用户名: 密码: 验证码:
以壳聚糖为模板原位聚合制备氧化还原活性水凝胶及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过简单地把壳聚糖/对苯二酚的酸性溶液暴露在空气中,我们合成了一种新型的氧化还原活性的水凝胶,该水凝胶是以聚对苯二酚(PHQ)作为聚合物氧化还原电对,以壳聚糖为基质的。体系中的PHQ是以空气中的氧气作为氧化剂,以壳聚糖为模板通过对苯二酚(HQ)的氧化聚合反应原位合成的。这是首次报道对苯二酚在酸性条件下的氧化聚合反应,也首次实现了对苯二酚的模板聚合。动力学研究表明,当壳聚糖/对苯二酚的摩尔比小于0.96时,聚合反应速率与壳聚糖浓度成正比,超过该点时,聚合反应速率随壳聚糖浓度的增大保持不变。该结果表明对苯二酚的模板聚合主要是遵循“选取”机理。另外,聚合反应对对苯二酚的级数为0.375,反应活化能为70.0kJ/mol。壳聚糖/对苯二酚溶液中,对苯二酚的氧化聚合反应使溶液凝胶化,凝胶化是由壳聚糖与聚对苯二酚的氢键作用物理交联引起的。随壳聚糖和对苯二酚浓度的增大以及温度升高,凝胶化时间缩短。电化学实验表明该水凝胶是氧化还原活性的,并且其氧化还原活性非常稳定。所以该原位形成的水凝胶在生物医药领域可以有很好的应用价值。
     为了开发壳聚糖/PHQ水凝胶的潜在应用,以壳聚糖水凝胶为基质,PHQ为氧化还原电对合成了新型的氧化还原活性水凝胶薄膜。首先,通过壳聚糖与戊二醛的交联组装单组份壳聚糖层层自组装(LBL)膜。然后,用对苯二酚的酸性溶液处理壳聚糖LBL膜,从而在膜中引入氧化还原活性的PHQ。AFM的结果证实了PHQ的生成会引起膜的粗糙度和厚度的增加。实验结果表明在膜中的氧化聚合反应也是以氧气为氧化剂,壳聚糖为模板的。壳聚糖/PHQ膜的循环伏安曲线证明了引入PHQ后,壳聚糖膜转变成氧化还原活性的膜。该新型的氧化还原活性膜在电流型生物传感器方面有重要的应用价值。
     邻苯二酚(CQ)也能以壳聚糖为模板,氧气作为氧化剂实现其氧化聚合反应。壳聚糖酸性溶液中,邻苯二酚的氧化聚合反应原位生成了聚邻苯二酚(PCQ),用UV和FTIR进行了表征。这是首次报道邻苯二酚的模板聚合。动力学研究表明:邻苯二酚的模板聚合是遵循“选取”机理,聚合反应对邻苯二酚的级数为0.537,反应活化能为39.35kJ/mol。PCQ与壳聚糖物理交联作用使溶液凝胶化,随壳聚糖和邻苯二酚浓度增大以及温度升高,凝胶化时间缩短。电化学实验证明该水凝胶是具有氧化还原活性的。该聚合反应的研究对废水处理有重要指导意义,聚合反应得到的氧化还原活性水凝胶在生物传感器方面也有潜在的应用价值。
A novel redox hydrogel was synthesized using poly(hydroquinone)(PHQ) as redox couple and chitosan as matrix by simple exposing the chitosan/HQ acidic solution to the air. PHQ was synthesized by the in-situ oxidative polymerization of HQ using chitosan as template and oxygen as oxidant. This is first report of the template oxidative polymerization of HQ. Kinetic studies show that:when the chitosan/hydroquinone molar ratio of is less than0.96, the polymerization rate increases linearly with increasing chitosan concentration, and beyond this point, the reaction rate keeps constant. The results indicate that the template polymerization of hydroquinone processes following the "Pick up" mechanism. And the order of the reaction for HQ is calculated as0.375, and the activation energy is70.0kJ/mol. The in situ polymerization of hydroquinone results in the gelation of aqueous solution which is caused by hydrogen-bond between hydroquinone and chitosan. With increasing chitosan and hydroquinone concentration as well as increasing temperature, the gelation time decreases. Electrochemical experiments show that the hydrogel is redox active. The hydrogel may be found applications in the biomedical field.
     In order to exploit the potential applications of chitosan/PHQ hydrogel, a novel redox hydrogel film was synthesized using chitosan hydrogel as matrix and PHQ as redox couple. First, the single-component chitosan LBL film was fabricated uniformly and reproducibly by glutaraldehyde-mediated assembly of chitosan. Then, the chitosan film was treated with an acidic solution of hydroquinone to introduce PHQ. The introduced PHQ could result in the increased roughness and thickness of the film. It is proved that the oxygen is used as oxidant and chitosan is used as a template in the polymerization of HQ. Cyclic voltammetry data confirms that after the introduction of PHQ, chitosan film became redox-active. Therefore, the new redox-active film may be found the potential applications in amperometric biosensors.
     The oxidative polymerization of catechol could also process using chitosan as template and oxygen as the oxidant, and the in-situ polymerization generated polycatechol (PCQ), which was characterized by UV and FTIR. This is the first report of the template polymerization of CQ. Kinetic studies shows:the template polymerization of catechol follows the "Pick up" mechanism, and the order of the polymerization reaction for catechol is0.537, and the activation energy is39.35kJ/mol. The physical crosslinking between PCQ and chitosan results in the gelation of the solution. With the increasing chitosan and catechol concentration and the increasing temperature, the gelation time decreased. The CV curves of chitosan/PCQ hydrogel is also redox active. The hydrogel may be found applications in the biomedical field, and the polymerization of CQ is useful for the wastewater disposal.
引文
[1]Zhang, X. and R. Zhuo, Novel synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with fast deswelling rate. European Polymer Journal,2000.36(3):p.643-645.
    [2]Luo, Q., et al., Lead-sensitive PNIPAM microgels modified with crown ether groups. Journal of Polymer Science Part A:Polymer Chemistry,2010.48(18):p.4120-4127.
    [3]Xing, S., Y. Guan and Y. Zhang, Kinetics of Glucose-Induced Swelling of P(NIPAM-AAPBA) Microgels. Macromolecules,2011.44(11):p.4479-4486.
    [4]He, J., et al., Novel Redox Hydrogel by in Situ Gelation of Chitosan as a Result of Template Oxidative Polymerization of Hydroquinone. Macromolecules,2011.44(7):p.2245-2252.
    [5]Heller, A., Electron-conducting redox hydrogels:design, characteristics and synthesis. Current Opinion in Chemical Biology,2006.10(6):p.664-672.
    [6]Mano, N., et al., An Electron-Conducting Cross-Linked Polyaniline-Based Redox Hydrogel, Formed in One Step at pH 7.2, Wires Glucose Oxidase. Journal of the American Chemical Society,2007.129(22):p.7006-7007.
    [7]Merchant, S.A., et al., High-Sensitivity Amperometric Biosensors Based on Ferrocene-Modified Linear Poly(ethylenimine). Langmuir,2009.25(13):p.7736-7742.
    [8]Mano, N., F. Mao and A. Heller, A Miniature Membrane-less Biofuel Cell Operating at +0.60 V under Physiological Conditions. ChemBioChem,2004.5(12):p.1703-1705.
    [9]Mano, N. and A. Heller, Bioelectrochemical Propulsion. Journal of the American Chemical Society,2005.127(33):p.11574-11575.
    [10]Tamaki, T., T. Ito and T. Yamaguchi, Immobilization of Hydroquinone through a Spacer to Polymer Grafted on Carbon Black for a High-Surface-Area Biofuel Cell Electrode. The Journal of Physical Chemistry B,2007.111(34):p.10312-10319.
    [11]Cheng, L., J. Liu and S. Dong, Layer-by-layer assembly of multilayer films consisting of silicotungstate and a cationic redox polymer on 4-aminobenzoic acid modified glassy carbon electrode and their electrocatalytic effects. Analytica Chimica Acta,2000.417(2):p. 133-142.
    [12]Boztas, A.O. and A. Guiseppi-Elie, Immobilization and Release of the Redox Mediator Ferrocene Monocarboxylic Acid from within Cross-Linked p(HEMA-co-PEGMA-co-HMMA) Hydrogels. Biomacromolecules,2009.10(8):p. 2135-2143.
    [13]Liu, H., et al., Osmium Redox Hydrogel Mediated Biosensor for Measurement of Low Concentration Glucose Extracted by Reverse Iontophoresis. Electroanalysis,2008.20(2):p. 170-177.
    [14]Decker, I. and D. Delabouglise, Anion effect on the electrochemistry of TTF in polymer solvent. Journal of Electroanalytical Chemistry,2001.506(2):p.178-181.
    [15]James Q. Chambers, K.S.A.C., Cyclic Voltammetry of a TCNQ(0/-l) Solid-State Redox Couple. J. Electrochem. Soc.,1996.10(143):p.3039-3045.
    [16]Brahim, S. and A. Guiseppi-Elie, Electroconductive Hydrogels:Electrical and Electrochemical Properties of Polypyrrole-Poly(HEMA) Composites. Electroanalysis,2005. 17(7):p.556-570.
    [17]Shufa, S., et al., Electrical and magnetic properties of new polyacene quinone radical co-polymers synthesized by condensation. Solid State Communications,1994.91(7):p. 507-511.
    [18]张爱娟等,氧化还原活性的聚对苯二酚的研究进展.高分子通报,2011(5):第17-26页.
    [19]Hay, A.S., et al., POLYMERIZATION BY OXIDATIVE COUPLING. Journal of the American Chemical Society,1959.81(23):p.6335-6336.
    [20]Berlin A A, et al., Polycondensation of p-benzoquinone in the presence of Lewis acids. Polymer Science U.S.S.R.,1973.4(15):p.887-891.
    [21]Berlin, A.A., et al., Effect of the type of Lewis acid on the structure, properties and yield of polycondensation products of p-benzoquinone. Polymer Science U.S.S.R.,1975.17(1):p. 126-134.
    [22]Ragimov, A.V., et al., Effect of initiator type on the composition and molecular mass distribution of p-benzoquinone polymerization products. Polymer Science U.S.S.R.,1989. 31(1):p.104-109.
    [23]Sabaa, M.W., T.M. Madkour, A.A. Yassin, Polymerization products of p-Benzoquinone as bound antioxidants for styrene-butadiene rubber:Part Ⅰ reparation of quinone polymers. Polymer Degradation and Stability,1988.22(3):p.195-203.
    [24]Yassin, A.A., M.W. Sabaa and N.A. Mohamed, Polymerization products of p-benzoquinone as thermal stabilizers for rigid poly(vinyl chloride):Part Ⅰ—Preparation of the stabilizer. Polymer Degradation and Stability,1985.13(2):p.167-181.
    [25]Yassin, A.A. and M.W. Sabaa, p-Benzoquinone-tin polycondensates as stabilisers for polybutadiene rubber against photo-degradation. Polymer Degradation and Stability,1982. 4(4):p.313-318.
    [26]Medvedev, Y.V., et al., Potentiometric study of p-benzoquinone polymerization and the structure of the polymer. Polymer Science U.S.S.R.,1975.17(3):p.641-648.
    [27]Ragimov, A.V., et al., On features of the oligomerization of hydroquinone under auto-oxidation. Polymer Science U.S.S.R.,1982.24(10):p.2434-2440.
    [28]Furlani, A., M.V. Russo and F. Cataldo, Oxidative polymerization of p-benzoquinone and hydroquinone. Conductivity of doped and undoped polymerization products. Synthetic Metals,1989.29(1):p.507-510.
    [29]Sadykh-Zade, S.I., et al., The polymerization of quinones in an alkaline medium and the structure of the resulting polymers. Polymer Science U.S.S.R.,1972.14(6):p.1395-1403.
    [30]Ragimov, A.V., B.A. Mamedov and B.I. Liogon'Kii, The alkali initiated polymerization of p-benzoquinone. Polymer Science U.S.S.R.,1977.19(11):p.2922-2928.
    [31]Razimov, A.V., F.T. Bekmashi and B.I. Liogon'Kii, Thermal polymerization of p-benzoquinone. Polymer Science U.S.S.R.,1975.17(12):p.3164-3170.
    [32]Shindo H, H.T., Polymerization of Hydroquinone as Influenced by Selected Inorganic. Soil Components. Soil Sci Plant Nutr,1986.32(2):p.305-309.
    [33]Shindo H, H.P.M., Catalytic Polymerization of Hydroquinone by Primary Minerals. Soil Sci, 1985.139(6):p.505-509.
    [34]Yamamoto K, A.T.N.H., The Preparation of Poly(dihydroxyphenylene) through the Electro-Oxidative Polymerization of Hydroquinone. Bull Chem Soc Jpn,1990.63(4):p. 1211-1216.
    [35]Kimihisa Yamamoto, T.A.H.N., Preparation of Electroactive Poly(dihydroxyphenylene). Chemistry Letters,1989.18(1):p.65-68.
    [36]CHEN Zhi-Dong, C.X.Y.J., Fabrication of Poly (hydroquinone) Modified Expanded Graphite Electrode and its Properties. Chin J Anal Chem,2010.38(4):p.555-558.
    [37]Wang, P., et al., Multienzymic Synthesis of Poly(hydroquinone) for Use as a Redox Polymer. Journal of the American Chemical Society,1995.117(51):p.12885-12886.
    [38]Wang, P., et al., Enzymatically prepared poly(hydroquinone) as a mediator for amperometric glucose sensors. Polymer,1998.39(1):p.123-127.
    [39]Kobayashi, H.U.S., Enzymatic Synthesis and Properties of Polymers from Polyphenols. Adv Polym Sci,2006(194):p.51-67.
    [40]Kim, Y., et al., Synthesis of ultrahigh molecular weight phenolic polymers by enzymatic polymerization in the presence of amphiphilic triblock copolymer in water. Polymer,2008. 49(22):p.4791-4795.
    [41]Tonami, H., et al., Chemoenzymatic synthesis of a poly(hydroquinone). Macromolecular Chemistry and Physics,1999.200(9):p.1998-2002.
    [42]Benson, A.M., et al., Synthesis of a low thrombogenic heart valve coating with horseradish peroxidase. Polymers for Advanced Technologies,2005.16(2-3):p.117-122.
    [43]Ikeda, R., et al., A new crosslinkable polyphenol from a renewable resource. Macromolecular Rapid Communications,2000.21(8):p.496-499.
    [44]Tonami, H., et al., Synthesis of a soluble polyphenol by oxidative polymerization of bisphenol-A using iron-salen complex as catalyst. Polymer Bulletin,1999.42(2):p.125-129.
    [45]Kitamura T, H.K.F.N., Poly(hydroquinone).
    [46]Yamamoto, T. and T. Kimura, Preparation of π-Conjugated Poly(hydroquinone-2,5-diyl) and Poly(p-benzoquinone-2,5-diyl) and Their Electrochemical Behavior. Macromolecules, 1998.31(8):p.2683-2685.
    [47]Yamamoto, T., T. Kimura and K. Shiraishi, Preparation of π-Conjugated Polymers Composed of Hydroquinone, p-Benzoquinone, and p-Diacetoxyphenylene Units. Optical and Redox Properties of the Polymers. Macromolecules,1999.32(26):p.8886-8896.
    [48]Kim, Y., et al., Synthesis of ultrahigh molecular weight phenolic polymers by enzymatic polymerization in the presence of amphiphilic triblock copolymer in water. Polymer,2008. 49(22):p.4791-4795.
    [49]Ragimov, A.V., et al., Features of the oxidation of oligohydroxyarylenes in an alkaline medium. Polymer Science U.S.S.R.,1983.25(4):p.903-909.
    [50]Kaku, T., H.I. Karan and Y. Okamoto, Amperometric Glucose Sensors Based on Immobilized Glucose Oxidase-Polyquinone System. Analytical Chemistry,1994.66(8):p. 1231-1235.
    [51]Kaku, T., et al., The effect of structure on poly(quinone) systems for amperometric glucose sensors. Polymer,1995.36(14):p.2813-2818.
    [52]Nakano, K. et al., Poly(hydroquinone)-coated electrode for immobilizing of amine functioned capture probe DNA and electrochemical response to DNA hybridization. Science and Technology of Advanced Materials,2006.7(7):p.718-725.
    [53]Nakano, K., et al., Poly(hydroquinone)-coated electrode for immobilizing of 5'-amine functioned capture probe DNA and electrochemical response to DNA hybridization. Science and Technology of Advanced Materials,2006.7(7):p.718-725.
    [54]Yamamoto, K., et al., Preparation of Electroactive Poly(dihydroxyphenylene). Chemistry Letters,1989.18(1):p.65-68.
    [55]Diaz, J.C.L.A., Electrolyte Effects on the Switching Reaction of Polyaniline. Journal of The Electrochemical Society,1988.135(6):p.1457-1463.
    [56]Cameron, C, ed. Enhanced rates of electron transport in conjugatled-redox polymer hybrides. 2000, Memorial University of Newfoundland:Newfoundland.
    [57].Botar, L. and I. Ruff, Effect of exchange reaction on transport processes:fick's second law for diffusion on lattice points. Chemical Physics Letters,1986.126(3-4):p.348-351.
    [58]Kaufman, F.B. and E.M. Engler, Solid-state spectroelectrochemistry of crosslinked donor bound polymer films. Journal of the American Chemical Society,1979.101(3):p.547-549.
    [59]A, M.R., On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions. J Chem Phys,1965.43(2):p.679-701.
    [60]Laurinavicius, V., et al., Reagentless biosensor based on PQQ-depended glucose dehydrogenase and partially hydrolyzed polyarbutin. Talanta,2000.52(3):p.485-493.
    [61]Xianguang, C., et al., Electrocatalytic oxidation and determination of ascorbic acid on polymer hydroquinone modified electrode. Chinese Journal of Analytical Chemistry,2006. 34(8):p.1063-1066.
    [62]姚军等,聚对苯二酚修饰电极测定多巴胺和L-色氨酸的电化学研究.化学试剂,2009.31(5):第355-358页.
    [63]Amarapathy A M A, S.G., Rubber-bound antioxidants by reactions of natural rubber in the latex. J Rubber Research Institute of Sri Lanka,1977.54(2):p.520-530.
    [64]Sabaa, M.W., T.M. Madkour and A.A. Yassin, Polymerization products of p-benzoquinone as bound antioxidants for SBR. Part Ⅱ—The antioxidizing efficiency. Polymer Degradation and Stability,1988.22(3):p.205-222.
    [65]Sabaa, M.W., T.M. Madkour and A.A. Yassin, Polymerization products of p-benzoquinone as bound antioxidants for blends of natural rubber. Polymer Degradation and Stability,1989. 26(4):p.347-359.
    [66]Yassin, A.A., M.W. Sabaa and N.A. Mohamed, Polymerization products of p-benzoquinone as thermal stabilizers for rigid poly(vinyl chloride). Part Ⅱ—Evaluation of the stabilizing efficiency. Polymer Degradation and Stability,1985.13(3):p.225-247.
    [67]Liogon'Kii B I, P.T.L.R., Prevention of polymerization of monomers by polyconjugated polymeric inhibitors with functional groups. Dokl Akad Nauk SSSR,1986.290(2):p. 390-393.
    [68]Vidadi Y A, K.S.K.R., Capture and charge transfer in poly(hydroquinone). Zhurnal Fizicheskoi Khimii,1979.53(12):p.3120-3124.
    [69]Khalilov S K, A.G.A., Relation between electrical properties and supramolecular structure in polymeric semiconductors, polyhydroquinone, and polynaphthol. Elektromagnit i Optich Yavleniya v Tverd Telakh, Baku,1981:p.61-66.
    [70]Jha, P.K.. and G.P. Halada, The catalytic role of uranyl in formation of polycatechol complexes. CHEMISTRY CENTRAL JOURNAL,2011(5).
    [71]Ziechmann, W., Die Darstellung von Huminsauren im heterogenen System mit neutraler Reaktion. Z Pflanzenernaehr Dueng Bodenkd,1959(84):p.155-159.
    [72]WANG, T.S.C., M. WANG and P.M. HUANG, Catalytic Synthesis of Humic Substances By Using Aluminas As Catalysts 1. Soil Science,1983.136(4).
    [73]Sanchez-Cortes, S., et al., Catechol polymerization in the presence of silver surface. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001.176(2-3):p.177-184.
    [74]Schnitzer, S.P.M.A., A Chemical and Spectroscopic Characterization of some Synthetic Analogues of Humic Acids. Soil Science Society of America Journal,1978.42(4):p. 591-596.
    [75]Horsman, G.P., et al., Spectroscopic Studies of the Anaerobic Enzyme-Substrate Complex of Catechol 1,2-Dioxygenase. Journal of the American Chemical Society,2005.127(48):p. 16882-16891.
    [76]Arana, J., et al., Role of Cu in the Cu-TiO2 photocatalytic degradation of dihydroxybenzenes. Catalysis Today,2005.101(3-4):p.261-266.
    [77]Colarieti, M.L., G. Toscano and G. Greco Jr., Soil-catalyzed polymerization of phenolics in polluted waters. Water Research,2002.36(12):p.3015-3022.
    [78]Colarieti, M.L., et al., Abiotic oxidation of catechol by soil metal oxides. Journal of Hazardous Materials,2006.134(1-3):p.161-168.
    [79]Akkara JA, K.L.J.V., The polymeric materials encyclopedia. CRC Press, New York,1996.3: p.2116-2125.
    [80]Akkara, J.A., K.J. Senecal and D.L. Kaplan, Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. Journal of Polymer Science Part A:Polymer Chemistry,1991.29(11):p.1561-1574.
    [81]Dubey, S., D. Singh and R.A. Misra, Enzymatic synthesis and various properties of poly(catechol). Enzyme and Microbial Technology,1998.23(7-8):p.432-437.
    [82]Buchanan, I.D. and J.A. Nicell, Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnology and Bioengineering,1997.54(3):p.251-261.
    [83]Buchanan, J. Nicell and Wagner, Reactor Models for Horseradish Peroxidase catalyzed Aromatic Removal. Journal of Environmental Engineering,1998.124(9):p.794-802.
    [84]Aktas, N. and A. Tanyolac, Reaction conditions for laccase catalyzed polymerization of catechol. Bioresource Technology,2003.87(3):p.209-214.
    [85]Aktas, N. and A. Tanyolac, Kinetics of laccase-catalyzed oxidative polymerization of catechol. Journal of Molecular Catalysis B:Enzymatic,2003.22(1-2):p.61-69.
    [86]Aktas, N., et al., Biosynthesis and Characterization of Laccase Catalyzed Poly(Catechol). Journal of Polymers and the Environment,2003.11(3):p.123-128.
    [87]Dubey, S., D. Singh and R.A. Misra, Enzymatic synthesis and various properties of poly(catechol). Enzyme and Microbial Technology,1998.23(7-8):p.432-437.
    [88]Erhan, E., et al., Removal of phenol from water by membrane-immobilized enzymes:Part Ⅰ. Dead-end filtration. Journal of Membrane Science,2002.206(1-2):p.361-373.
    [89]Nabid, M., et al., Synthesis and characterization of poly(catechol) catalyzed by porphyrin and enzyme. Polymer Bulletin,2010.64(9):p.855-865.
    [90]Davis, J., D.H. Vaughan and M.F. Cardosi, Modification of catechol polymer redox properties during electropolymerization in the presence of aliphatic amines. Electrochimica Acta,1998.43(3-4):p.291-300.
    [91]Mao, Y.K.S.M., SYNTHESIS OF POLYCATECHOL WITH ELECTROCHEMICAL ACTIVITY AND ITS PROPERTIES. Chinese Journal of Polymer Science,2002.20(6):p. 517-524.
    [92]Mathew, A.G. and H.A.B. Parpia, Food Browning as a Polyphenol Reaction. Adv. Food Res., 1971. Volume 19:p.75-145.
    [93]Nematollahi, D. and S.M. Golabi, Electrochemical study of catechol and 4-methylcatechol in methanol. Application to the electro-organic synthesis of 4,5-dimethoxy-and 4-methoxy-5-methyl-o-benzoquinone. Journal of Electroanalytical Chemistry,1996. 405(1-2):p.133-140.
    [94]Khoo, S.B. and J. Zhu, Poly(catechol) Film Modified Glassy Carbon Electrode for Ultratrace Determination of Cerium(III) by Differential Pulse Anodic Stripping Voltammetry. Electroanalysis,1999.11(8):p.546-552.
    [95]Qian, G., et al., A novel polycatechol/platinum composite film prepared by electrochemical synthesis. Synthetic Metals,2007.157(10-12):p.448-453.
    [96]Bruno, F., M.C. Pham and J.E. Dubois, Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols. Electrochimica Acta,1977.22(4):p.451-457.
    [97]M. C. Pham, F.A.A.P., In Situ Study by Multiple Internal Reflection Fourier Transform Infrared Spectroscopy (MIRFTIRS) of the Phenoxy Radical during Anodic Oxidation of Phenol Derivatives on Iron. Journal of The Electrochemical Society,1989.136(3):p. 677-679.
    [98]Mu, S., Novel properties of polyaniline nanofibers coated with polycatechol. Synthetic Metals,2006.156(2-4):p.202-208.
    [99]Christie, I.M., P. Vadgama and S. Loyd, Modification of electrode surfaces with oxidised phenols to confer selectivity to amperometric biosensors for glucose determination. Analytica Chimica Acta,1993.274(2):p.191-199.
    [100]Geise, R.J., et al., Electropolymerized films to prevent interferences and electrode fouling in biosensors. Biosensors and Bioelectronics,1991.6(2):p.151-160.
    [101]Pariente, F., E. Lorenzo and H.D. Abruna, Electrocatalysis of NADH Oxidation with Electropolymerized Films of 3,4-Dihydroxybenzaldehyde. Analytical Chemistry,1994. 66(23):p.4337-4344.
    [102]Solovskij, M.V., et al., Synthesis of water-soluble biologically active phenol (or catechol) containing copolymers of N-vinyl-2-pyrrolidone. Macromolecular Chemistry and Physics, 1996.197(6):p.2035-2046.
    [103]Mengoli, G., et al., Anodic formation of thick polyoxyphenylene coatings onto Fe plates from phenol-ethylene diamine systems. Journal of Applied Electrochemistry,1979.9(4):p. 483-493.
    [104]Mengoli, G., S. Daolio and M.M. Musiani, The influence of amines on the anodic coupling of phenols to polyoxyphenylene films. Journal of Applied Electrochemistry,1980.10(4):p. 459-471.
    [105]Mengoli, G., et al., The inhibition of the corrosion of mild steel in aqueous acids by in situ polymerization of unsaturated compounds. Corrosion Science,1991.32(7):p.743-753.
    [106]Szwarc, M., Replica polymerization. Journal of Polymer Science,1954.13(69):p.317-318.
    [107]Bamford CH. In Haward RN, E., Developments in polymerisation. London:Applied Science Publishing,1979:p.215.
    [108]Polowinski, S., Template polymerisation and co-polymerisation. Progress in Polymer Science,2002.27(3):p.537-577.
    [109]Kammerer V H, S.J.S., Die Herstellung einer molekulareinheitlichen Tri-, Tetra- und Pentamethacrylsaure. V. Mitt. Modelle fur Matrizenreaktionen. Die Makromolekulare Chemie,1968.116(1):p.62-71.
    [110]Kammerer V H, S.J.S.S., Die Herstellung einer molekulareinheitlichen Tetramethacrylsaure mittels verschiedener Matrizen. VI. Mitt. Modelle fur Matrizenreaktionen. Die Makromolekulare Chemie,1968.116(1):p.72-77.
    [111]Polowinski, S.I., et al., The encyclopaedia of advanced materials. Oxford:Pergamon Press, 1994:p.2784.
    [112]Tan, G.C.A.Y., Template polymerization. Pure Appl. Chem.,1981.53(3):p.627-641.
    [113]Yong Tan, Y., The synthesis of polymers by template polymerization. Progress in Polymer Science,1994.19(4):p.561-588.
    [114]Ferguson, J. and S.A.O. Shah, Polymerization in an interacting polymer system. European Polymer Journal,1968.4(3):p.343-354.
    [115]Smid, J., et al., Effect of poly(2-vinylpyridine) as a template for the radical polymerization of methacrylic acid—Ⅳ:Influence of tacticity of the template. European Polymer Journal, 1985.21(2):p.141-145.
    [116]Ferguson, J., S. Al-Alawi and R. Granmayeh, Template molecular weight effects on the polymerization of acrylic acid. European Polymer Journal,1983.19(6):p.475-480.
    [117]Muramatsu, R. and T. Shimidzu, A Kinetic Study of the Polymerization of Acrylic Acid in the Presence of Polyvinylpyrrolidone. Bulletin of the Chemical Society of Japan,1972.45(8): p.2538-2544.
    [118]Samuelson, L.A., et al., Biologically Derived Conducting and Water Soluble Polyaniline. Macromolecules,1998.31(13):p.4376-4378.
    [119]Kim, Y., H. Uyama and S. Kobayashi, Regioselective Synthesis of Poly(phenylene) as a Complex with Poly(ethylene glycol) by Template Polymerization of Phenol in Water. Macromolecules,2003.36(14):p.5058-5060.
    [120]Ballard, D.G.H. and C.H. Bamford, Studies in Polymerization. X.'The Chain-Effect'. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956.236(1206):p.384-396.
    [121]Higashi, F., et al., Wholly aromatic polyamides by the direct polycondensation reaction using triphenyl phosphite in the presence of poly(4-vinylpyridine). Journal of Polymer Science:Polymer Chemistry Edition,1980.18(3):p.851-856.
    [122]Higashi, F., et al., High-molecular-weight polyterephthalamide by direct polycondensation reaction in the presence of poly(ethylene oxide). Journal of Polymer Science:Polymer Chemistry Edition,1980.18(3):p.1099-1104.
    [123]Higashi, F. and Y. Taguchi, Aromatic polyamides by phosphorylation reaction with triphenylphosphite and LiCl in the presence of polymer matrix. Journal of Polymer Science: Polymer Chemistry Edition,1980.18(9):p.2875-2877.
    [124]Ogata, N., et al., Polycondensation of diethyl mucate with hexamethylenediamine in the presence of poly(vinyl pyridine). Journal of Polymer Science:Polymer Chemistry Edition, 1980.18(3):p.933-938.
    [125]Ogata, N., et al., Polycondensation reaction of dimethyl tartrate with hexamethylenediamine in the presence of various matrices. Journal of Polymer Science:Polymer Chemistry Edition, 1980.18(3):p.939-948.
    [126]Ogata, N., K. Sanui and M. Abe, Charge transfer polycondensation of diethyl chelidonate with diamines in the presence of polyvinylcarbazole. Journal of Polymer Science:Polymer Chemistry Edition,1981.19(6):p.1361-1366.
    [127]Ogata, N., et al., Molecular weight control in polycondensation of hydroxyl diesters with hexamethylenediamine by polymer matrices. Journal of Polymer Science:Polymer Chemistry Edition,1981.19(10):p.2609-2617.
    [128]Papisov, I.M. and A.A. Litmanovich, Molecular " recognition " in interpolymer interactions and matrix polymerization.1989.90:p.139-179.
    [129]Papisov, I.M., et al., Chemical and structural modification of polymers by matrix polymerization. European Polymer Journal,1984.20(2):p.195-200.
    [130]Papisov, I.M., et al., Composites obtained via matrix and pseudo-matrix processes (polymerization and new phase formation). Macromolecular Symposia,1996.106(1):p. 287-297.
    [131]蒋挺大,壳聚糖.第第1版版.2001,北京:化学工业出版社.
    [132]MacLaughlin, F.C., et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. Journal of Controlled Release,1998.56(1-3):p. 259-272.
    [133]Thanou, M.M., et al., Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. Journal of Controlled Release,2000.64(1-3):p.15-25.
    [134]Thanou, M., et al., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials,2002.23(1):p.153-159.
    [135]Gobin, A.S., V.E. Froude and A.B. Mathur, Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. Journal of Biomedical Materials Research Part A,2005.74A(3):p.465-473.
    [136]Zhao, Z., et al., Biodegradable Nanoparticles Based on Linoleic Acid and Poly(β-malic acid) Double Grafted Chitosan Derivatives as Carriers of Anticancer Drugs. Biomacromolecules,2009.10(3):p.565-572.
    [137]Ong, S., et al., Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials,2008.29(32):p.4323-4332.
    [138]Ishihara, M., et al., Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials,2002.23(3):p.833-840.
    [139]Tian, F., et al., Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydrate Polymers,2004.57(1):p.31-37.
    [140]Schweiger, R.G., Polysaccharide sulfates. I. cellulose sulfate with a high degree of substitution. Carbohydrate Research,1972.21(2):p.219-228.
    [141]Qin, C.Q., Y.M. Du and L. Xiao, Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polymer Degradation and Stability,2002.76(2):p. 211-218.
    [142]Sato, K., et al., Hydrolysis of acetals in water under hydrothermal conditions. Tetrahedron Letters,2003.44(47):p.8623-8625.
    [143]Sato, K., et al., Hydrolysis of acetals in water under hydrothermal conditions. Tetrahedron Letters,2003.44(47):p.8623-8625.
    [144]Macquarrie, D.J. and J.J.E. Hardy, Applications of Functionalized Chitosan in Catalysist. 2005.44(23):p.8499-8520.
    [145]Cataldo, F., On the structure of macromolecules obtained by oxidative polymerization of polyhydroxyphenols and quinones. Polymer International,1998.46(4):p.263-268.
    [146]Kimihisa Yamamoto, T.A.H., The Preparation of Ploly(dihydroxyphenylene) through the Electro-Oxidative Polymerization of Hydroquinone.1990:Bull.Chem.Soc.Jpn. p. 1211-1216.
    [147]MacLaughlin, F.C., et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in.vivo plasmid delivery. Journal of Controlled Release,1998.56(1-3):p. 259-272.
    [148]Thanou, M.M., et al., Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. Journal of Controlled Release,2000.64(1-3):p.15-25.
    [149]Thanou, M., et al., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials,2002.23(1):p.153-159.
    [150]Allan, G.G. and M. Peyron, Molecular weight manipulation of chitosan I:kinetics of depolymerization by nitrous acid. Carbohydrate Research,1995.277(2):p.257-272.
    [151]Sadykh-Zade, S.I., et al., Polymerization of quinones in alkaline medium and investigation of the structure of the polymers formed. Vysokomolekulyarnye Soedineniya, Seriya A,1972. 14(6):p.1248-1255.
    [152]Guibal, E., et al., Oxidation of hydroquinone to p-benzoquinone catalyzed by Cu(II) supported on chitosan flakes. Journal of Applied Polymer Science,2006.100(4):p. 3034-3043.
    [153]Maiti, M. and A.K. Bhowmick, Dynamic viscoelastic properties of fluoroelastomer/clay nanocomposites. Polymer Engineering & Science,2007.47(11):p.1777-1787.
    [154]Richardson, P.H., et al., Galactomannan Gelation:A Thermal and Rheological Investigation Analyzed Using the Cascade Model. Macromolecules,1999.32(5):p. 1519-1527.
    [155]Merchant, S.A., D.T. Glatzhofer and D.W. Schmidtke, Effects of Electrolyte and pH on the Behavior of Cross-Linked Films of Ferrocene-Modified Poly(ethylenimine). Langmuir,2007. 23(22):p.11295-11302.
    [156]Kumar, M.N.V.R., et al., Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews,2004.104(12):p.6017-6084.
    [157]Decher, G., Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites. Science,-1997.277(5330):p.1232-1237.
    [158]Tang, Z., et al., Biomedical Applications of Layer-by-Layer Assembly:From Biomimetics to Tissue Engineering. Advanced Materials,2006.18(24):p.3203-3224.
    [159]Tong, W. and C. Gao, Multilayer microcapsules with tailored structures for bio-related applications. Journal of Materials Chemistry,2008.18(32):p.3799-3812.
    [160]Zhang, X., H. Chen and H. Zhang, Layer-by-layer assembly:from conventional to unconventional methods. Chemical Communications,2007.0(14):p.1395-1405.
    [161]Lutkenhaus, J.L. and P.T. Hammond, Electrochemically enabled polyelectrolyte multilayer devices:from fuel cells to sensors. Soft Matter,2007.3(7):p.804-816.
    [162]Bergbreiter, D.E. and K. Liao, Covalent layer-by-layer assembly-an effective, forgiving way to construct functional robust ultrathin films and nanocomposites. Soft Matter,2009. 5(1):p.23-28.
    [163]Such, G.K., A.P.R. Johnston and F. Caruso, Engineered hydrogen-bonded polymer multilayers:from assembly to biomedical applications. Chemical Society Reviews,2011. 40(1):p.19-29.
    [164]Kozlovskaya, V., et al., Multilayer-derived, ultrathin, stimuli-responsive hydrogels. Soft Matter,2009.5(21):p.4077-4087.
    [165]Ding, Z., et al., Synthesis of glucose-sensitive self-assembled films and their application in controlled drug delivery. Polymer,2009.50(17):p.4205-4211.
    [166]Zhang, X., Y. Guan and Y. Zhang, Ultrathin Hydrogel Films for Rapid Optical Biosensing. Biomacromolecules,2011.13(1):p.92-97.
    [167]Joly, S., et al., Multilayer Nanoreactors for Metallic and Semiconducting Particles. Langmuir,1999.16(3):p.1354-1359.
    [168]Wang, T.C., M.F. Rubner and R.E. Cohen, Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites:Controlling Metal Concentration and Nanoparticle Size. Langmuir,2002.18(8):p.3370-3375.
    [169]Xiao, S., et al., Polyelectrolyte Multilayer-Assisted Immobilization of Zero-Valent Iron Nanoparticles onto Polymer Nanofibers for Potential Environmental Applications. ACS Applied Materials & Interfaces,2009.1(12):p.2848-2855.
    [170]Machado, G., et al., Silver Nanoparticles Obtained in PAH/PAA-Based Multilayers by Photochemical Reaction. The Journal of Physical Chemistry C,2009.113(44):p. 19005-19010.
    [171]Xiong, H., et al., A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles. Advanced Materials,1998.10(7):p.529-532.
    [172]Dante, S., et al., Nucleation of Iron Oxy-Hydroxide Nanoparticles by Layer-by-Layer Polyionic Assemblies. Langmuir,1999.15(6):p.2176-2182.
    [173]Kidambi, S., et al., Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers. Journal of the American Chemical Society,2004.126(9):p. 2658-2659.
    [174]Lee, D., R.E. Cohen and M.F. Rubner, Antibacterial Properties of Ag Nanoparticle Loaded Multilayers and Formation of Magnetically Directed Antibacterial Microparticles. Langmuir, 2005.21(21):p.9651-9659.
    [175]Dai, J. and M.L. Bruening, Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films. Nano Letters,2002.2(5):p.497-501.
    [176]Shi, X., et al., Formation of Uniform Polyaniline Thin Shells and Hollow Capsules Using Polyelectrolyte-Coated Microspheres as Templates. Macromolecules,2003.36(11):p. 4093-4098.
    [177]Yang, X., et al., Polymerization of pyrrole on a polyelectrolyte hollow-capsule microreactor. Polymer,2006.47(13):p.4596-4602.
    [178]Ghan, R., et al., Enzyme-Catalyzed Polymerization of Phenols within Polyelectrolyte Microcapsules. Macromolecules,2004.37(12):p.4519-4524.
    [179]Manna, U., et al., Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly. Chemical Communications,2010.46(13):p. 2250-2252.
    [180]Zhang, L., et al., One-step synthesis of silver nanoparticles in self-assembled multilayered films based on a Keggin structure compound. Journal of Materials Chemistry,2008.18(11): p.1196-1203.
    [181]Zhang, Y., Y. Guan and S. Zhou, Single Component Chitosan Hydrogel Microcapsule from a Layer-by-Layer Approach. Biomacromolecules,2005.6(4):p.2365-2369.
    [182]McAloney, R.A., et al., Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology. Langmuir,2001.17(21):p.6655-6663.
    [183]Atlow, S.C., L. Bonadonna-Aparo and A.M. Klibanov, Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnology and Bioengineering,1984. 26(6):p.599-603.
    [184]Uyama, H. and S. Kobayashi, Enzyme-catalyzed polymerization to functional polymers. Journal of Molecular Catalysis B:Enzymatic,2002.19-20(0):p.117-127.
    [185]Buchanan, I.D. and J.A. Nicell, A simplified model of peroxidase-catalyzed phenol removal from aqueous solution. Journal of Chemical Technology & Biotechnology,1999.74(7):p. 669-674.
    [186]Kim, S.Y., et al., Enzymatic polymerization on the surface of functionalized cellulose fibers. Enzyme and Microbial Technology,2007.40(7):p.1782-1787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700