用户名: 密码: 验证码:
Nb、Al合金化MoSi_2的合成、组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MoSi_2及其硅化物基材料被认为是一种非常有潜力的可用于1200℃以上的高温结构材料,但存在室温断裂韧性差、高温易蠕变以及低温粉化瘟疫的缺陷。针对上述问题,本文以Nb单一合金化和Nb、Al协同合金化MoSi_2为思路,利用固体与分子经验电子理论进行材料理论设计与性能预测,通过热力学计算了理论绝热燃烧温度,采用燃烧合成技术获得超过饱和固溶体,运用真空热压烧结和放电等离子烧结技术使其致密化,并对其组织和性能进行研究。
     根据固体与分子经验电子理论,对C11_b型MeS_2(Me=Mo,Nb;S=Si,Al)价电子结构的计算表明,Nb、Al合金化引起C11_b相中原子杂化状态变化,使C11_b相中最强键及次强键的键能及键上共价电子对数的下降,导致宏观硬度降低;Nb单一合金化提高了C11_b相中共价电子数比例值,有利于提高C11_b相的强度;Al单一合金化和微量Nb、Al协同合金化均使值下降,导致C11_b相强度下降。
     采用双亚点阵模型对(Mo_(1-x)Nb_x)Si_2和Mo(Si_(1-y)Al_y)_2体系的理论绝热温度进行了模拟计算,结果表明Nb或Al的固溶引起C11_b相和C40相热容及热焓的变化,从而改变体系的绝热温度,实验设计成分(Mo_(1-x)Nb_x)Si_2和Mo(Si_(1-y)Al_y)_2的理论绝热温度均高于1800K,可以在室温下由元素粉末通过燃烧合成反应生成。
     以Mo、Si、Nb、Al元素粉末为原料,通过燃烧合成技术制备了(Mo_(1-x)Nb_x)Si_2、Mo (Si_(1-y)Al_y)2和(Mo_(1-x)Nb_x)(Si_(1-y)Al_y)_2合金。燃烧合成产物主要为固溶有Nb(Al)的C11_b相和C40相,存在过饱和固溶现象。Nb合金化促进NbSi_2及MoSi_2型C40相形成,Al单一合金化及Nb、Al协同合金化促进Mo(Si,Al)_2型C40相的形成。Nb、Al合金化促进了MoSi_2燃烧合成反应的放热,使燃烧温度上升,其反应机制为:熔融-溶解-析出。
     以燃烧合成产物为原料,分别采用真空热压烧结和放电等离子烧结制备了致密的(Mo_(1-x)Nb_x)Si_2和(Mo_(1-x)Nb_x)(Si_(1-y)Al_y)_2合金,C11_b相中过饱和固溶的Nb/Al在烧结过程中发生脱溶形成C40相。热压使合金相组成趋近于平衡状态。放电等离子烧结速度快、温度低,形成的合金晶粒细小且仍存在过饱和C11_b相。
     系统研究了热压合金的室温力学性能,结果表明:少量Nb固溶使(Mo_(1-x)Nb_x)Si_2合金室温硬度下降,弯曲强度升高,对断裂韧性无显著影响。大量Nb使C40相增加,导致硬度上升,强度和断裂韧性下降。Nb和Al协同合金化对室温弯曲强度的影响不大,有Nb存在时,Al添加量达一定值(y=0.15)会显著恶化MoSi_2的强度。少量Nb和Al协同合金化可显著提高室温断裂韧性,最高达到10.7MPa/m~(1/2),比纯MoSi_2提高了74%,增加合金量促使形成Mo(Si,Al)2型C40相导致(Mo_(1-x)Nb_x)(Si_(1-y)Al_y)_2合金断裂韧性降低而硬度升高。
     对放电等离子烧结合金的室温和高温力学性能进行了系统研究,结果表明:放电等离子烧结合金的强度和硬度均高于同成分热压合金。放电等离子烧结(Mo_(1-x)Nb_x)Si_2合金的强度、硬度和断裂韧性变化趋势和热压合金一致,但断裂韧性下降较慢。Nb的增加使(Mo_(1-x)Nb_x)Si_2合金高温压缩强度呈现出先增后降的趋势,(Mo_(0.85)Nb_(0.15))Si_2合金的高温强度达到246MPa,比MoSi_2提高了110%。(Mo_(0.85)Nb_(0.15))Si_2合金高温变形经历了整体变形和玻璃相集中变形两个阶段,玻璃相集中变形使高温流变应力下降,而MoSi_2只经历了整体变形阶段。Nb、Al协同合金化可更有效的改善高温性能,Nb在高温下起到固溶强化作用,并且有助于产生层错强化效应;少量Al可减少晶界SiO2玻璃相使高温强度上升,但大量Al合金化会降低C11_b和C40相的高温强度;(Mo_(0.85)Nb_(0.15)(Si_(0.97)Al_(0.03))_2合金在1400℃具有最高的压缩强度,达到252MPa,该合金同时还具有最佳室温综合力学性能。
     热压工艺制备的合金在500℃没有发生粉化瘟疫现象。Nb单一合金化加剧了MoSi_2的低温氧化,通过高温预氧化处理可在(Mo_(1-x)Nb_x)Si_2表面形成保护性氧化膜,提高低温抗氧化性能。Nb和Al协同合金化MoSi_2的低温抗氧化性优于Nb单一合金化,Nb的作用仍然是加速低温氧化,而Al则有利于抑制低温氧化。(Mo_(0.97)Nb_(0.03)(Si_(0.97)Al_(0.03))_2合金低温氧化性能优于纯MoSi_2。大量合金元素不利于高温预氧化保护膜的形成,大量Al促进氧化形成没有自愈合作用的莫来石-氧化铝复合氧化膜,大量Nb促使MoO_3形成,MoO_3在高温下气化,导致氧化膜出现大量孔洞,不能产生保护作用,甚至恶化材料的低温抗氧化性能。
Nb,Al alloyed MoSi_2was synthesized by combustion synthesis in this work. Thecombustion mode, combustion temperature, reaction mechanism, flame-frontpropagation velocity and product structure were investigated. Then dense materialwas prepared by vacuum hot pressing sintering and sparks plasma sintering usingcombustion synthesis products as raw materials. The organizations and propertieswere studied, and the action mechanisms of alloys were clarified.
     From the element powders,(Mo_(1-x)Nb_x)Si_2, Mo(Si_(1-y)Al_y)_2and(Mo_(1-x)Nb_x)(Si_(1-y)Al_y)_2alloys were successfully synthesized by the mode ofself-propagating high-temperature synthesis. And the combustion products are formedthrough melting, dissolution and precipitation mechanism in combustion synthesis. Simelts first in alloys without Al, while Al-Si eutectic melt firstly forms after whichSi-rich melt forms in alloys containing Al. Solid Nb and Mo dissolute into the meltwhen contacted with it, and then reaction products precipitate from the supersaturatedsolution.
     Using combustion synthesis products as raw materials, dense (Mo_(1-x)Nb_x)Si_2and(Mo_(1-x)Nb_x)(Si_(1-y)Al_y)_2alloy were prepared by vacuum hot pressing sintering and sparkplasma sintering. The precipitation reaction occurs during the sintering process andC40phase forms by Nb/Al precipitate from supersaturated C11_b phase. The phasecomposition of HP alloy is close to the equilibrium state, while saturated C11_bphasecould also be found in the SPS alloys together with tiny grains, because thetemperature is low and time is short in spark plasma sintering process.
     For HP alloys, a little Nb solid solution raises the bending strength from216Mpato284MPa, a small amount of Nb and Al co-alloying could significantly increase thefracture toughness at room temperature, up to10.7MPa/m~(1/2), which is74%higherthan pure MoSi_2; but massive alloys promote the formation of C40phase and result inthe decreasing of fracture toughness and increasing of hardness. For SPS alloys,(Mo0.85Nb0.15)(Si_(0.97)Al_(0.03))_2alloy shows the best combination of high-temperaturecompression strength and best room-temperature mechanical properties, and itsstrength at1400℃is252MPa, which is115%higher than pure MoSi_2.
     No pesting phenomena were observed in HP alloys when oxidized at at500℃.Nb alloying accelerates the low-temperature oxidation of MoSi_2, while Al isadvantageous for inhibiting oxidation at500℃.(Mo_(0.97)Nb_(0.03)(Si_(0.97)Al_(0.03))_2shows thebest oxidation performance in all alloys. An approach for avoiding low-temperature oxidation was put forward. A glass protective scale can be formed on the surface of(Mo_(1-x)Nb_x)Si_2materials by high-temperature pre-oxidation treatment, resulting in areduced rate of low temperature oxidation. For the alloys of (Mo_(1-x)Nb_x)Si_2and(Mo_(1-x)Nb_x)(Si_(1-y)Al_y)_2, the formation mechanisms of oxidation scale duringhigh-temperature oxidation were established.
     Based on the two sublattice model, the theoretical adiabatic temperature of(Mo_(1-x)Nb_x)Si_2and Mo(Si_(1-y)Al_y)_2were simulated, and the results basically tally withthe change trend of the tested highest combustion temperature. Based on the empiricalelectron theory of solids and molecules, the valence electron structure of C11_b typeMeS_2(Me=Mo,Nb;S=Si,Al)was calculated and the changing of properties wasanalyzed. The results indicates that Nb/Al alloying changed the hybridization state ofatoms in C11_b phase, which correspondingly reduces the bond energy of the strongestbond B and the second strongest bond C in C11_b phase, results in the reduction ofhardness. The ratio of covalent valence electron number to total number ofvalence electron of C11_b phase was elevated when alloying with Nb, which isfavorable for improving the strength of C11_b phase, but declined when alloyedwith Al or trace amount of Nb-Al, resulting the decrease of strength.. And most resultsaccords with the properties changing trend of HP alloys.
引文
[1] Taub A I, Fleischer R L. Intermetallic compounds for high-temperature structural use[J].Science,1989,243(4891):616-621
    [2] Tien J K, Vignoul G E, Kopp M W. Materials for elevated-temperature applications[J]. MaterSci Eng,1991, A143:43-49
    [3] Bundschuh K, Schuze M, Muller C, Greil P, Heider W. Selection of materials for use attemperatures above1500℃in oxidizing atmospheres[J]. J Euro Ceram Soc,1998,18:2389-2391.
    [4] Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallicas[J]. Acta Mater,2000,48(1):307-322
    [5] Perepezko J H. The hotter the engine, the better[J]. Science.2009,326:1068-1069.
    [6]傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998,18(4):52-61
    [7]郭建亭,周兰章,李谷松.高温结构金属间化合物及其强韧化机理[J].中国有色金属学报,2011,21(1):1-34
    [8]张勇,张国庆,李周,王双喜,付书红,王涛,曾维虎.金属陶瓷先进高温结构材料的应用及研究进展[J].材料导报,2012,(17):40-43
    [9]张秋平.国外高超声速飞行器耐高温非金属结构材料研究现状[J].飞航导弹,2011,(11):92-95
    [10] Vasudevan A K, Petrovic J J. A comparative overview of molybdenum disilicidecomposites[J]. Mater Sci Eng,1992, A155:1-17.
    [11] Maxwell W A. Properties of certain intermetallics as related to elevated-temperatureapplications I: molybdenum disilicide[R]. NACA Research Memorandum E9G01(NACA-RM-E9G01),1949-10-06,1-30
    [12] DeVincentis H A, Russell W E. Effects of some metal addition on properties of molybdenumdisilicide[R]. NACA Research Memorandum E54B15(NACA-RM-E54B15),1954-05-04,1-24
    [13] Cherniack G B, Elliot A G. High-temperature behavior of MoSi2and Mo5Si3[J]. J Am CeramSoc,1964,47(3):136-141
    [14] Schlichting J. Molybdenum disilicide as component of modern high-temperaturecomposites[J]. High Temp High Press.1978,10(3):241-269
    [15] Thomas O, Senateur J P, Madar R, Laborde O, Rosencher E. Molybdenum disilicide: crystalgrowth, thermal expansion and resistivity[J]. Solid State Commun,1985:55(7):629-632
    [16] Petrovic J J, Vasudevan A K. Key developments in high temperature structural silicides[J].Mater Sci Eng,1999, A261:1-5.
    [17] Mitra R. Mechanical behavior and oxidation resistance of structural silicides[J]. Int MaterRev,2006,51(1):13-64.
    [18] Bizzarri V, Linder B, Lindskog N. Molybdenum disilicide heating element: meeting advancedceramics requirement[J]. Ceram Bull,1989,68(10):1834-1835
    [19] Summers E, Thom A J, Cook B, Akinc M. Extrusion and selected engineering propertiesExtrusion and selected engineering properties of Mo-Si-B intermetallics[J]. Intermetallics,2000,8:1169-1174
    [20] Hansson K, Tang J E, Halvarsson M. The beneficial effect of water vapour on the oxidation at600and700℃of a MoSi2-based composite[J]. J Euro Ceram Soc,2005,25:1-11
    [21] Petrovic J J. Toughening strategies for MoSi2-based high temperature structural silicides[J].Intermetallics,2000,8:1175-1182.
    [22] Heron A J, Schaffer G B. Mechanical alloying of MoSi2with ternary alloying elements. Part1: experimental[J]. Mater Sci Eng,2003, A352:105-110
    [23] Waghmare U V, Bulatov V, Kaxiras E, Duesbery M S. Microalloying of ductility inmolybdenum disilicide[J]. Mater Sci Eng,1999, A261:147-157
    [24] Shaw L, Abbaschian R. Microstructure and properties of MoSi2/Nb interfaces with andwithout alumina coating[J]. Mater Res Soc Symp Proc,1992,238:567-573
    [25] Lee S P, Yoshida M, Fukunaga H. Interfacial modification and impact properties of Nb/MoSi2laminate composites by the adition of ZrO2, NbSi2, and SiC particles[J]. Metall Mater TransA,2000,31:2075-2081
    [26] Hagihara K, Nakano T, Hata S, Zhu O, Umakoshi Y. Improvement of aligned lamellarstructure by Cr-addition to NbSi2/MoSi2duplex silicide crystals[J]. Scripta Mater,2010,62:613-616.
    [27] Hagihara K, Nakano T. Fracture behavior and toughness of NbSi2-based single crystals andMoSi2(C11b)/NbSi2(C40) duplex crystals with a single set of lamellae[J]. Acta Mater,2011,59:4168-4176.
    [28] Umakoshi Y, Nakano T, Yanagisawa E, Takezoe T, Negishi A. Effect of alloying elementson anomalous strengthening of NbSi2-based silicides with C40structure[J]. Mater Sci Eng,1997, A239-240:102-108.
    [29]林均品,来启,宋西平,叶丰,陈国良.轻质γ-TiAl金属间化合物的研究进展[J].中国材料进展,2010,29(2):1-8.
    [30] Peralta P, Maloy S A, Chu F, Petrovic J J, Mitchell T E. Mechanical properties ofmonocrystalline CllbMoSi2with small aluminum additions[J]. Scripta Mater,1997,37:1599-1604.
    [31] Mitra R, Rao Rama V V, Rao Veneffugopal A. Effect of small aluminum additions onmicrostructure and mechanical properties of molybdenum di-silicide[J]. Intermetallics,1999,7:213-232
    [32] Hasani S, Panjepour M, Shamanian M. A study of the effect of aluminum on MoSi2formation by self-propagation high-temperature synthesis[J]. J Alloys Compds,2010,502:80-86.
    [33]郭建亭.几种微量元素在高温合金中的作用与机理[J].中国有色金属学报,2011,21(3):465-475
    [34]郭景坤.中国先进陶瓷研究及其展望[J].材料研究学报,1997,11(6):594-560
    [35]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12
    [36] Dimiduk D M, Perepezko J H. Mo-Si-B alloys: developing a revolutionary turbine-enginematerial[J]. MRS Bulletin,2003,28(9):639-645
    [37] Vasiliev V V, Razin A F. Anisogrid composite lattice structures for spacecraft and aircraftapplications[J]. Composite Struc,2006,76(1-2):182-189
    [38] Heilmaier M, Krüger M, Saage H, R sler J, Mukherji D, Glatzel U, V lkl R, Hüttner R,Eggeler G, Somsen Ch, Depka T, Christ H-J, Gorr B, Burk S. Metallic materials forstructural applications beyond nickel-based superalloys[J]. JOM,2009,61(7):61-67
    [39] Kubota M, Tsuge S, Kitagawa K, Arai N, Ushigome N, Kato Y. In situ monitoring ofdegradation processes of carbon/carbon composites in an acetylene/air by two-dimensionalatomic absorption spectrometry[J]. Energy Conver Manage,2001,42:1977-1985
    [40] Zhu Y C, Ohtani S, Sato Y, Iwamoto N. Influence of boron ion implantation on the oxidationbehavior of CVD-SiC coated carbon-carbon composites[J]. Carbon,2000,38:501-507
    [41]韩杰才,胡平,张幸红,孟松鹤.超高温材料的研究进展[J].固体火箭技术,2005,28(4):289-295
    [42]朱小旗,杨铮,康沫狂,张海涛.基体改性碳/碳复合材料抗氧化影响规律探析[J].复合材料学报,1994,11(2):107-111
    [43] Park S J, Soe M K. The effects of MoSi2on the oxidation behavior of carbon/carboncomposites[J]. Carbon,2001,39:1229–1235.
    [44]曾燮榕,郑长卿,李贺军,杨峥.碳/碳复合材料MoSi2涂层的防氧化研究[J].复合材料学报,1997,14(3):37-40
    [45]侯党社,李克智,李贺军,付前刚,魏剑,和永岗. C/C复合材料SiC-TaSi2/MoSi2抗氧化复合涂层研究[J].金属学报,2008,44(3):331-335
    [46]冉丽萍,易茂中,蒋建献,葛毅成.炭/炭复合材料MoSi2/SiC高温抗氧化复合涂层的制备及其结构[J].新型炭材料,2006,21(3):231-236
    [47] Xu Y, Cheng L, Zhang L, Ying H, Zhou W. Oxidation behavior and mechanical properties ofC/SiC composites with Si-MoSi2oxidation protection coating[J]. J Mater Sci,1999,34(24):6009-6014
    [48] Fu Q G, Li H J, Li K Z, Shi X H, Hu Z B, Huang M. SiC whisker-toughened MoSi2–SiC–Sicoating to protect carbon/carbon composites against oxidation[J]. Carbon,2006,44:1845-1869
    [49] Zhao J, Guo Q, Shi J, Zhai G, Liu L. SiC/Si–MoSi2oxidation protective coatings for carbonmaterials[J]. Surf Coat Tech,2006,201(3-4):1861-1865
    [50] Chen Y, Wnag C, Zhao W, Lu W, Chen A, Tan T. Fabrication of a SiC/Si/MoSi2multi-coatingon graphite materials by a two-step technique[J]. Ceram Int,2012,38(3):2165-2170
    [51] Jiao G S, Li H J, L K Z, Wang C, Hou D S. SiC–MoSi2–(Ti0.8Mo0.2)Si2multi-compositioncoating for carbon/carbon composites[J]. Surf Coat Tech,2006,201:3452-3456
    [52]李荣久.陶瓷——金属复合材料[M].北京:冶金工业出版社,第2版,2004:297-317
    [53]马勤,康沫狂.高温结构硅化物研究的新进展[J].材料工程,1997,(7):3-6
    [54] Meschter P J, Schwartz D S. Silicide-matrix materials for high-temperature applications[J].JOM,1989,41(11):52-55
    [55] Heron A J, Schaffer G B. Mechanical alloying of MoSi2with ternary alloying elements. Part2: computer simulation [J]. Mater Sci Eng,2003, A359:319-325
    [56] Inui H, Ishikawa K, Yamaguchi M. Effects of alloying elements on plastic deformation ofsingle crystals of MoSi2[J]. Intermetallics,2000,8:1131-1145
    [57] Petrovic J J. Mechanical behaviour of MoSi2and MoSi2composites[J]. Mater Sci Eng,1995,A192/193:31-37
    [58] Krakhmalev P V, Stroma E, Sundberg M, Li C. Microstructure, hardness and indentationtoughness of C40Mo(Si,Al)2/ZrO2composites prepared by SPS of MA powders[J]. ScriptaMater,2003,48:725-729
    [59]艾云龙,刘长虹,左敦稳,王珉. ZrO2/SiC-WSi2/MoSi2纳米复相陶瓷制备及增韧机制探讨[J].材料工程,2004,(1):33-37
    [60] Subrahmanyam J. Combustion synthesis of MoSi2-Mo5Si3composites[J]. J Mater Sci,1994,9(10):2620-2626
    [61]寇开昌,杨延清,艾云龙,陈彦,康沫狂.MoSi2-WSi2复合体系的自蔓延燃烧合成[J].稀有金属材料与工程,2000,29(3):190-192.
    [62] Sadananda K, Feng C R, Jones H. Creep of molybdenum disilicide composites[J]. Mater SciEng,1992, A155:227-239
    [63] Inui H, Ito K, Nakamoto T, Ishikawa K, Yamaguchi M. Stacking faults on (001) and theirinfluence on the deformation and fracture behavior of single crystals of MoSi2–WSi2solid-solutions with the Cllbstructure[J]. Mater Sci Eng,2001, A314:31-38
    [64]江莞,赵世柯,王刚.二硅化钼材料的研究现状及应用前景[J].无机材料学报,2001,16(4):577-585.
    [65]王德志,刘心宇,左铁镛.MoSi2-Mo5Si3复合材料的低温氧化行为[J].稀有金属材料与工程,2002,31(1):48-51.
    [66] Meyer M, Kramer M, Akinc M. Boron-doped molybdenum silicides[J]. Adv Mater,1996,8(1):85-88
    [67] Schneibel J H, Liu C T, Easton D S, Carmichael C A. Microstructure and mechanicalproperties of Mo–Mo3Si–Mo5SiB2silicides[J]. Mater Sci Eng,1999, A261:78-83
    [68]陈鼎,唐仁政.微量Co对MoSi2机械合金化材料性能的影响[J].矿冶工程,2000,20(4):72-74
    [69] Yi D, Lai Z, Li C, Akselsen O M, Ulvensoen J H. Ternary alloying study of MoSi2[J]. MetallMater Trans,1998,29(1):119-129
    [70] Maxwell W A, Smith R W. Thermal shock resistance and high-temperature strength of amolybdenum disilicide-aluminum oxide ceramic[R]. NACA Research Memorandum E53F26(NACA RM E53F26),1953-10-01,1-10
    [71] Maxwell, W A. Some factors affecting fabrication and high-temperature strength ofmolybdenum disilicide[R]. NACA Research Memorandum E52B06(NACA RME52B06),1952-04-17,1-27
    [72] Mckamey C G, Tortorelli P F, Devan J H, Carmichael C A. A Study of pest oxidation inpolycrystalline MoSi2[J]. J Mater Res,1992,7:2747-2755
    [73] Fitzer E, Rubisch O. Sintered resistance body, preferably for use as heating element[P]. USPatent,3269806,1966-08-30
    [74] Thomas O, Senateur J P, Madar R. Molybdenum disilicide: crystal growth, thermal expansionand resistivity[J]. Solid State Commun,1985,55(7):629-632
    [75] Hurley G F, Shalek P D, Gac F D, Petrovic J J. Fabrication of SiC whiskers andcomposites[R]. Conference on metal and ceramic matrix composite processing, Columbus,OH, USA,1984-11-12, LA-UR-84-293Technical Report
    [76] Gac F D, Petrovic J J. Feasibility of a composite of SiC whiskers in an MoSi2matrix[J]. J AmCeram Soc,1985,68(8): C200-C201
    [77] Belova I V, Mehrer H, Murch G E. Diffusion correlation effects of molybdenum and siliconin molybdenum disilicide[J]. Philosoh Mag,2011,91(28):3727-3743
    [78] Silvestroni L, Sciti D, Kling J, Lauterbach S, Kleebe H J. Sintering mechanisms of zirconiumand hafnium carbides doped with MoSi2[J]. J Am Ceram Soc,2009,92(7):1574-1579
    [79] Baras F, Kondepudi D K, Bernard F. Combustion synthesis of MoSi2and MoSi2-Mo5Si3composites: Multilayer modeling and control of the microstructure[J]. J Alloy Compds,2010,505(1):43-53
    [80] Kumar R S, Sivakumar D, Venkateswarlu K, Gandhi A S. Mechanical behavior ofmolybdenumdisilicide reinforced silicon carbide composites[J]. Scripta Mater,2011,65(9):838-841
    [81] Bakshi S R, Salehi M, Edris H, Borhani G H. Preparation of Mo-Si-B nanocompositepowders by mechanical alloying and heat treating[J]. Powder Metall,2011,54(2):108-112
    [82]天津硅酸盐材料试验厂.二硅化钼发热体[J].工业加热,1975,(4):44-45
    [83]张清纯,林素贞. MoSi2发热元件的力学性能与显微结构的关系[J].硅酸盐学报,1985,13(1):84-91
    [84]董允杰,宁振茹.我国二硅化钼的生产概况[J].中国钼业,1997,21(6):14-15
    [85]金燕苹,洪涛,郑灵仪,李鹏兴. SiC晶须强韧化MoSi2复合材料[J].材料研究学报,1994,8(2):183-187
    [86]郑灵仪,金燕苹,李鹏兴,王本民,金璐. SiC颗粒强韧化MoSi2复合材料[J].无机材料学报,1994,9(2):232-238
    [87]周宏明,易丹青,李丹,肖来荣,柳公器. Si3N4(p)/SiC(w)强韧化MoSi2基复合材料的显微组织与力学性能[J].粉末冶金技术,2010,28(3):172-178.
    [88] Xu J, Leng Y, Li H, Zhang H. Preparation and characterization of SiC/(Mo, W)Si2compositesfrom powders resulting from a SHS in a chemical oven[J]. Int J Refrac Metal Hard Mater,2009,27(1):74-77
    [89] Du W, Zhang L, Ye F, Lin J. Intrinsic embrittlement of MoSi2and alloying effect on ductility:Studied by first-principles[J]. Phys B,2010,405(1):1695-1700
    [90] Gao J, Jiang W, Wang G. Enhancement of properties and performance of MoSi2-based heatingelements via low temperature sintering[J]. Int J Appl Ceram Technol,2012-07-09,DOI:10.1111/j.1744-7402.2012.02805.x
    [91]韶光.用反应气相渗透(RVI)法生产复合材料[J].金属功能材料,1994,(2):37
    [92] Patibandla N, Hillig W B. Processing of molybdenum disilicide using a new reactive vaporinfiltration technique[J]. J Am Ceram Sco,1993,76(6):1630-1634
    [93] Hebsur M G. Development and characterization of SiC(f)/MoSi2-Si3N4(p)hybrid composites[J].Mater Sci Eng,1999, A261,24-37
    [94] Massalski T B, Okamoto H O, Subramanian P. R. and Kacprzak L.(Ed.). Binary Alloy PhaseDiagrams, Second Edition. American Society for Metals, Metals Park, OH.1990, Vols.1-2
    [95] Chen Y, Hammerschmidt T, Pettifor D G, Shang J X, Zhang Y. Influence of vibrationalentropy on structural stability of Nb–Si and Mo–Si systems at elevated temperatures[J]. ActaMater,2009,57(9):2657-2664
    [96] Yamada T, Yamane H. Crystal structure and thermoelectric properties of β-MoSi2[J].Intermetallics,2011,19(7):908-912
    [97] Harada Y, Morinaga M, Saso D, Takata M, Sakata M. Refinement in crystal structure ofMoSi2[J]. Intermetallics,1998,6:523-527
    [98] Harada Y, Morinaga M, Ito A, Sugita Y. Electronic states of alloying elements in MoSi2compound[J]. J Alloy Compds,1996,236:92-101
    [99] Tanaka K, Nawata K, Inui H, Yamaguchi M, Koiwa M. Refinement of crystallographicparameters in refractory metal disilicides[J]. Mater Res Soc Symp Proc,2001,646:N4.3.1-4.3.6
    [100]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993
    [101] Xiao L, Abbaschian R. microstructure and properties of MoSi2/Nb interfaces with andwithout alumina coating[J]. Mater Res Sco Symp Proc,1992,238:567-573
    [102] Soboyejo W O, Sastry S M L. An investigation of the effects of ductile phase reinforcementon the mechanical behavior of advanced high temperature intermetallics[J]. Mater Sci Eng,1993, A171:95-104
    [103] Soboyejo W O, Venkateswara Rao K T, Sastry S M L, Ritchie R O. Strength, fracture, andfatigue behavior of advanced high-temperature Intermetallics reinforced with ductilephases[J]. Metall Trans,1993, A24:585-600
    [104] Yao D, Yang J, Gong W, Zhou C. Interdiffusion behavior between Nb and MoSi2intermetallic compound[J]. Mater Sci Eng,2010, A527:6787-6793
    [105]林均品,陈国良. TiAl基金属间化合物的发展[J].中国材料进展,2009,28(1):31-37
    [106] Song X P, Chen G L. Determination of the stacking fault energy in high-Nb γ-TiAl[J]. JMater Sci Lett,2001,20:659-661
    [107] Yoshihara M, Kim Y W. Oxidation behavior of gamma alloys designed for high temperatureapplications[J]. Intermetallics,2005,13:952-958.
    [108] Yeh C L, Chen W H. Preparation of Nb5Si3intermetallic and Nb5Si3/Nb composite byself-propagating high-temperature synthesis[J]. J Alloys Compds,2005,402:118-123
    [109] Xiao L, Abbaschian R. Interfacial modification in Nb/MoSi2composites and its effects onfracture toughness[J]. Mater Sci Eng,1992, A155:135-145
    [110] Lee S P, Pan J, Fukunaga H. Effect of interfacial shear strength on impact properties ofNb/MoSi2laminate composites[J]. Mater Trans, JIM,2000,41(7):831-836
    [111] Pickard S M, Ghosh A K. Bridge toughening enhancement in double-notched MoSi2/Nbmodel composites[J]. Metall Mater Trans,1996, A27:909-911.
    [112] Shaw L, Abbaschian R. Toughening MoSi2with niobium metal-effects of morphology ofductile reinforcements[J]. J Mater Sci,1995,30:849-854
    [113] Castro R G, Smith R W, Rollett A D, Stanek P W. Ductile phase toughening of molybdenumdisilicide by low pressure plasma spraying[J]. Mater Sci Eng,1992, A155:101-107
    [114] Lu T C, Evans A G, Hecht R J, Mehrabian R. Toughening of MoSi2with aductile (niobium)reinforcement[J]. Acta Metall Mater,1991,39(8):1853-1862
    [115] Venkateswara Rao K T, Soboyejo W O, Ritchie R O. Ductile-phase toughening andfatigue-crack growth in Nb-reinforced molybdenum disilicide intermetallic composites[J].Metall Trans,1992,23A:2249-2257
    [116] Soboyejo W O, Ye F, Chen L C, Bahtishi N, Schwartz D S, Lederich R J. Effects ofreinforcement morphology on the fatigue and fracture behavior of MoSi2/Nb composites[J].Acta Mater,1996,44(5):2027-2041
    [117] Soboyejo W O, Ye F, Schwartz D S. Fatigue and fracture behavior of Nb fiber-reinforcedMoSi2composites[J]. Metall Mater Trans,1995, A26:2263-2273
    [118] Shaw L, Abbaschian R. Control of the interfacial reaction in Nb-toughened MoSi2[J]. J AmCeram Soc,1993,76(9):2305-2311
    [119] Shaw L, Abbaschian R. Interfacial modification in Nb/MoSi2composites and its effects onfracture toughness[J]. Mater Sci Eng,1992, A155:135-145
    [120] Alman D E, Hawk J A. Abrasive wear behavior of a brittle matrix (MoSi2) compositereinforced with a ductile phase (Nb)[J]. Wear,2001,251:890-900
    [121] Shon I J, Munir Z A. Synthesis of MoSi2-xNb and MoSi2-yZrO2composites by thefield-activated combustion method[J]. Mater Sci Eng,1995, A202:256-261122] Boettinger W J. Application of ternary phase diagrams to the development of MoSi2-basedmaterials[J]. Mater Sci Eng,1992, A155:33-44
    [123] Harada Y, Murata Y, Morinaga M. Solid solution softening and hardening in alloyedMoSi2[J]. Intermetallics,1998,6:529-535
    [124] Sharif A A, Misra A, Mitchell T E. Deformation mechanisms of polycrystalline MoSi2alloyed with1at.%Nb[J]. Mater Sci Eng,2003, A358:279-287
    [125] Dasgupta T, Umarji A M. Improved ductility and oxidation resistance in Nb and Alco-substituted MoSi2[J]. Intermetallics,2008,16:739-744
    [126] Hagihara K, Nakano T, Hata S, Zhu O, Umakoshi Y. Improvement of aligned lamellarstructure by Cr-addition to NbSi2/MoSi2duplex silicide crystals[J]. Scripta Mater,2010,62:613-616
    [127] Waghmare U V, Kaxiras E, Bulatov V V, Duesbery M S. Effects of alloying on the ductilityof MoSi2single crystals from first-principles calculations[J]. Modelling Simul Mater SciEng,1998,6:493-506
    [128] Park Y H, Shan A, Hashimoto H. Preparation of MoSi2–X(X=B, Al, Nb) alloys bymechanical alloying and pulse discharge sintering process[J]. Mater Trans,2002,43(3):352-254
    [129]张来启,杜伟,潘昆明,林均品,陈国良.合金化对MoSi2室温韧性的影响[J].金属热处理,2009,34(8):31-35
    [130]陈辉,马勤,石少玉.难熔(Mo1-x,Nbx)5Si3合金的制备与组织性能[J].特征铸造及有色合金,2009,29(5):399-401
    [131] Nakano T, Nakai Y, Maeda S, Umakoshi Y. Microstructure of duplex-phase NbSi2(C40)/MoSi2(Cllb) crystals containing a single set of lamellae[J]. Acta Mater,2002,50:1781-1795
    [132] Nakano T, Azuma M, Umakoshi Y. Microstructure and high-temperature strength inMoSi2/NbSi2duplex silicides[J]. Intermetallics,1998,6:715-722
    [133]杨海波,李伟,单爱党,吴建生.热处理对(Mo0.85Nb0.15)Si2单晶显微结构的影响[J].中国有色金属学报,2005,15(1):100-104
    [134]姜艳,朱鸥,张澜庭,郁金星,吴建生.光加热悬浮区熔法制备(Mo0.85Nb0.15)Si2单相单晶体[J].机械工程材料,2010,34(1):38-40
    [135] Yang H, Li W, Shan A, Wu J. Growth kinetics of C11blamellae in (Mo0.85,Nb0.15)Si2intermetallics[J]. Scripta Mater,2005,53:635-639
    [136] Sharif A A, Misra A, Mitchell T E. Strength of MoSi2-based crystals at ultra-hightemperature[J]. Scripta Mater,2005,52:399-402
    [137] Ko I Y, Kim B R, Nam K S, Moon B M, Lee B S, Shon I J. Pulsed current activatedcombustion synthesis and consolidation of ultrafine NbSi2from mechanically activatedpowders[J]. Met Mater Int,2009,15(3):399-403
    [138] Yamane H, Sato H, Yamada T. Powder X-ray diffraction pattern of NbSi1.9containingplanar stacking faults[J]. Intermetallics,2012,22:189-192
    [139] Nakano T, Azuma M, Umakoshi Y. Tensile deformation and fracture behaviour in NbSi2and MoSi2single crystals[J]. Acta Mater,2002,50:3731-3742
    [140] Li W, Yang H, Shan A, Zhang L, Wu J. Effect of Mo addition on phase stability andhigh-temperature strength of NbSi2/Nb5Si3composites[J]. Mater Trans,2004,45(12):3282-3285
    [141] Nakano T, Kishimoto M, Furuta D, Umakoshi Y. Effect of substitutational elements onplastic deformation behavior of NbSi2-based silicide single crystals with C40structure[J].Acta Mater,2000,48:3465-3475
    [142] Laborde O, Bossy J, Affronte M, Schober H, Gottlieb U. Some properties of the phononspectra of transition metal disilicides VSi2, NbSi2, and TaSi2[J]. Solid State Commun,2003,126:415-419
    [143] Park H K, Shon I J, Yoon J K, Hong K T. Consolidation of nanostructured NbSi2-SiCcomposite synthesized by high-frequency induction heated combustion[J]. J Alloys Compds,2006,426:322-326
    [144] Park H K, Shon I J, Yoon J K, Doh J M, Ko I Y, Munir Z A. Simultaneous synthesis andconsolidation of nanostructured NbSi2–Si3N4composite from mechanically activatedpowders by high-frequency induction-heated combustion[J]. J Alloys Compds,2008,461:560-564
    [145] Bae S K, Shon I J, Doh J M, Yoon J K, Ko I Y. Properties and consolidation ofnanocrystalline NbSi2-SiC-Si3N4composite by pulsed current activated combustion[J].Scripta Mater,2008,58:425-428
    [146] Stoloff N S, Broglio M. Microstructure and mechanical properties of reactive hot pressedMoSi2[J]. Scripta Mater,1997,37(3):329-334
    [147] Shon I J, Park H K, Kim H C, Yoon J K, Ko I Y. Simultaneous pulsed current activatedcombustion synthesis and densification of NbSi2–SiC composite[J]. Ceram Int,2008,34:615-619
    [148] Yoon J K, Kim G H, Han J H, Shon I J, Doh J M, Hong K T. Microstructure and oxidationproperty of NbSi2/Si3N4nanocomposite coating formed on Nb substrate by nitridationprocess followed by pack siliconizing process[J]. Intermetallics,2005,13:1146-1156
    [149] Kumar K S, Mannan S K. Mechanical alloying behavior in the Nb-Si, Ta-Si, and Nb-Ta-Sisystems[J]. Mater Res Soc Symp Proc,1989,133:415-420
    [150] Morris M A, Morris D G. Ball-milling of elemental powders-compound formation and/oramorphization[J]. J Mater Sci,1991,26:4687-4696
    [151] Yen B K, Aizawa T, Kihara J, Sakakibara N. Reaction synthesis of refractory disilicides bymechanical alloying and shock reactive synthesis techniques[J]. Mater Sci Eng,1997,A239-240:515-521
    [152] Fan G J, Quan M X, Hu Z Q, Eckert J, Schultz L. In-situ exolosive formation ofNbSi2-based nanocomposites by mechanical alloying[J]. Scripta Mater,1999,41(11):1147-1151
    [153] Suzuki R O, Ishikawa M, Ono K. NbSi2coating on niobium using molten salt[J]. J AlloysCompds,2002,336:280-285
    [154] Maruyama T, Yanagihara K. High temperature oxidation and pesting of Mo(Si,Al)2[J].Mater Sci Eng,1997, A239/240:828-841
    [155] Sharif A A, Misra A, Petrovic J J, Mitchell T E. Alloying of MoSi2for improved mechanicalproperties[J]. Intermetallics,2001,9:869-873
    [156] Mitra R, Sadananda K, Feng C R. Effect of microstructural parameters and Al alloying oncreep behavior, threshold stress and activation volumes of molybdenum disilicides[J].Intermetallics,2004,12:827-836
    [157] Zhang H, Long C, Chen P, Tang G, Liu X. Synthesis and properties of MoSi2alloyed withaluminum[J]. Int J Refract Metal Hard Mater,2003,21:75-79
    [158] Misra A, Sharif A A, Petrovic J J, Mitchell T E. Rapid solution hardening at elevatedtemperatures by substitutional Re alloying in MoSi2[J]. Acta Mater,2000,48(4):925-932
    [159] Maglia F, Milanese C, Anselmi-Tamburini U, Munir Z A. Self-propagatinghigh-temperature synthesis microalloying of MoSi2with Nb and V[J]. J Mater Res,2003,18(8):1842-1848
    [160] Yanagihara K, Maruyama T, Nagata K. High temperature oxidation of Mo-Si-Xintermetallics (X=Al, Ta, Ti, Zr and Y)[J]. Intermetallics,1995,3:243-251
    [161] Wei F G, Kimura Y, Mishima Y. Microstructure and phase stability in MoSi2-TSi2(T=Cr, V,Nb, Ta, Ti) pseudo-binary systems[J]. Mater Trans,2001,42(7):1349-1355
    [162] Sharif A A. Effects of Re-and Al-alloying on mechanical properties and high-temperatureoxidation of MoSi2[J]. J Alloy Compds,2012,518:22-26
    [163] Mitra R, Khana R, Rao V V R. Microstructure, mechanical properties and oxidationbehavior of a multiphase (Mo,Cr)(Si,Al)2intermetallic alloy-SiC composite processed byreaction hot pressing[J]. Mater Sci Eng,2004, A382:150-161
    [164] Mitra R, Srivastava A K, Prasad N E, Kumari S. Microstructure and mechanical behaviourof reaction hot pressed multiphase Mo-Si-B and Mo-Si-B-Al intermetallic alloys[J].Intermetallics,2006,14:1461-1471
    [165] Kurokawa K, Houaumi H, Saeki I, Takahashi H. Low temperature oxidation of fully denseand porous MoSi2[J]. Mater Sci Eng,1999, A261:292-299
    [166] Westbrook J H, Wood D L.“Pest” degradation in beryllides, silicides, aluminides, andrelated compounds[J]. J Nucl Mater,1964,12(2):208-215
    [167] Yanagihara K, Maruyama T, Nagata K. Effect of third elements on the pesting suppressionof Mo-Si-X intermetallics (X=Al, Ta, Ti, Zr and Y)[J]. Intermetallics,1996,4: S133-S139
    [168] Wirkus C D, Wilder D R. High-temperature oxidation of molybdenum disilicide[J]. J AmCeram Soc,1966,49(4):173-177
    [169] Bizzarri V, Linder B, Lindskog N. Molybdenum disilicide heating element: meetingadvanced ceramics requirement[J]. Ceram Bull,1989,68(10):1834-1835
    [170] Berkowitz-Mattuck J B, Rossetti M, Lee D W. Enhanced oxidation of molybdenumdisilicide under tensile stress: relation to pest mechanisms[J]. Metall Trans,1970,1(2):479-483
    [171] Berztiss D A, Cerchiara R R, Gulbransen E A, Pettit F S, Meier G H. Oxidation of MoSi2and comparison with other silicide materials[J]. Mater Sci Eng,1992, A155:165-181
    [172] Knittel S, Mathieu S, Vilasi M. Oxidation behaviour of arc-melted and uniaxial hot pressedMoSi2at500℃[J]. Intermetallics,2010,18:2267-2274
    [173] Kuchino J, Kurokawa K, Shibayama T, Takahashi H. Effect of microstructure on oxidationresistance of MoSi2fabricated by spark plasma sintering[J]. Vacuum,2004,73:623-628
    [174] Mckamey C G, Tortorelli P F, Devan J H, Carmichael C A. A study of pest oxidation inpolycrystalline MoSi2[J]. J Mater Res,1992,7:2747-2755
    [175] Pitman S H, Taskiropoulos P. Study of the microstructure and oxidation of NbSi2basealloys[J]. Mater Res Soc Symp Proc,1995,364:1321-1326
    [176] Kurokawa K, Yamauchi A, Matsushita S. Improvement of oxidation resistance of NbSi2byaddition of boron[J]. Mater Sci Forum,2005,502:243-248
    [177] Murakami T, Xu C N, Kitahara A, Kawahara M, Takahashi Y, Inui H, Yamaguchi M.Microstructure, mechanical properties and oxidation behavior of powder compacts of theNb-Si-B system prepared by spark plasma sintering[J]. Intermetallics,1999,7:1043-1048
    [178] Murakami T, Sasaki S, Ichikawa K, Kitahara A. Microstructure, mechanical properties andoxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasmasintering[J]. Intermetallics,2001,9:621-627
    [179] Murakami T, Sasaki S, Ichikawa K, Kitahara A. Oxidation resistance of powder compacts ofthe Nb–Si–Cr system and Nb3Si5Al2matrix compacts prepared by spark plasma sintering[J].Intermetallics,2001,9:629-635
    [180]张芳,张澜庭,郁金星,吴建生.单晶与多晶NbSi2在1023K氧化行为的对比[J].金属学报,2005,41(6):645-648
    [181]张芳,张澜庭,单爱党,吴建生. NbSi2在1023K氧化动力学和氧化行为的高温原位观察[J].中国科学E辑技术科学,2006,36(3):235-242
    [182] Itin V I, Naiborodenko Y S, ratchikov A D, Butkevich N P, Korostelev S V, Sholokhova L V.Self-propagating high-temperature synthesis of silicides and nickel-titanium compounds[J].Soviet Phys J,1975,18(3):408-409
    [183] Sarkisyan A R, Dolukhanyan S K, Borovinskaya I P. Self-propagating high-temperaturesynthesis of transition metal silicides[J]. Soviet Powder Metall Metal Ceram,1978,17(6):424-427
    [184] Deevi S C. Self-propagating high-temperature synthesis of molybdenum disilicide[J]. JMater Sci,1991,26(12):3343-3353
    [185]王学成,柴惠芬,王笑天.燃烧合成MoSi2的组织结构特征分析[J].中国有色金属学报,1995,5(2):103-107
    [186]彭可,易茂中,冉丽萍. MoSi2-WSi2复合材料自蔓延热爆合成反应热力学[J].稀有金属材料与工程,2006,35(4):554-558
    [187] Subrahmanyam J, Rao Mohan R. Combustion synthesis of MoSi2-TiC composites[J]. JMater Res,1995,10(5):1226-1234
    [188] Chrysanthou A, Jenkins R C, Whiting M J, Tsakiropoulos P. A study of the combustionsynthesis of MoSi2and MoSi2-matrix composites[J]. J Mater Sci,1996,4221-4226
    [189]郜剑英,江莞,王刚.La2O3掺杂MoSi2的SHS合成及其性能的研究[J].无机材料学报,2004,19(6):1334-1338
    [190] Knittel S, Mathieu S, Vilasi M. The oxidation behaviour of uniaxial hot pressed MoSi2in airfrom400to1400°C [J]. Intermetallics,2011,19:1207-1215
    [191] Balbo A, Sciti D. Spark plasma sintering and hot pressing of ZrB2–MoSi2ultra-high-temperature ceramics[J]. Mater Sci Eng,2008, A475:108-112
    [192]刘伯威,樊毅,张金生,潘进. MoSi2复合材料断裂韧性的测量及评价[J].中国有色金属学报,2001,11(5):810-814
    [193]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社,2003
    [194]邢胜娣,余瑞璜.金属化合物Ti3Al的价电子结构及其力学性能[J].吉林大学自然科学学报,1985,(1):62-69
    [195]彭可,易茂中,冉丽萍.MoSi2和WSi2的价电子结构及性能分析[J].金属学报,2006,42(11):1125-1129
    [196]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,(4):217-224
    [197]刘志林,林成.合金电子结构参数统计值及合金力学性能计算[M].北京:冶金工业出版社,2008
    [198]刘志林.合金价电子结构与成分设计[M].第二版.长春:吉林科学技术出版社,2002
    [199]冯培忠,刘伟生,王晓虹,强颖怀. Mo(Si0.95,Al0.05)2价电子结构计算及其性能分析[J].稀有金属材料与工程,2011,40(4):595-599
    [200] Ponweiser N, Paschinger W, Ritscher A, Schuster J C, Richter K W. Phase equilibria in theAl-Mo-Si system[J]. Intermetallics,2011,19:409-418
    [201] Costa e Silva A, Kaufman M J. Microstructure modification of MoSi2through aluminumadditions[J]. Scripta Metall Mater,1993,29:1141-1145
    [202] im nek A, Vacká J. Hardness of covalent and ionic crystals: First-principle calculations[J].Phys Rev Lett,2006,96:085501-1-4
    [203]罗晓光,李金平,胡平,董善亮.共价晶体硬度计算的经验电子理论模型[J].科学通报,2010,55(19):1957-1962
    [204]郑勇,熊惟皓,宗校军. Ti(C,N)固溶体的价电子结构及其与硬度和塑性间的关系[J].稀有金属材料与工程,2002,31(1):13-16
    [205] Sharif A A, Misra A, Petrovic J J, Mitchell T E. Solid solution hardening and softening inMoSi2alloys[J]. Scripta Mater,2001,44:879-884
    [206] Hagihara K, Maeda S, Nakano T, Umakoshi Y. Indentation fracture behavior of(Mo0.85Nb0.15)Si2crystals with C40single-phase and MoSi2(C11b)/NbSi2(C40) duplex-phasewith oriented lamellae[J]. Sci Technol Adv Mater,2004,5:11-17
    [207] Munir Z A, Anselmi-tamburini U. Self-propagating exothermic reactions: The synthesis ofhigh-temperature materials by combustion Alloying of MoSi2[J]. Mater Sci Report,1989,3:277-365
    [208] Geng T, Li C, Zhao X, Xu H, Du Z, Guo C. Thermodynamic assessment of the Nb-Si-Mosystem[J]. Calphad,2010,34(3):363-376
    [209]刘永合,殷声,张维敬,赖和怡.相图计算技术在复相陶瓷燃烧合成热力学分析中的应用[J].稀有金属,24(1):37-41
    [210]徐祖耀主编.材料热力学[M].第四版,北京:高等教育出版社,2009,22-39
    [211] Liu Y, Shao G, Tsakiropoulos P. Thermodynamic reassessment of the Mo-Si and Al-Mo-Sisystems[J]. Intermetallics,2000,8(8):953-962
    [212]张金咏,傅正义,王为民,张清杰.自蔓延高温合成(SHS)过程的热动力学研究.复合材料学报,2005,22(2):71-77
    [213] Ma Q, Wang C, Xue Q. Structure development during mechanical alloying Mo and Sipowders[J]. Rare Metal Mater Eng,2003,32(3):170-172
    [214] Zuo K, Xi S, Zhou J. Structure evolution and thermodynamics analysis of MoSi2duringmechanical alloying[J]. Mater Sci Eng,2007,445-446:48-53
    [215] Zhang S, Munir Z A. Synthesis of molybdenum silicides by the self propagating combustionmethod[J]. J Mater. Sci.26(1991)3685-3688.
    [216] Yeh C L, Chen W H. Combustion synthesis of MoSi2and MoSi2–Mo5Si3composites[J]. JAlloy Compds,2007,438:165–170.
    [217] Xu J, Zhang H, Yan J, Zhang B, Li W. Effect of argon atmosphere on the formation ofMoSi2by self-propagating combustion method[J]. Int J Refract Met H,2009,480:315-320.
    [218]邹正光,柳贵平,傅正义,袁润章.金属-陶瓷复合材料自蔓延高温合成的燃烧动力学特征[J].中国有色金属学报,1998,8(s2):151-154
    [219]傅正义,袁润章.原料粒度及组成对TiB2-xAl复合体系的SHS过程影响[J].复合材料学报,1994,11(2):91-96
    [220] Moore J J, Feng H J. Combustion synthesis of advanced meterials: Part I. Reactionparameters[J]. Prog Mater Sci,1995,39:243-273
    [221] Y.X. Li, J.D. Hu, H.Y. Wang, Z.X. Guo. Effect of compact density on the laser ignitedself-propagating high-temperature synthesis Reaction of Al–Ti–C system for fabricatingTiC/Al composites[J]. Laser Eng,2008,18:9-18
    [222] Khoshkhoo M S, Shamanian M, Saidi A, Abbasi M H, Panjehpour M, Asgharzadeh Javid F.The effect of Mo particle size on SHS synthesis mechanism of MoSi2[J]. J Alloys Compds,2009,475:529-534
    [223]肖来荣,宋成,蔡志刚,易丹青. Mo(Si,Al)2粉末材料的机械合金化合成[C].第五届海峡两岸粉末冶金技术研讨会论文集,长沙,2004:324-328
    [224] Tabaru T, Shobu K, Sakamoto M, Hanada S. Effect of substitution of Al for Si on the latticevariations and thermal expansion of Mo(Si,Al)2[J]. Intermetallics,2004,12:33-41
    [225] Ramberg C E, Worrell W L. Fabrication and high-temperature phase stability ofMo(Al,Si)2–MoSi2intermetallics[J]. J Am Ceram Soc,2000,83(4):946-48
    [226] Alman D E, Govier R D. Influence of Al additions on the reactive synthesis of MoSi2[J].Scripta Mater,1996,34(8):1287-1293
    [227]刘智恩主编.材料科学基础[M].西安:西北工业大学出版社,2003:54-58
    [228] Krakhmalev P V, Str m E, Li C. Microstructure and properties stability of Al-alloyed MoSi2matrix composites[J]. Intermetallics,2004,12(2):225-233
    [229] Zhang G J, Yue X M, Watanabe T. Addition effects of aluminum and in situ formation ofalumina in MoSi2[J]. J Mater Sci,1999,34:997-1001
    [230] Inui H, Nakamoto T, Ishikawa K, Yamaguchi M. Plastic deformation of single crystals of(Mo1-xWx)Si2with the C11bstructure[J]. Mater Sci Eng,1999, A261:131-138
    [231] Niihara K,Suzuki Y. Strong monolithic and composite MoSi2materials by nanostructuredesign[J]. Mater Sci Eng,1999,261:6-15
    [232]陈辉,马勤,宋秋香. MoSi2加热元件的高温碳化[J].中国有色金属学报,2010,20(8):1618-1622
    [233]穆柏春. SiCp/Si3N4复合材料的低温冷处理与强韧化[J].硅酸盐学报,1997,25(4):413-419
    [234]穆柏春. TiC颗粒增韧SiC基复合材料及其冷处理研究[J].复合材料学报,1997,1(44):38-41
    [235]穆柏春等著.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002:230-231
    [236] Clark M A, Alden T H. Deformation enhanced grain growth in a superplastic Sn-1%Bialloy[J]. Acta Metall,1973,21(9):1195-1206
    [237] Venkatachari K R, Raj R. Superplastic flow in fine-grained alumina[J]. J Am Ceram Soc,1986,69(2):135-138
    [238] Sadananda K, Feng C R, Mitra R, Deevi S C. Creep and fatigue properties of hightemperature silicides and their composites[J]. Mater Sci Eng, A261:223-238
    [239] Inui H, Moriwaki M, Ito K, Yamaguchi M. Plastic deformation of single crystals of Mo(Si,Al)2with the C40structure[J]. Philos Mag A,1998,77(2):375-394
    [240] Chou T C, Nieh T G. Kinetics of MoSi2pest during low-temperature oxidation[J]. JOM,1993,8(7):1605-1610
    [241] Cook J, Khan A, Lee E. Oxidation of MoSi2-based composites[J]. Mater Sci Eng,1992,A155:183-198
    [242] Natesan K, Deevi S C. Oxidation behavior of molybdenum silicides and their composites[J].Intermetallics,2000,8:1147-1158.
    [243] Zhang F, Zhang L, Shan A, Wu J. Oxidation of stoichiometric poly-and single-crystallineMoSi2at773K[J]. Intermetallics,2006,14(4):406–411.
    [244]张芳.过渡族金属二硅化物单晶和多晶的氧化[D].上海:上海交通大学,2006
    [245] Hansson K, Halvarsson M, Tang J E, Pompe R, M. Sundberg M, Svensson J E. Oxidationbehaviour of a MoSi2-based composite in different atmospheres in the low temperaturerange (400-550℃)[J]. J Eur Ceram Soc,2004,24:3559-3573
    [246] Deevi S C, Deevi S. In-situ synthesis of MoSi2-Al2O3composite by a thermite reaction[J].Scripta Metall Mater,1995,33(3):415-420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700