange F F. Transformation toughening.1. Size effects associated with the thermodynamics ofconstrained transformations. J Mater Sci,1982,17:225-234.
    [64] Garvie R C, Swain M V. Thermodynamics of the tetragonal to monoclinicphase-transformation in constrained zirconia microcrystals.1. In the absence of an appliedstress-field. J Mater Sci,1985,20:1193-1200.
    [65] Ortiz Merino J L, Cock A, Roberts S G, et al. Quantitative surface fractography of aluminaand alumina-SiC composites during diamond grinding. Key Eng Mater,2005,290:149-159.
    [66] vanWeeren R, Danforth S C. The effect of grain boundary phase characteristics on the crackdeflection behavior in a silicon nitride material. Scrip Mater,1996,34:1567-1573.
    [67] Xue W, Yi J, Xie Z P, et al. Enhanced fracture toughness of silicon nitride ceramics atcryogenic temperatures. Scrip Mater,2012,66:891-894.
    [68] Alcala J, Anglada M. High-temperature crack growth in Y-TZP. Mater Sci and Eng A,1997,232:103-109.
    [69] Bravo-Leon A, Morikawa Y, Kawahara M, et al. Fracture toughness of nanocrystallinetetragonal zirconia with low yttria content. Acta Mater,2002,50:4555-4562.
    [70] Gong J H, Zhao Z, Miao H H, et al. R-curve behavior of TiC particle reinforced Al2O3composites. Scrip Mater,2000,43:27-31.
    [71] Sullivan J D, Lauzon P H. Experimental probability estimators for weibull plots. J Mater SciLett,1986,5:1245-1247.
    [72] Casellas D, Cumbrera F L, Sanchez-Bajo, et al. On the transformation toughening of Y-ZrO2ceramics with mixed Y-TZP/PSZ microstructures. J Eur Ceram Soc,2001,21:765-777.
    [73] Lughi V, Clarke D R. Low-temperature transformation kinetics of electron-beam deposited5wt.%yttria-stabilized zirconia. Acta Mater,2007,55:2049-2055.
    [74] Porter D L, Heuer A H. Mechanisms of toughening partially stabilized zirconia (PSZ). J AmCeram Soc,1977,60:183-184.
    [75] Kosmac T, Wagner R, Claussen N. X-ray determination of transformation depths in ceramicscontaining tetragonal ZrO2. J Am Ceram Soc,1981,64: C72-C73.
    [76] Clarke D R, Adar F. Measurement of the crystallographically transformed zone produced byfracture in ceramics containing tetragonal zirconia. J Am Ceram Soc,1982,65:284-288.
    [77] Ramachandran N, Shetty D K. Rising crack-growth-resistance (R-curve) behavior oftoughened alumina and silicon-nitride. J Am Ceram Soc,1991,74:2634-2641.
    [78] Alcala J, Anglada M. Indentation precracking of Y-TZP: Implications to R-curves andstrength. Mater Sci and Eng A,1998,245:267-276.
    [79] Xie Z P, Xue W J, Chen H B, et al. Mechanical and thermal properties of99%and92%alumina at cryogenic temperatures. Ceram Int,2011,37:2165-2168.
    [80] McMeeking R M, Evans A G. Mechanics of transformation-toughening in brittle materials. JAm Ceram Soc,1982,65:242-246.
    [81] Munz D. What can we learn from R-curve measurements? J Am Ceram Soc,2007,90:1-15.
    [82] Evans A G, Heuer A H. Transformation toughening in ceramics-martensitic transformationsin crack-tip stress-fields. J Am Ceram Soc,1980,63:241-248.
    [83] Ruf H, Evans A G. Toughening by monoclinic zirconia. J Am Ceram Soc,1983,66:328-332.
    [84] Lange F F. Transformation toughening.2. Contribution to fracture-toughness. J Mater Sci,1982,17:235-239.
    [85] Whitney E D. Effect of pressure on monoclinic-tetragonal transition of zirconiathermodynamics. J Am Ceram Soc,1962,45:612-613.
    [86] Coughlin J P, King E G. High-temperature heat contents of some zirconium-containingsubstances. J Am Chem Soc,1950,72:2262-2265.
    [87] Schmauder S, Schubert H. Significance of internal-stresses for the martensitic-transformationin yttria-stabilized tetragonal zirconia polycrystals during degradation. J Am Ceram Soc,1986,69:534-540.
    [88] Lange F F. Transformation toughening.3. Experimental-observations in the ZrO2-Y2O3system. J Mater Sci,1982,17:240-246.
    [89] Evans A G, Burlingame N, Drory M, et al. Martensitic transformations in zirconia-particle-size effects and toughening. Acta Mater,1981,29:447-456.
    [90] Budiansky B, Hutchinson J W, Lambropoulos J C. Continuum theory of dilatanttransformation toughening in ceramics. Int J Solids Struct,1983,19:337-355.
    [91] Marshall D B, Shaw M C, Dauskardt R H, et al. Crack-tip transformation zones in toughenedzirconia. J Am Ceram Soc,1990,73:2659-2666.
    [92] Heuer A H, Lange F F, Swain M V, et al. Transformation toughening-an overview. J AmCeram Soc,1986,69: R1-R4.
    [93] Lambropoulos J C. Effect of nucleation on transformation toughening. J Am Ceram Soc,1986,69:218-222.
    [94] Lambropoulos J C. Shear, shape and orientation effects in transformation toughening. Int JSolids Struct,1986,22:1083-1106.
    [95] Cheng-Seng Y, Shetty D K, Shaw M C, et al. Transformation zone shape effects on crackshielding in ceria-partially-stabilized zirconia (Ce-TZP)-alumina composites. J Am CeramSoc,1992,75:2991-2994.
    [96] Li C-W, Yamanis J. Super-tough silicon nitride with R-curve behavior. Ceram Eng Sci Proc,1989,10:632-645.
    [97] Anderson R M, Braun L M. Technique for the R-curve determination of Y-TZP usingindentation-produced flaws. J Am Ceram Soc,1990,73:3059-3062.
    [98] Marshall D B, James M R. Reversible stress-induced martensitic-transformation in ZrO2. JAm Ceram Soc,1986,69:215-217.
    [99] Green D J, Hannink R H J, Swain M V. Transformation toughening of ceramics. Boca Raton,FL: CRC Press,1989.
    [100] Mecartney M L, Ruhle M. Insitu transmission electron-microscopy observations of themonoclinic to tetragonal phase-transformation in tetragonal ZrO2. Acta Mater,1989,37:1859-1863.
    [101] Wauchope C J, Kelly P M. A model of stress assisted transformation in Mg-PSZ and Ce-TZP.Key Eng Mater,1998,153-154:125-142.
    [102] Claussen N. Fracture toughness of Al2O3with an unstabilized ZrO2dispersed phase. J AmCeram Soc,1976,59:49-51.
    [103] Faber K T. Microcracking contributions to the toughness of ZrO2-based ceramics. In advancesin ceramics: Science and technology of zirconia ii. Columbus OH: Am. Ceram. Soc.,1984.
    [104] Chen I W, Chiao Y H. Theory and experiment of martensitic nucleation in ZrO2containingceramics and ferrous-alloys. Acta Mater,1985,33:1827-1845.
    [105]高濂,严东生,郭景坤. Y-TZP陶瓷中ZrO2颗粒大小对相变增韧的影响.中国科学A辑,1988,1:95-103.
    [106] Swain M V. Grain-size dependence of toughness and transformability of2mol percent Y-TZPceramics. J Mater Sci Lett,1986,5:1159-1162.
    [107] Eichler J, Rodel J, Eisele U, et al. Effect of grain size on mechanical properties ofsubmicrometer3Y-TZP: Fracture strength and hydrothermal degradation. J Am Ceram Soc,2007,90:2830-2836.
    [108] Suresh A, Mayo M J, Porter W D, et al. Crystallite and grain-size-dependent phasetransformations in yttria-doped zirconia. J Am Ceram Soc,2003,86:360-362.
    [109] Wang J, Rainforth M, Stevens R. The grain-size dependence of the mechanical-properties inTZP ceramics. Br Ceram Trans J,1989,88:1-6.
    [110] Shen Z J, Johnsson M, Zhao Z, et al. Spark plasma sintering of alumina. J Am Ceram Soc,2002,85:1921-1927.
    [111] Trunec M. Effect of grain size on mechanical properties of3Y-TZP ceramics. Ceram-silikaty,2008,52:165-171.
    [112] Kumar B V M, Kim W S, Hong S H, et al. Effect of grain size on wear behavior in Y-TZPceramics. Mater Sci and Eng A,2010,527:474-479.
    [113] Xue W J, Xie Z P, Liu G W, et al. R-curve behavior of3Y-TZP at cryogenic temperatures. JAm Ceram Soc,2011,94:2775-2778.
    [114] Marshall D B, Drory M D, Evans A G. Fracture mechanics of ceramics. New York: PlenumPress,1983.
    [115] Quinn G. Flexure strength of advanced structural ceramics-a round-robin. J Am Ceram Soc,1990,73:2374-2384.
    [116] Yao W, Liu J, Holland T B, et al. Grain size dependence of fracture toughness for fine grainedalumina. Scrip Mater,2011,65:143-146.
    [117] Roebben G, Sarbu C, Lube T, et al. Quantitative determination of the volume fraction ofintergranular amorphous phase in sintered silicon nitride. Mater Sci and Eng A,2004,370:453-458.
    [118] Sun E Y, Becher P F, Hsueh C H, et al. Debonding behavior between beta-Si3N4whiskers andoxynitride glasses with or without an epitaxial beta-sialon interfacial layer. Acta Mater,1999,47:2777-2785.
    [119] Kleebe H J. SiC and Si3N4materials with improved fracture resistance. J Eur Ceram Soc,1992,10:151-159.
    [120] Ziegler G, Heinrich J, Wotting G. Relationships between processing, microstructure andproperties of dense and reaction-bonded silicon-nitride. J Mater Sci,1987,22:3041-3086.
    [121] Peterson I M, Tien T Y. Effect of the grain-boundary thermal-expansion coefficient on thefracture-toughness in silicon-nitride. J Am Ceram Soc,1995,78:2345-2352.
    [122] Pezzotti G, Kleebe H J. Effect of residual microstresses at crystalline multigrain junctions onthe toughness of silicon nitride. J Eur Ceram Soc,1999,19:451-455.
    [123] Satet R L, Hoffmann M J, Cannon R M. Experimental evidence of the impact of rare-earthelements on particle growth and mechanical behaviour of silicon nitride. Mater Sci and Eng A,2006,422:66-76.
    [124]黄勇,汪长安.高性能多相复合陶瓷.北京:清华大学出版社,2008.
    [125] Murgatroyd J B. Mechanism of brittle rupture. Nat,1944,154:51-52.
    [126] Marsh D M. Plastic flow and fracture of glass. London: Proc Roy Soc,1964.
    [127] Oertel C G, Schaarschuch R, Cao G H, et al. Effect of martensitic phase transformation on theductility of polycrystalline YCu. Scrip Mater,2011,65:779-782.
    [128] Perova T S, Wasyluk J, Kukushkin S A, et al. Micro-raman mapping of3C-SiC thin filmsgrown by solid-gas phase epitaxy on Si (111). Nanoscale Res. Lett.,2010,5:1507-1511.
    [129] Zhang Y, He X B, Qu X H, et al. Research on ceramic injection molding of silicon carbide.Rare Metal Mat Eng,2007,36:326-329.
    [130]谢志鹏.结构陶瓷.北京:清华大学出版社,2011.
    [131] Nakashima S, Harima H, Tomita T, et al. Raman intensity profiles of folded longitudinalphonon modes in SiC polytypes. Phy Rev B,2000,62:16605-16611.
    [132] Clarke D R, Faber K T. Fracture of ceramics and glasses. J Phys Chem Solids,1987,48:1115-1157.
    [133] Zhang Z, Li L F, Tu Z H, et al. Modulus and hardness of ZrO2-CeO2system ceramics atlow-temperature. J Mater Sci Lett,1995,14:948-950.
    [134] Jang B-K, Kim S-Y, Han I-S, et al. Influence of uni and bi-modal sic composition onmechanical properties and microstructure of reaction-bonded SiC ceramics. J Ceram Soc Jpn,2010,118:1028-1031.
    [135] Sciti D, Guicciardi S, Nygren M. Spark plasma sintering and mechanical behaviour ofZrC-based composites. Scrip Mater,2008,59:638-641.
    [136] Mukhopadhyay A, Chakravarty D, Basu B. Spark plasma-sintered WC-ZrO2-Conanocomposites with high fracture toughness and strength. J Am Ceram Soc,2010,93:1754-1763.
    [137] Taya M, Hayashi S, Kobayashi A S, et al. Toughening of a particulate-reinforcedceramic-matrix composite by thermal residual-stress. J Am Ceram Soc,1990,73:1382-1391.
    [138] Selsing J. Internal stresses in ceramics. J Am Ceram Soc,1961,44:419-419.
    [139] Hull R. Properties of crystalline silicon. London: The Institution of Engineering andTechnology Publishing,1999.
    [140] Morrell R. Handbookof properties technecal and engineering ceramics. London: HerMajesty's Stationery Office Publishing,1987.
    [141] Amer M S, Durgam L, El-Ashry M M. Raman mapping of local phases and local stress fieldsin silicon-silicon carbide composites. Mater Chem Phys,2006,98:410-414.
    [142] Pezzotti G, Ichimaru H, Ferroni L P, et al. Raman microprobe evaluation of bridging stressesin highly anisotropic silicon nitride. J Am Ceram Soc,2001,84:1785-1790.
    [143] Li J, Wang J, Yin M, et al. Study on the initial growth process of crystalline silicon films onaluminum-coated polyethylene napthalate by raman spectroscopy. J Cryst Growth,2007,308:330-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700