用户名: 密码: 验证码:
沁水盆地煤层气储层岩石物理及物理模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气是与煤伴生并储藏在煤层中的一种气体,是一种以吸附状态的形式自生自储在煤层中的非常规天然气。沁水盆地是全国煤层气赋存最为富集的地区之一,是目前国内勘探程度最高、储量条件稳定、开发潜力巨大、商业化程度较高的煤层气气田。目前,沁水盆地共施工各类煤层气井已达1000余口,盆地南部煤层气年产能已达5亿~6亿m3。
     由于煤层气包括基质表面的吸附气、煤层裂缝与割理中的游离气、煤层水中的溶解气和煤层间夹层的游离气4部分。它既不同于呈液态赋存的石油,又有别于主要呈游离态存在于地层中的常规天然气。煤的吸附性导致煤层气成藏的机制和开发技术与常规天然气截然不同。对煤层气藏的成藏规律研究国内外都比较薄弱。20世纪80年代早期,美国开始进行地面开发煤层气的试验和研究,提出了通过排水降压实现煤层气开采的理论。我国学者仅做了一些初步工作,没有建立起系统的煤层气成藏理论,不能具体指导煤层气勘探、资源/储量计算等生产实践。本文针对煤层气地震勘探理论基础薄弱,煤层气岩石物理和地震响应特征的认识不清的问题,从煤岩弹性参数、裂隙结构、各向异性、非均质、衰减等方面对沁水盆地主力煤层开展了系统的研究,以期寻找煤层气富集层的岩石物理特征。
     首先,本文对沁水盆地主要煤层的岩石物理特征开展了系统的实验测试。在沁水盆地典型的中高阶煤层采集有代表性的煤岩样本,并加工成标准的地震岩石物理测试标本,完成煤岩的各种物理参数的测试。通过对煤样的实验测试结果的分析,初步获得了中高煤阶煤岩岩石物理特征:煤样具有低密度、低速度、低泊松比特点;无论是纵波还是横波,在温度不变的情况下,其速度均随围压的增大而增加,但P波的增加幅度大于s波,波速比Vp/Vs随围压的增大而增大。总结了煤岩微观结构上和在弹性特征上的各向异性特征,及其地震波衰减等特性的变化规律,对煤储层的各向异性进行了定量描述;这些岩石物理特征为煤层气地震技术的应用提供了依据。
     其次,开展煤岩样品等温吸附以及煤样吸附过程的超声波速度测试研究,获得煤样在不同压力点下的气体吸附量,并通过分析吸附时间与吸附量的关系来确定煤样的吸附饱和周期,从而建立了等温吸附的测试流程,在此基础上利用理论模型如Langmuir模型、Freundlich经验公式、2参数BET模型以及Dubinin-Radushkevich体积填充模型(D-R)对测试的压力和吸附量数据进行拟合,优选出煤岩吸附气体的理论模型。通过利用煤岩三轴测试系统实时采集声波波形,获得煤岩在不同吸附时间和吸附量状态下的速度,并在此基础上分析煤岩速度在不同吸附时间和吸附量下的变化规律,从而获得煤岩吸附量和速度之间的经验关系,为煤层气富集区地震预测提供基础。
     第三,根据沁水盆地主要煤层的典型构造特征,开展了煤储层地震物理模型研究。针对煤储层中薄煤层、小地层、陷落柱进行了物理模型地震数据采集和分析,揭示其地震响应特征。通过研究发现薄互层及宏观结构存在变化的煤层反射波特征比简单均一煤层的反射波要复杂。其受煤层厚度,煤层层数及分层间距等诸多因素影响且往往以复合波形式出现,正确认识复合波的特征是准确解释煤层形态的前提。由于煤层速度较砂岩低,其视波长较小,在相同的厚度范围内利用频率调谐曲线可分辨的厚度也就比较薄。因此,在同等条件下利用振幅和频率特征对煤层的分辨率比砂岩要高。当单层煤层厚度小于λ/8时,用地震波振幅预测复合厚度是可行的,但要预测单层厚度是困难的。
Coal bed Methane(CBM) is a form of natural gas extracted from coal beds. In recent decades it has become an important source of energy in the United States, Canada, Australia, and other countries.The term refers to methane adsorbed into the solid matrix of the coal. Coalbed methane is distinct from a typical sandstone or other conventional gas reservoir, as the methane is stored within the coal by a process called adsorption. The Qingshui basin is one of the most concentration zones of Coal bed Methane in China. It is also a large coal seam gas field with higher commercialization level, great exploitation potential and higher exploration degree. There are more than1000CBM wells in the basin, and the productivity of the southern basin achieve to500,000,000to600,000,000m3per year.
     CBM is adsorbed to the surface of the coal. The adsorption sites can store commercial quantities of gas as part of the coal matrix. It is different to conventional petroleum resource, because in conventional reservoirs, oil or gas is made in the source rock, migrates to the reservoir rock, and its migration is stopped by cap rock. The reservoir-forming mechanism and development technology are important for the exploration and development of the coal bed gas which are quite different to the conventional gas.
     The research on reservoir genetic feature of coal bed methane is not very much. Domestic researchers have done some work, but there is no reservoir genetic theory to guide coal bed methane exploration.
     This study is dedicated to find the rock physical characteristics of coal bed methane enrichment layer. The author completed a lot of work on rock physical tests, which explain the characteristics of main coal beds in the Qingshui basin in terms of elastic parameters, fracture structure, anisotropy, heterogeneity and attenuation. This work is helpful to solve the problem in seismic exploration in coal bed methane.
     First, a series of tests are completed to obtain the characteristics of coal in the Qingshui basin. The variation range of coal metamorphic grade covers from low rank coal to high rank coal. The results show that coal samples are characterized with low density, low seismic velocity and low Poisson's ratio. Velocities of compressional wave and shear wave are increased with the increase of confining pressure under a stable temperature. However, the increasing amplitude of compressional wave is higher than that of shear wave. Vp/Vs ratio increased with increasing of confining pressure up to25MPa. Micro-structure and anisotropic characteristics are measured to study the seismic wave attenuation.
     Second, we develop a series of isothermal adsorption tests to build a test process for bulk samples. Then, the author evaluate four theoretical models for bulk coal adsorption, such as Langmuir model, Freundlich empirical formula, BET model and Dubinin-Radushkevich mode. The results are used to fit a curve to quantify pressure vs adsorption quantity. As a result, the Langmuir model is the most fitable model for adsorption quantity calculation. Ultrasonic wave velocity tests are completed to study relationship between adsorption quantity, then the velocity of samples are built.
     Third, several seismic physical models are built for simulating the typical structure of coal bed in the Qingshui basin. Analysis for the seismic response of thin seam, small layer and collapse column are carried out based on the seismic data of physical model. The reflection wave of thin interbed is more complex than uniform coal seam. Because the reflection wave is usually a composite wave subjected to many factors like thickness of coal seam, number of layers. Understanding of the characteristics of reflected wave is premise for coal seam seismic interpretation. Resolution of coal seam thickness by using frequency tuning curves is higher, because of the low velocity and apparent wavelength of coal seam. When the thickness of single coal layer is smaller than A/8(λ is the wavelength), it is practicable to predict total thickness of coal seam by seismic wave amplitude, although it is difficult to identify thickness of single layer.
引文
Al-Duhailan andLawton. Azimuthal AVO in Coal Beds, Western Canadian Basin:A Promising Method for Characterizing Fractures in Unconventional Gas Reservoirs[C]. SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition,2010.
    Alessandro C, White R,Thomas R. Thin-bed AVO:Compensating for the effects of NMO on reflectivity sequences[J]. Geophysics,2001,66(6):1714-1720.
    Aki K., and Richards P.G., Quantitative seismology-Theory and Methods[M], San Francisco:W.H. Freeman and Co.,1980.
    Assad J M. Tatham R H.A physical model study of microcrack-induced anisotropy [J]. Geophysics,1992,57 (12):1562-1570.
    Ayer W B. Knowledge of methane potrntial for coalbed resources grow, but needs more study [J]. Oil & Gas Journal, week of Oct,1989,9:9-12.
    Ayer W B. Coalbed gas systems,resources,and production and a review of contrasting cases from the San Juan and Powder River basins[C]. AAPG,2002,86(11):1853-1890.
    Batzle M., and Wang Z., Seismic properties of fluids. Geophysics[J],1992,57:1396-1408
    Biot M.A., The theory of propagation of elastic waves in fluid-saturated porous solid[J], J. Acoust. Soc. Am.,1956,28(2):168-191.
    Brown R J, Lawton D C.Scaled physical modeling of anisotropic wave propagation:Multioffset profiles over an orthorhombic medium. Geophysical Journal International,1991,107,693-702.
    Castagna J.P., Batzle M.L., Eastwood R.L., Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J], Geophysics,1985,50(4):571-581.
    Castagna J.P., Batzle M.L., Kan T.K., Rock physics-The link between rock properties and AVO response[J], In Castagna J.P. and Backus M.M., eds., Offset-dependent reflectivity-Theory and practice of AVO anomalies[J], Soc. Expl. Geophysics. Investigations in Geophysics No.8,1993,135-171.
    Castagna J P,Sun S,Siegfried R W. Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge,2003,22(2):120-127.
    C Clarkson, M Bustin. Coalbed Methane:Current Evaluation Methods, Future Technical Challenges[J]. SPE Unconventional Gas Conference,2010,42.
    Chon Y T, Turpening W R. Complex salt and subsalt imaging:A seismic physical model study in 2-D and 3-D.60th SEG Expanded Abstracts,1990,1569-1571.
    CICCOTTI M, ALMAGRO R, M ULARGIA F. Static and dynamic moduli of the seismogenic layer in Italy[J]. Rock Mechanics and Rock Engineering,2004,37(3):229-238.
    Close J C. Natural fracture in coal:Hydrocarbons from coal[C].AAPG,Studies in Geology,1993,(38): 119-132.
    Crampin S. A review of wave motion in anisotropy and cracked elastic-medium. Wave Motion,1981,3.
    David Gray. Seismic Anisotropy In Coal Beds[C]. SEG Annual Meeting,2005.
    Dey A K, Rai C. Quantifying uncertainties in AVO forward modeling[J].Expanded Abstracts of 69th Annual Internet SEG Mtg,1999,77-80.
    de Voogd, N., and den Rooijen, H. Thin-layer response and spectral bandwidth:Geophysics,1983, 48:12-18.
    Domenico S N. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale[J]. Geophysics,1974,39(6):759-769.
    Domenico S.N., Rock lithology and porosity determination from shear and compressional wave velocities[J], Geophysics,1984,49(8):1188-1195.
    DULLMAMM H. DieErmittlung der elastischen kennwerte von gesteinen mittels uhraschall-laufzeit-messungen und einaxialer druckversuche unter beson-derer beriicksichtigung einerdurch das korn gefugebedingten mechanischen anisotropie[D].RWTH Aachen,1976,5-18.
    Ebrom D A, Tatham R H, Sekharan K K, McDonald J A. Hyperbolic travel time analysis of first arrivals in an azimuthally anisotropic medium:A physical modeling study:Geophysics,1990,55,185-191.
    Ebrom D. The low-frequency gas shadow on seismic sections[J]. The Leading Edge,2004,23(8):772.
    Faust L.Y., A velocity function including lithologic variation[J], Geophysics,1953,18(2):271-288.
    FU Zhi-liang Peng Su-ping HU Qian-ting ZOU Yin-hui. Experimental study on creep mechanics characteristics of gassy under disturbance conditions[J]. Journal of Coal Science & Engineering(China), 2008,390-393.
    Gamson P. Coal microstructure and secondary mineralization:Their effect on methane recovery[A].Coal bed Methane and Coal Geology[c].Geol. Soc. Spec. Pub.1996,199:165-179.
    Gamson p, Beamish B, Johnson David. Effect of coal microstructure and secondary mineralization on methane recovery[J]. Geological Special Publication,1998,199:165-179.
    Gan H, Nandi S P, Walker P L. Nature of porosity in American coals[J].Fuel,1972,51:272-277.
    Gardner G H F,Gardner L W,Gregory A R. Formation velocity and density-The diagnostic basics for stratigraphic traps[J]. Geophysics,1974,39(6):770-780.
    Garcia F, Podio A L, Hixson E L, et al. Ultrasonic detection of pore saturant in a cased-hole laboratory model. Expanded Abstracts of SEG Annual Meeting,2001.
    GEBRANDE H, KERN, RUNNEL F. Elasticity and inelasticity in landolt-bornstein numerical data and functional relationships in Physical Properties of Rocks. Springer-Verlag, Berlin-Heidelberg-NewYork,1982.
    Gregory A R. Fluid saturation effects on dynamic elastic properties of sedimentary rocks[J]. Geophysics, 1976,41(5):895-921.
    Han De-hua, Nur A., Morgan D., Effects of porosity and clay content on wave velocities in sandstones[J], Geophysics,1986,51(11):2093-2107.
    Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J]. Fuel,1990,69:551-556.
    Hucka B P. Analysis of cleat in Utah coal seams. Utah Geological and Mineral Survey Open-file Report[M],1989.
    Joseph Zemanek Jr. and Isadore Rudnick. Attenuation and Dispersion of Elastic Waves in a Cylindrical Bar[J]. J. Acoust. Soc. Am.1961,33:1283.
    Laubach S E, Marrett R A. Characteristics and origins of coal cleat a review[J]. Internal Journal of Coal Geology,1998,35(1-2):175-207.
    Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Geological Society Publication,1996,199:197-212.
    LI Yong-jun PENG Su-ping LI Pei-quan LIU Deng-xian LIAN Hui-qing. Internal thermal origin mechanism of Karstic collapse column with no smoothly extrinsic cycle[J]. Journal of Coal Science & Engineering(China),2008,2:230-234.
    Klimentos T. Attenuation of P-and S-waves as a method of distinguishing gas and condensate from oil and water[J]. Geophysics,1995,60(2):447-458.
    King M.S., Wave velocities in rock as a function of changes in overburden pressure and pore fluid saturants[J], Geophysics,1966,31(l):50-73.
    Koefoed O. and Voogd N. The linear properties of thin layers, with an application to synthetic seismograms over coal seams. GEOPHYSICS,1980,45(8):1254-1268.
    KOTTAS. Uber messungen der dynamischen elastic-then konstanten yon baustoffen und andern festkornnach dem resonanzverfahren[J]. Wissenschaftliche Zeithriften der Hoehschule ftir Bauwesen Leipzig,1963,63-167.
    KOTTAS. Das resonanzverfhren zur messung mech-anischer schwingung und materjaleigenschaften[J]. Zeitschrift for Instrument,1964,72:199-204.
    KRAUTKRAMER. Werk stoff prfifung mit ultraschsll[M].Springer-Verlag, Berlin-Heidelberg-New York.,1975.
    MA Rui, LU Minjie, YANG Xiaodong. Experiment study about elastic wave velocities in rocks under different pressure and temperature[J].SeismologY and Geology,1996,18(3):259-265.
    Mahshid Rahimi et al. Understanding Carbon Dioxide Adsorption in Carbon Nanotube Arrays:Molecular Simulation and Adsorption Measurements[J].Energy & fuel,2013,117(26):13492-13501.
    McKenna J, Evans B. Repeatability of physical modelling time-lapse 3-D seismic data. Expanded Abstracts of SEG Annual Meeting,2000.
    MENG Zhaoping, PENG Suping. Characters ofthe deformation and strength under different confining pressures on sedimentary rock[J]. Journal of China Coal Society,2000,25(1):15-18.
    MENG Zhaoping, ZHANG Jichang, JOACHIM T. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J]. Chinese Journal of Geophysics Edition, 2006,49(5):1505-1510.
    Morcote et al. Dynamic elastic properties of coal[J].Geophysics,2010,75(6):E227-E234.
    Mu Luo, Evans B J. Development of a fracture mapping technique using conventional one-boat multi-streamer seismic data:A physical modeling study. Expanded Abstracts of SEG Annual Meeting, 2001
    Rai C S and Hanson K E. Shear-wave velocity anisotropy in sedimentary rock:A laboratory study. Geophysics,1988,53.
    Ramos A and Davis T.3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs[J].Geophysics,1997,62(6):1683-1695.
    Ricker N. WAVELET CONTRACTION, WAVELET EXPANSION, AND THE CONTROL OF SEISMIC RESOLUTION[J]. GEOPHYSICS,1953,18(4),769-792.
    R. J. O'Connell,B. Budiansky. Viscoelastic properties of fluid-saturated cracked solids[J]. Journal of Geophysical Research,1977,82(36):5719-5735.
    R. J. O'Connell,B. Budiansky. Measures of dissipation in viscoelastic media[J]. Geophysical Research Letters,1978,5(1):s 5-8.
    Russell B H, Hedlin K, Hilterman F J et al. Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J]. Geophysics,2003,68(1):9-39.
    Sherlock D H, McKenna J, Evans B J. Seismic physical modelling of immiscible fluid flow. Expanded Abstracts of SEG Annual Meeting,2000
    Shuck E L, Davis T L and Benson R D. Multicomponent 3-D characterization of a coal bed methane reservoir[J]. Geophysics,1996,61(2):315-330.
    Smith G.C., Gidlow P.M. Weighted stacking for rock property estimation and detection of gas[J].Geophysical Prospecting,1987,35(9):993-1014.
    Stockwell R G, Mansinha L, Lowe R P. Location of the complex spectrum:The S transform [J]. IEE Transaction on Signal Processing,1996,17(6):998-1001.
    Thomsen L. Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-1966.
    Timur A. Temperature dependence of compressional and shear wave velocities in rocks[J], Geophysics, 1977,42(5):950-956.
    Veldhuizen E J. Numerical modelling using wave field extrapolation validated by physical modeling.ln ECUA.,2004.
    V.Sengbusch,R. Ubertragung von Werteigenschaften der Wildformen auf die Kultur formen. Jahrbuch der Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V.,1961,Teil II,516.
    Walker P L. Densities, porosities and area of coal macerals as measured by their interaction with gases, vapours and liquids. Fuel,1998,67(10):1615-1623.
    Wang Z., Velocity-density relationships in sedimentary rocks, in seismic and acoustic velocities in reservoir rocks, Vol.3, Recent developments. Soc. Expl. Geophysics,2000,258-268.
    Wang Z., Fundamental of seismic rock physics[J], Geophysics,2001,66(2):398-412.
    White et al. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery[J].Energy & fuel,2005,19(3):659-724.
    Widess M."HOW THIN IS A THIN BED?."GEOPHYSICS,1973,38(6):1176-1180.
    Wyllie M.R., Gregory A.R., Gardner L.W., An experimental investigation of factors affecting elastic wave velocities in porous media[J], Geophysics,1958,23(3):459-493.
    XIE Hongsen, ZHOU Wenge, ZHAO Zhidan,etal. Measurement of elastic wave velocities in rocks at high temperature and high pressure[J]. Earth Science Frontiers,1998,5(4)329-337.
    Xue-Mei Qi, Shao-Cong Zhang. Application of seismic multi-attribute fusion method based on D-S evidence theory in prediction of CBM-enriched area[J]. Applied Geophysics,2012,9(l):80-86.
    Yao and Han. Acoustic properties of coal from lab measurement[J]. SEG Technical Program Expanded Abstracts,2008.
    Yao Chen, Xiong Yangwu. Far-field Radiation pattern from An Anisotropic Dislocation Point Source. Can J. Expl. Geophys.,1993,29:315-323.
    Young-Fo Chang, Chih-Hsiung Chang, The line singularities of the body waves in anisotropic media: physical modeling results. Expanded Abstracts of SEG Annual Meeting,2000.
    Yoo S, Gibson R L. Frequency dependent AVO analysis after target oriented stretch correction [C]. Expanded Abstracts of 75th Annual International SEG Meeting,2005:293-296.
    Yu Gary. Offset-amplitude variation and controlled-amplitude processing[J]. Geophysics,1985,50(12): 2697-2708.
    Zofia Majewska. Binary gas sorption/desorption experiments on a bituminous coal:Simultaneous measurements on sorption kinetics, volumetric strain and acoustic emission. International Journal of Coal Geology,2009,77:90-102.
    毕建军,苏现波,韩德馨等.煤层割理与煤级的关系[J].煤炭学报,2001,(4):478-481.
    曹均,贺振华,黄德济等.储层孔(裂)隙的物理模拟与超声波实验研究[J].地球物理学进展,2004,19(2):386-391.
    程久龙,于师建,王渭明.岩体测试与探测[M]北京:地震出版社,2000.
    程彦,张华,王敏.弹性波阻抗反演在煤层气储层预测中的应用[J].煤田地质与勘探,2011,39(2):70-73.
    陈颐,黄庭芳.岩石物理学[M].北京大学出版社,2001.
    常锁亮,刘大锰林玉成,陈强.频谱分解技术在煤田精细构造解释及煤含气性预测中的应用[J].煤炭学报,2009,34(8):1015-1021.
    陈世悦,刘焕杰.华北晚古生代层序地层与聚煤规律[M].石油大学出版社,2000.
    董守华等.煤层厚度与振幅、频率地震属性的正演模拟[J].中国矿业大学学报,2004,33(1).
    董守华.气煤弹性各向异性系数实验测试[J].地球物理学报,2008,51(3):947-95.
    段连秀,王生维.煤储层中裂隙充填物的特征及其研究意义[J].煤田地质与勘探,1999,27(3):33-35.
    杜文凤,彭苏萍.利用地震层曲率进行煤层小断层预测[J].岩石力学与工程学报,2008,S1:2901-2906.
    冯三利,叶建平.中国煤层气勘探开发技术研究进展[J].中国煤田地质,2003,15[6):19-23.
    傅雪海,秦勇,姜波等.煤割理压缩实验及渗透率数值模拟[J].煤炭学报,2001,26(6):573-577.
    傅雪海,秦勇,姜波.山西沁水盆地中南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(2):221-229.
    傅雪海,秦勇,李贵中.沁水盆地中-南部煤储层渗透率主控因素分析[J1.煤田地质与勘探,2001,29(3):16-19.
    傅雪海,秦勇,杨永国等.甲烷在煤层水中溶解度的实研究[J].天然气地球科学,2004,15(4):345-348.
    勾精为,姚陈,于光明.用转换波检测煤层裂隙的方法探讨[J1.中国煤田地质,2001,13(3):77-82.
    郭德勇,韩德馨.煤与瓦斯突出黏滑机理研究[J].煤炭学报,2003,28(6):598-602.
    韩德馨.中国煤岩学[M].中国矿业大学出版社,1996.
    郝守玲,赵群.横向速度变化对构造成像影响的物理模拟研究[J].石油物探,2008,(01).
    郝守玲,群等.EDA介质的P波方位各向异性--物理模型研究[J].石油地球物理勘探,1998,Vol.33,增刊2.
    郝守玲,赵群.裂缝介质对P波方位各向异性特征的影响-物理模型研究[J].勘探地球物理进展,2004,,27(03):189-194.
    郝守玲,赵群.地震物理模型技术的应用与发展[J].勘探地球物理进展,2002,(02).
    郝守玲.声波速度测量的频率和尺度效应分析[J].勘探地球物理进展,2005,(05).
    霍永忠.煤储层的气体解吸特性研究[J].天然气工业,2004,24(5):24-26.
    贺振华,黄德济,文晓涛.裂缝油气藏地球物理预测[M].成都:四川科学技术出版社,2007.
    贺振华,李亚林,曹均等.地层温压条件下超声波测试技术[J].勘探地球物理进展,2003,26(2):84-87.
    姜波,秦勇,范炳恒等.淮北地区煤储层物性及煤层气勘探前景[J].中国矿业大学学报,2001,30(5):433-437.
    冀涛,杨德义.沁水盆地煤层气地质条件评价[J].煤炭工程,2007,10:83-86.
    刘斌.不同温压下岩石弹性波速度、衰减及各向异性与组构的关系[J].地学前缘,2000,7(1):247-257.
    刘人和,刘飞,周文等.沁水盆地煤岩储层特征及有利区预测[J].油气地质与采收率,2008,15(4):16-19.
    刘蔚,诸葛月英,朱宇清等.大宁-吉县地区煤层气测井综合研究[J].天然气工业,2004,24(5):45-47.
    刘雯林.煤层气地球物理响应特征分析[J].岩性油气藏,2009,21(2):113-115.
    刘贻军,娄建青.中国煤层气储层特征及开发技术探讨[J].天然气工业,2004,24(1):68-71.
    柳青海.浅析煤炭(矸石)灰分与真密度问相关分析及回归方程[J].双煤科技,1991,1:25-26.
    李贵中,秦勇,戴西超等.沁水盆地山西组煤储层含气性及控制因素分析[J].中国矿业大学学报,1999;28(4).
    李琼,贺振华,黄德济等.单孔洞缝模型超声波实验测试与分析[J].石油物探,2007,46(1):100-104.
    李琼,何建军,贺振华等.温压条件下孔洞储层的地震波响应特征[J1.石油地球物理勘探,2009,44(1):53-57.
    李五忠,赵庆波,吴国干等.中国煤层气开发与利用[M].石油工业出版社,2008.
    李侠,魏永佩,纪邦师等.山两煤盆地热演化与生气作用研究[J1.西安工程学院学报,2002,20(2):27-30.
    李小彦.煤储层裂隙研究方法辨析[J].中国煤田地质,1998,1:30-32.
    李小彦,解光新.孔隙结构在煤层气运移过程中的作用[J].天然气地球科学,2004,15(4):341-344.
    李亚林.孔裂)隙介质波场特征的超声实验及应用研究[D].成都理工大学,1999.
    李智宏,胡中平,王辉明,张明等.含高速层地震物理模型的广角地震波场研究[J].勘探地球物理进展,2005,28(5):345-348.
    李智宏,朱海龙,赵群,曹辉.地震物理模型材料研制与应用研究[J].地球物理学进展,2009,24(2:408-417.
    马瑞,卢民杰,杨晓东.不同温压条件下弹性波在岩石中传播速度的实验研究[J].地震地质,1996,18(3):259-265.
    马中高,伍向阳,王中海.有效压力对岩石纵、横波速度的影响[J].勘探地球物理进展,2006,29(3):183-186.
    马中高,解吉高.岩石的纵、横波速度与密度的规律研究[J1.地球物理学进展,2005,20(4):905-910.
    马中高.多方位速度和AVOA(?)司步分析石油地球物理勘探2009,44(s1):135-137.
    牟永光.三维复杂介质地球物理模拟[M].石油工业出版社,2003,4-40.
    孟召平,彭苏萍.不同侧压下沉积岩石变形与强度特征[J].煤炭学报,2000,25(1):15-18.
    孟召平,张吉昌JOACHIM T.煤系岩石物理力学参数与声波速度之间的关系[J].地球物理学报,2006,49(5):1505-1510.
    孟召平,刘常青,贺小黑等.煤系岩石声波速度及其影响因素实验分析[J].采矿与安全工程学报,2008,25(4):389-393.
    彭苏萍.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤,2008,2:1-11.
    彭苏萍,杜文凤,赵伟,师素珍,何登科.煤田三维地震综合解释技术在复杂地质条件下的应用[J].岩石力学与工程学报,2008,51:2760-2765.
    彭苏萍,邹冠贵,李巧灵.测井约束地震反演在煤厚预测中的应用研究[J].中国矿业大学学报,2005,6:729-733.
    彭苏萍,高云峰,杨瑞召,陈华靖,陈信平.AVO探测煤层瓦斯富集的理论探讨和初步实践--以淮南煤田为例[J].地球物理学报,2005,6:262-273.
    彭苏萍,高云峰.含煤地层振幅随偏移距变化正演模型研究[J].科学通报,2005,51:131-137.
    彭苏萍,高云峰,彭晓波等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报,2004,29(2):177-181.
    彭晓波,彭苏萍,詹阎等.P波方位AVO在煤层裂缝探测中的应用[J].岩石力学与工程学报,2005,24(16):2960-2965.
    裴正林,董玉珊,彭苏萍.裂隙煤层弹性波场方位各向异性特征数值模拟研究[J].石油地球物理勘探,2007,6:665.672.
    钱凯,赵庆波,汪泽成等.煤层甲烷勘探开发理论与实验测试技术[M],北京:石油工业出版社,1991.
    钱凯,江泽成,赵庆波.煤层气勘探开发理论与实验技术[M]北京:石油工业出版社,1997.
    秦勇,傅雪海,叶建平等.中国煤储层岩石物理学因素煤控制特征及机理[J].中国矿业大学学报,1999,28(1):14-19.
    秦勇.国外煤层气成因与储层物性研究进展与分析[J].地学前缘,2005,(3).
    孙斌,杨敏芳,孙霞,孙粉锦.基于地震AVO属性的煤层气富集区预测[J].地质勘探,2010,30(6):15-18.
    孙斌,王宪花,陈彩虹等.鄂尔多斯盆地大宁-吉县地区煤层气分布特征[J].天然气工业,2004,24(5):17-20.
    孙斌,赵庆波,李五忠.中国煤层气资源及勘探策略[J].天然气地球科学,1998(6).
    尚冠雄.华北晚古生代层序地层研究[M].北京地质出版社,1993.
    桑树勋,范炳恒,秦勇.煤层气的封存与富集条件.石油与天然气地质,1999;20(2).
    苏现波.煤层气储集层的孔隙特征[J1.焦作工学院学报,1998,17(1):6-11.
    宋岩,张新民柳少波.中国煤层气基础研究和勘探开发技术新进展[J].天然气工业,2005,(1).
    王连刚,李俊乾.地震技术在煤层气储层研究与物性预测中的应用[J].资源与产业,2010,12(2):158-162.
    王红岩,刘洪林,赵庆波等.煤层气富集成藏规律[M].石油工业出版社,2005.
    王让甲.声波岩石分级和岩石动弹性力学参数的分析研究[M].北京:地质出版社1997.
    王生维,陈钟慧,张敏等.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学,1995,5:35-39.
    王生维,陈钟惠,段连秀.我国煤层气勘探研究的回顾与展望[J].中国煤田地质,2000,(3).
    王生维,陈钟惠,张明等.煤储层岩石物理与煤层气勘探选区[M],武汉:中国地质大学出版社,1997.
    王永,冯富成,毛耀保,马向平,陈强华,王新民.沁水盆地南端煤层气赋存的构造条件分析.西北地质,1998;19(3).
    魏建新,牟永光,狄帮让.三维地震物理模型的研究[J].石油地球物理勘探,2002,(06).
    蔚远江,杨起,刘大锰等.我国煤层气储层研究现状及发展趋势[J].地质科技情报,2001,20(1):56-60.
    蔚远江等.羌塘盆地查郎拉地区中生代岩相古地理初探.沉积学报,2002,2:188-196.
    武喜尊.中国煤炭高精度三维地震勘探技术[J].天然气工业,2007,27,增刊A.
    武喜尊.中国煤炭高精度地震勘探技术的应用和发展[J].物探装备,2008,18(3).
    郗宝华,我国煤层气储层特点及主控地质因素[J].山西煤炭管理干部学院学报,2010.23(1).
    谢鸿森,周文戈,赵志丹等.高温高压条件下岩石弹性波速测量[J].地学前缘,1998,5(4):329-337.
    杨德义,彭苏萍,王赞,张美根.含裂隙煤层的地震记录模拟[J].工程勘察,2007,6:61-66.
    杨勤勇,赵群,王世星等.纵波方位各向异性及其在裂缝检测中的应用[J].石油物探,2006,45(2):177-181.
    朱峰.山西沁水煤田煤层气分布特征与开发前景分析[J].中国煤田地质,1999,11(2):32-34.
    朱海龙,RAMOS A C B在煤甲烷储层中应用三维AVO分析和模拟作裂缝探测[J].石油物探译丛,1998,3:59-73.
    朱海龙,李智宏,赵群,曹辉.井间地震物理模拟研究[J].地球物理学进展,2008,3(6):1833-1840.
    张春雷,李太任.煤岩结构与煤体裂隙分布特征的研究[J].煤田地质与勘探,2000,5:26-30.
    张惠.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    张慧,王晓刚,袁争荣.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):278-284.
    张建博,王红岩,赵庆波.中国煤层气地质[M].北京地质出版社,2000.
    张尚虎,汤达祯,王明寿.沁水盆地煤储层孔隙差异发育主控因素[J].天然气工业,2005,25(1):37-40.
    张有生,秦勇,陈家良.煤储层渗透率的非均质性模型[J].中国矿业大学学报,1998.
    赵庆波,田文广等.中国煤层气勘探开发成果与认识[J].天然气工业,2008,28(3):16-18.
    赵庆波.中国煤层气勘探[M].北京:石油工业出版社,2001.
    钟蓉,傅泽明.华北地台晚石炭世~早二叠世海水进退与厚带关系[J].地质学报,1998,72(1):64-75.
    张慎河,彭苏萍,刘玉香.含煤地层裂隙岩石声波速度特征试验研究[J].山东科技大学学报(自然科学版),2006,1:28-31.
    张新民,张遂安,钟玲文等.中国的煤层甲烷[M].陕西西安:陕西科学技术出版社,1991.
    张新民,解光新.我国煤层气开发面临的主要科学技术问题及对策[J].煤田地质与勘探,2002(2)
    张爱敏,汪洋,赵世尊.不同厚度煤层AVO特征及模型研究[J].中国矿业大学学报,1997,26(3):36-41.
    邹德蕴,刘先贵.冲击地压和突出的统一预测及防治技术[J].矿业研究与开发,2002,22(1):1-19.
    邹艳荣,杨起.煤中的孔隙和裂隙[J].中国煤田地质,1998,(4):39-41.
    赵群,郝守玲.煤样的超声速度和衰减各向异性测试实例[J].地球物理学进展,2006,(02).
    赵群,郝守玲.井间地震观测系统的物理模型研究[J].石油物探,2004,(03).
    赵群,马国庆,宗遐龄.超声地震物理模型连续数据采集系统[J].地球物理学进展,2004.
    赵群,郭建,郝守玲等.模拟天然气水合物的岩石物理特性模型实验[J].地球物理学报,2005,48,3:649-655.
    赵群,郝守玲煤样的超声速度和衰减各向异性测试实例[J].地球物理学进展,2006,21(2):531-534.
    赵鸿儒,唐文榜,郭铁栓.超声地震模型实验技术及应用[M].石油工业出版社,1986,186-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700