用户名: 密码: 验证码:
扬子北缘中二叠统孤峰组地球生物学构成及页岩气地质特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,我国对页岩气资源的关注度不断提升,页岩气独特的赋存状态,“连续成藏”的聚集模式,区别于常规天然气储层的特征,决定了页岩气储层研究的特殊性。目前,国内针对页岩气储层特征及评价的工作开展得相对较少,需要建立相应的评价标准。扬子北缘中二叠统孤峰组主要由黑色硅-泥质岩石组成,化石丰富,有机碳含量高,成藏条件较好,是我国页岩气勘探开发有利区带之一。新兴的地球生物学理论采取正演方法,对烃源岩进行评价,为高热成熟度、低有机质丰度地区的烃源岩评价提供了可行的途径。用地球生物学理论评价页岩气藏值得探索。
     由于扬子北缘大多是山地,露头虽多,但地表地质条件较差,交通不便,我们选择了相对地表条件较好,交通较方便的三条剖面进行页岩气地质意义研究,分别是建始罗家坝剖面、建始茅草街剖面和恩施田凤坪剖面。应用地球生物学理论对其地层的地球生物学过程进行定性和定量的分析研究,对于我国页岩气勘探开发具有典型指导意义。
     放射虫是一种海生微体浮游生物,在全球古海洋中分布广泛,可作为全球地层对比的有效工具。尤其在深海缺乏其它生物化石的条件下,它是划分地层最重要的依据之一。鄂西建始地区中二叠统孤峰组硅质岩中含有极其丰富的放射虫化石。通过对该区罗家坝剖面孤峰组硅质岩段中的放射虫化石进行了详细的鉴定,获得放射虫5属16种,主要由阿尔拜虫类(Albaillellids),球形多囊虫类(Spherical polycystine)和十字多囊虫类(Stauraxon polycystine)组成。根据特征放射虫分布,该剖面自下而上依次为Pseudoalbaillella globosa带、Follicucullus monacanthus带和Follicucullus scholasticus带,并可与日本西南部、美国Oregon地区、苏皖地区及广西钦州地区同时代的放射虫带进行精确对比。根据放射虫带的对比可确定该剖面地质年代为中二叠世的茅口期,年代地层为瓜德鲁普统的沃德阶-卡匹敦阶。
     茅草街剖面孤峰组地层主要由黑色硅质岩和泥岩组成,可以细分为四段:(1)硅质岩与泥岩互层段;(2)硅质岩段;(3)夹灰岩透镜体炭质泥岩段;(4)泥岩与粉砂岩夹薄层灰岩段。沉积学和矿物学特征指示缺氧的上升流环境。经过对剖面中放射虫样品的分离与鉴定,获得放射虫10属27种。依据放射虫组合,也可以划分为3个放射虫带:Pseudoalbaillella globosa带、Follicucullus monacanthus带和Follicucullus scholasticus带。其年代地层分别对应于上罗德阶-沃德阶、沃德阶-下卡匹敦阶和下卡匹敦阶。
     生物(尤其是微生物)的繁盛和有利的沉积埋藏条件是形成优质烃源岩的两个最基本的条件。解决评价这两个条件问题的思路,就是应用地球生物学理论正演烃源岩形成的动力学过程。根据地球生物学理论对烃源岩形成的动力学过程的演示,解决烃源岩的两个基本问题,就转化为定量评估从生物生产力,到沉积有机质,再到埋藏有机质这三个关键环节和过程中有机质的变化及其数量和类型的问题。对孤峰组的地球生物学过程做出探索对整个扬子北缘黑色岩系烃源岩的研究有着重要的意义。
     根据岩性和放射虫丰度,以及生物硅、生物铜、总有机碳等指标的变化趋势,茅草街剖面和罗家坝剖面孤峰组的地球生物学构成均可划分为4个阶段。茅草街剖面阶段Ⅰ的放射虫动物群以球形放射虫为主,伴有少量阿尔拜类放射虫。根据生境型参数的划分,此阶段可能处于Ⅳ2下部浅海下部生境型,水深大致100-200m,具备相对较高的原始生产力。阶段Ⅱ岩性由硅质岩与泥岩互层转变为硅质岩,阿尔拜类放射虫大规模繁盛,同时伴有球形放射虫,但球形放射虫的丰度相对较低。说明这一时期海平面上升,海水深度加大,此阶段处于Ⅴ1上部大陆坡生境型,水深200-1000m。此时TOC和生物铜的含量都很低。由于水深的增加和低生物铜含量,生产力总体处于较低的水平。阶段Ⅲ中球形放射虫大量繁盛,而阿尔拜类放射虫丰度极低。反映了水深变浅,放射虫动物群的主导类型又由阿尔拜类放射虫转变回球形放射虫,此阶段适宜浅海放射虫的生长,处于Ⅳ1下部浅海上部生境型,水深大约60-100m。同时TOC、生物铜也呈现了与球形放射虫丰度一致的变化趋势。此阶段合适的生境型、球形放射虫的繁盛以及极高的TOC和生物铜显示了该阶段具备很好的生物组成和极高的生产力。阶段Ⅳ中几乎没有放射虫产出,说明水深进一步变浅,当时的环境已经不适合放射虫和其它硅质生物生活。生产力的演化过程由下至上可以划分为(降低-升高-衰退)3个演化阶段。剖面第一段至第二段时期,由于水深的增加,生产力呈现一个小低谷期。从第三段开始进入生产力的繁盛期,该时期初级生产力的的繁盛为后生动物提供丰富的营养物质。第四段海水环境恶化,海洋后生动物出现大量火绝,很多初级生产者已经不适应当时的海洋环境。
     建始罗家坝剖面中,球形放射虫的高丰度与总有机碳和生物成因二氧化硅具有很好的相关性,阶段Ⅰ中TOC含量较低,位于3.65%到14.6%,,平均值为4.51%。生物硅含量较高,最高值超过90%,平均值为75.9%。此阶段类似于茅草街剖面的阶段Ⅱ,深水分子阿尔拜类放射虫的繁盛使得它们死后壳体保留在沉积物中形成大量的生物硅,总体生产力仍然偏低。阶段Ⅱ,球形放射虫丰度有所增加,同时阿尔拜类放射虫丰度明显下降,反映了水深变浅。相对第Ⅰ阶段生产力水平呈升高趋势。阶段Ⅲ中球形放射虫和阿尔拜类放射虫丰度均进一步增加。TOC含量变化与球形放射虫呈一致趋势,达到最高值34.79%,平均值为13.3%。球形放射虫的大量繁盛以及高TOC含量说明此阶段初级生产力达到最高。阶段Ⅳ没有放射虫产出,TOC、生物硅的值均达到最低,反映了水深变浅以及环境恶化,生产力水平最低。生产力的演化过程和茅草街剖面相似,由下至上也可以分为(降低-升高-衰退)3个演化阶段。上述例子也可以说明放射虫动物群的组成和繁盛均受环境控制,其中水深是对放射虫的地球生物学行为影响较大的因素之一。放射虫的地球生物学过程是受多方而因素控制影响的,而放射虫动物群的组成、丰度、分异度等特征的变化也可以对当时的环境进行反演。球形放射虫的丰度可以作为古生产力替代指标,阿尔拜类放射虫则不能作为古生产力指标。球面放射虫中的Entactinia、Copicyntra和Paracopicyntrα能反映二叠纪高生产力。
     为了探讨孤峰组的沉积埋藏条件,本论文选取V/(Ni+V)、U/Th、Ce/Ce*三项指标对罗家坝剖面的氧化还原条件和沉积速率进行了分析。结果显示孤峰组黑色岩系形成于干燥气候的浅海还原环境。依据古环境氧化还原条件判定标准,该剖面的古氧化-还原条件可划分出3个明显的演化阶段,即中部为明显的厌氧环境,各指标均显示其还原程度异常强烈,下部及上部虽也以还原条件为主但缺氧程度相对稍弱。一定程度上说明氧化-还原条件是影响有机碳富集程度的重要因素之一,在热液活动较弱或海平面相对较低的阶段形成泥页岩沉积,但由于其总体上处于较为深水的沉积背景,沉积速率较低,因此泥页岩中的沉积有机碳含量较高:在热液活动较强、上升流较强以及海平面相对较高的时期发育热液成因的硅质岩沉积,此阶段由于沉积速率较高,沉积物对有机质产生稀释作用,造成硅质岩中的沉积有机碳含量偏低。应用以上地球生物学参数对研究剖面烃源条件进行评价,研究显示,孤峰组碳质泥页岩段具有最佳的生境型和生产力组成,是最有利的页岩气勘探岩层;其次是泥质硅质岩层段,亦具有良好的储气能力。
     孔隙是页岩层系是否具有生烃能力、储气能力和开采价值的主要标志。本论文采用场发射扫描电镜对鄂西建始中二叠统孤峰组硅质页岩、泥质灰岩和碳质页岩3类岩石采取二次电子模式扫描,发现和分析了5大类9小类孔隙,即(1)絮凝作用孔隙;(2)有机质化石孔;(3)有机质碎片沥青孔;(4)黄铁矿粒间孔;(5)矿物颗粒晶间孔;(6)微型通道;(7)微裂缝;(8)钙质化石孔;(9)碎屑与围岩间孔。研究显示:硅质页岩中发育较多的黄铁矿微球粒以及絮凝结构,有机质孔隙从纳米级至数微米;泥质灰岩中以矿物质孔隙为主,微裂缝比较发育,脆性矿物多;碳质页岩中存在大量蜂窝状孔洞和广泛分布的微裂缝,孔隙类型主要为有机质纳米孔。碳质页岩与传统储层孔隙特征具有很大差异,标志着油气储层纳米级孔隙研究的来临,是页岩气勘探最为有利的岩层。
     加快页岩气勘查、开发攻关,重点在于对页岩气资源进行科学评价。页岩气储层是否具有足够的天然气储量和是否具备足够的渗流能力是页岩气资源评价涉及的两个核心问题。笔者通过对页岩气储层孔隙度、渗透率、含水饱和度、裂缝等物性参数的测试意义、技术与方法的调研和分析,指出页岩气储集层的物性参数的测试和评价是页岩气勘探开发的重要课题。并结合我国页岩气储层与北美页岩气地质条件的差异和与常规天然气藏的不同,将页岩气储层烃源条件评价指标划分为沉积环境、地球化学、地球生物相和含气量四大类,同时将地球生物学烃源岩评价方法纳入页岩气储层资源评价方法之中,并作为传统烃源岩评价法的重要补充评价方法之一,为低残余有机质丰度、高热演化程度烃源岩的评价提供了一种新的探索途径。
     为了做好该区的页岩气勘探开发工作,有必要在进一步明确页岩的概念的基础上,对该区页岩地层进行综合研究和分类对比研究,划分出有利的页岩气勘探目标岩层和地区。笔者通过对鄂西野外露头剖面实测和钻孔岩心原始资料以及前人研究成果的收集,依照60余条剖面和钻井资料探讨扬子北缘中二叠统孤峰组分布特征和烃源岩发育规律,对冯增昭等(1993)的茅口期孤峰组古地理图做出了修正,并按三大类岩性段对孤峰组空间分布做了进一步细分。根据页岩气成藏的主控因素及目前资料现状,利用岩性地层分段厚度、地球生物学特征、有机碳含量和有机质热演化程度等参考指标,以研究区孤峰组富有机质页岩厚度大于20m,有机碳含量大于3.0%为主要评价依据,优选出有利目标区块。评价结果显示宜昌-潜江-黄石一带属于Ⅱ类选区;繁昌-径县-宿松一带属于Ⅲ类选区;建始—利川—石柱一带为Ⅰ类选区,其碳质页岩层段为今后勘探开发的最有利区带。最后采用类比法和体积法计算得到扬子北缘中二叠统孤峰组页岩气预计资源量为1.96×1012m3。
Recently, the attention of the shale gas resources are constantly rising in China, the unique mode of occurrence and the continuous accumulation aggregation model in shale gas are different from the characteristics of conventional natural gas reservoirs, so the research of shale gas reservoirs is significant. Currently, the work on evaluation of the shale gas reservoir are relatively less in the domestic, we need to establish the appropriate evaluation criteria. Middle Permian stratum from the Gufeng formation in the North Margin of Yangtze outcropping abundant black shales and fossils, the organic carbon content is also high, which can be the favorable zones for shale gas exploration and development. The emerging geobiological theory, which take the forward modeling to evaluate the hydrocarbon source rocks, provides a feasible way for the area with high thermal maturity and low abundance of organic matter. It is worth exploring to apply geobiological methods on the evaluation of shale gas reservoir.
     The North Margin of Yangtze are mostly mountainous region, even if the outcrops are numerous, the geological conditions are poor, the traffic is inconvenient, therefore we have chosen three sections which have relatively better surface conditions and slightly better traffic to study the geological significance of shale gas, they are Luojiaba section, Maocaojie section and Tianfengping section. Using geobiological theory to do some analysis on their stratigraphic geobiology process of qualitative and quantitative, which has the typical guiding significance for shale gas exploration and development in China.
     Radiolarian is a marine micro-plankton. It can be used as an effective tool for the global stratigraphic correlation since they distributed widely in the ancient ocean of the world. As we known, it is one of the most important standards in stratigraphic division especially on the condition of lacking other fossils in deep-sea. Abundant radiolarians have been found in the Middle Permian Gufeng Formation in Jianshi, Hubei Province. By detailed appraisal to the radiolarians fossils,16species belonging to5genera had been identified, including the albaillellids, the spherical polycystine and the stauraxon polycystine. According to the radiolarian distribution in the sequence, three assemblage zones, Pseudoalbaillella globosa assemblage zone、Follicucullus monacanthus assemblage zone and Follicucullus scholasticus assemblage zone, are proposed. The three radiolarians zones can be compared with contemporary radiolarians zones in the southwest of Japan, Oregon region in America, and South China. According to the ages of the radiolarian assemblage zones, the Kufeng Formation in Lujiaba section of Jianshi, Hubei Province can be correlated to Maokouan stage (Middle Permian), corresponding to the Wordian stage-Capitanian stage (Guadalupian).
     The Gufeng Formation in Maocaojie section consists mainly of black siliceous rocks and mudstones, and can be subdivided into four beds:(1) chert and mudstone interbedded,(2) siliceous rock,(3) carbonaceous mudstone with limestone lenses, and (4) mudstone and siltstone with thin-bed limestone. Sedimentology and mineralogical characters indicate a suboxic-anoxic upwelling environment. After processing and identifying the samples from this section,27species belonging to10genera were recovered. Based on the radiolarian assemblages,3radiolarian assemblage zones are recognized, including Pseudoalbaillella globsa, Follicucullus monacanthus, and Follicucullus scholasticus assemblage zones, the three zones are assigned to be upper Roadian to Wordian, Wordian-lower Capitanian and lower Capitanian.
     Prosperous organisms (especially microorganisms)and favorable conditions of burial are the two basic conditions for the development of high-quality hydrocarbon source rocks. The idea to evaluate these two conditions is to apply the geobiological theory, which take the forward modeling to evaluate the dynamic process of the hydrocarbon source rocks. According to the demonstration of the dynamic process of the formation of hydrocarbon source rocks, to solve the two basic problems of hydrocarbon source rocks, is converted to quantitative assess biological productivity, the sedimentary organic matter and burial organic matter. The research of geobiological processes from the Gufeng formation has a important significance on the exploration of black rock series source rocks in the entire North Margin of Yangtze.
     According to the tendency of the indicators such as lithology, radiolarian abundance, biological silicon, Excess Cu and total organic carbon, the geobiological process form the Gufeng formation in Maocaojie section and Luojiaba section can be divided into four stages. In Maocaojie section, the interval1, radiolarian fauna are mainly the spherical radiolarian, accompanied by a small amount of albaillellarians. According to habitat type parameters, this interval may be in IV2lower shallow water habitat type, the depth of the water is roughly100-200m, which have a relatively high primary productivity. The interval2, lithology characters by siliceous rock and mudstone alternating layers change into siliceous rocks, albaillellarians are mass prosperity, accompanied by spherical radiolarian, but spherical radiolarian abundance is relatively low. The sea level rising during this period, the depth of the sea water increases. This interval should be in V1upper continental slope habitat type, the depth is200-1000m. At this stage, the TOC and biological Cu content is very low. Due to the increase of water depth and low biological Cu content, the productivity is low overall. The interval3, the spherical radiolarians flourish in great quantities, and albaillellarians abundance is extremely low. Reflects the depth of the water becomes shallow, this interval is suitable for shallow sea radiolarian growth, belongs to Ⅳ1lower shallow sea habitat type, the depth of the water is about60-100m. The TOC and biological Cu also presented consistent trends with spherical radiolarian abundance.The suitable habitat type and extremely high TOC at this stage shows good biological composition and high productivity. The interval4, no radiolarian is discovered from this interval, explaining the environment is not suitable for radiolarian and other siliceous biological life. The evolution of productivity can be divided into (lower-rise-recession) three evolutionary stages from bottom-up. In the period of the first and second bed from the section, due to the increase of water depth, productivity appears a small trough. The productivity boom starting from the third bed, the flowering of primary productivity in this period provide rich nutrients for metazoan. Marine metazoan extinction occurred in the period of the fourth bed, many primary producers have not adapted to the marine environment at that time.
     In Luojiaba section, high abundance of spherical radiolarians tends to have a good correlation with the total organic carbon(TOC) and biogenic SiO2. The interval1, TOC content is low, at3.65%to14.6%, average4.51%. Biological silicon content is higher, the highest value of more than90%, average75.9%. This interval is similar to the second interval in Maocaojie section, the shells of the deep water molecules albaillellarians remain in the sediments after their death, formed a large number of biological silicon, the overall productivity remains low. The interval2, spherical radiolarian abundance increased, at the same time, albaillellarians abundance obvious drop, reflects the depth of the water becomes shallow. The productivity levels show a trend of rise relative to the interval1. The spherical radiolarian and albaillellarians abundance are further increased in the interval3. TOC content change present a consistent trend with the spherical radiolarian, maximum34.79%, average13.3%. This interval reach the highest stage of primary productivity. The interval4, no radiolarian is discovered, the biogenic SiO2and TOC meet the minimum. The depth of the water becomes shallow and productivity reach the lowest levels. The evolution of productivity can be divided into (lower-rise-recession) three evolutionary stages similar to the Maocaojie section. The above example also illustrate the composition and flourishing of the radiolarian fauna are subject to environmental control, the depth of water is one of the influential factors on radiolarian geobiological behavior. The radiolarian geobiological processes are affected and controlled by many factors, the environment at that time can also be inversion in accordance with the changes in radiolarian fauna composition, abundance, and differentiation degree. The abundance of spherical radiolarians can be used as a good indicator for paleoproductivity, but albaillellarians can not do. The spherical radiolarians mainly include Entactinia, Copicyntra, and Paracopicyntra, and they may be index genera for the Permian high productivity.
     In order to research the sedimentary burial conditions of the Gufeng formation, we choose V/(Ni+V), U/Th, Ce/Ce*three indicators to analyze the redox conditions and deposition rate in Luojiaba section. Results show black rock series from the Gufeng formation form in the dry climate of shallow water reduction environment. According to paleoenvironment redox condition criteria, the oxidation-reduction conditions can be divided into three obvious evolution stages. Middle part is apparent anaerobic environment, lower and upper parts are also reduction conditions but relatively less hypoxia. Condition of oxidation-reduction is one of the important factors influencing the enrichment of organic carbon, The deposition of the shales are formed in weak hydrothermal activity during the sea level is relatively low, sedimentary organic carbon content is higher in mud shale due to the deposition rate is low. In the period of strong hydrothermal activity and upwelling, siliceous rock deposits are developed. Sediments dilute organic matter due to the high deposition rate, so the sedimentary organic carbon content is low in siliceous rock. Applying above geobiological parameters to evaluate hydrocarbon source conditions of the research sections, studies show that carbonaceous shale from the Gufeng formation has the best habitat type and high productivity, which is the most favorable strata for shale gas exploration; argillaceous siliceous rock strata also has good capacity of gas storage.
     The pore is the main aspect to evaluate the hydrocarbon generation capacity、gas storage capacity and exploitation value of shale series. In this paper, we use field emission scanning electron microscopy to take the secondary electron mode to scan three types of shale from the Gufeng Formation in Jianshi, which are siliceous shale, argillaceous limestone and carbonaceous shale. Five categories and nine types of pore have detected, that is (1) porous floccules;(2) pores of organic matter fossils;(3) asphalt pores from organic matter debris;(4) pores of pyrite grain;(5) intercrystal pores within mineral grains;(6) microchannels;(7) microfracture;(8) pores from calcium fossils;(9) pores between the debris surrounding rock. The main pore types in argillaceous limestone are intercrystal pores within mineral grains, microfracture and brittle mineral are well developed; In siliceous mudstone, we find many pyrite microspherulites and floccules,organopores size from the nanoscale to several microns; A large number of honeycomb holes and microfracture widely distributed in carbonaceous shale, the main pore types are organic matter nanopores. This shows:the nanoscale pore characteristics in carbonaceous shale are of great difference with traditional reservoir, which is the most favorable rock stratum for shale gas exploration.
     To speed up the shale gas exploration and development project, the key lies in the scientific evaluation of shale gas resources. The gas reserves and permeable capability of shale gas reservoir are the two core issues of shale gas resource evaluation. In this paper, we test the physical parameters of the shale gas reservoir, which contain porosity, permeability, water saturation and cracks, it should be pointed out that the test and evaluation of the physical parameters is the most important topics in shale gas exploration and development. We compare the shale gas reservoirs in China with the shale gas on different geological conditions in Northern American, and divide the shale gas reservoir evaluation index of hydrocarbon source conditions into four major categories, which are depositional environment, geochemistry, Geo-biological facies and gas content. We bring geobiology hydrocarbon source rock evaluation into shale gas reservoir resource evaluation method for the first time, as one of the important complement to traditional hydrocarbon source rock evaluation method.
     In order to accelerate shale gas exploration and development in this region, it is necessary to do some comprehensive and classified comparative study of the shale stratum on the basis of a clear definition of the concept of shale, mark out the favorable target strata and regions for shale gas exploration. Through the measurement of outcrop sections in western Hubei and the collection of boring core original data along with predecessors'studying results, according to more than60sections as well as drilling data, we have discussed the distribution characteristics and regularity of hydrocarbon source rock development from the Gufeng formation in north margin of Yangtze, we made the correction of paleogeographic map from the Gufeng formation by Feng Zengzhao et al., and made further subdivided of the spatial distribution from the Gufeng formation according to three types of lithology. On the basis of the main controlling factors of shale gas accumulation and the present status of the data, using reference index of lithostratigraphic section thickness, characteristics of geobiology, organic carbon content, organic matter thermal evolution degree and so on, choosing the organic-rich shale from the Gufeng formation in the study area that more than20m thick, organic carbon content is more than3.0%as the main evaluation basis, optimizing the favorable target block. Evaluation results show Yichang-Qianjiang-Huangshi area belongs to II selection region, Fanchang-Jingxian-Susong area belongs to III selection region, the bed of carbonaceous shale in Jianshi-Lichuan-Shizhu area are the most favorable zones for exploration and development in the future. Finally we using analogy method and volume method to calculate middle Permian shale gas resources from the Gufeng formation in the North Margin of Yangtze, the inferred shale gas resource is1.96×1012m3.
引文
[1]Rogner H H. Anassessment of world hydrocarbon resources[J]. Annual Review of Energy and Environment,1997,22:217-262.
    [2]Arthur Berman. Lessons from the Barnett shale suggest caution in other shale plays,2009.
    [3]Aubrey McClendon et al. Emergence of shale plays leads to transformative shift for independent operators,2011.
    [4]张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-141.
    [5]李新景,胡素云,程克明.北美裂缝型页岩气勘探开发的启示[J].石油勘探与开发,2007,34(4):392-400.
    [6]王世谦,陈更生,董大忠.四川盆地下古生界页岩气藏形成条件与勘探前景[J].天然气工业,2009,29(5):51-58.
    [7]张大伟.加快中国页岩气勘探开发和利用的主要路径[J].天然气工业,2011,31(5):125.
    [8]李玉喜,聂海宽,龙鹏宇,等.我国富含有机质泥页岩发育特点与页岩气战略选区[J].天然气工业,2009,29(12):115-118.
    [9]张金川,姜生玲,唐玄,等.我国页岩气富集类型及资源特点[J].天然气工业,2009,29(12):1-6.
    [10]江怀友,宋新民,安晓璇,等.世界页岩气资源与勘探开发技术综述[J].天然气技术.2008,2(6):26-30.
    [11]范泊江.中国非常规天然气资源及前景分析[R].中国石油大学,2007.
    [12]Tabatabaei M, Mack D, Daniels R. Evaluating the performance of hydraulically fracture horizontal wells in the bakken shale play[C]. SPE Rocky Mountain Petroleum Technology Conference, Denver, Colorado,2009.
    [13]李延钧,刘欢,刘家霞,等.页岩气地质选区及资源潜力评价方法[J].西南石油大学学报(自然科学版),2011,33(2):28-34.
    [14]朱华,姜文利,边瑞康,等.页岩气资源评价方法体系及其应用——以川西坳陷为例[J].天然气工业,2009,29(12):130-134.
    [15]董大忠,程克明,王世谦,等.页岩气资源评价方法及其在四川盆地的应用[J].天然气工业,2009,29(5):33-39.
    [16]蒲泊伶,包书景,王毅,等.页岩气成藏地质条件分析——以美国页岩气盆地为例[J].石油地质与工程,2008,22(3):33-39.
    [17]张林晔,李政,朱日房.页岩气的形成与开发[J].天然气工业,2009,29(1):124-128.
    [18]Sandrea R. Future global oil & gas supply:a quantitative analysis[J]. Oil & Gas Journal, 2009,7(2):6.
    [19]White J. Shale plays soar:an investor's guide to unconventional gas:shales and coalbed methane[J]. Oil and Gas Investor,2008,2:2-8.
    [20]李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业,2009,29(5):27-32.
    [21]殷鸿福,谢树成,秦建中,等.对地球生物学、生物地质学和地球生物相的一些探讨[J].中国科学(D辑):地球科学,2008,38(11):1-8.
    [22]谢树成,龚一鸣,童金南,等.从古生物学到地球生物学的跨越[J].科学通报,2006,51(19):2327-2336.
    [23]曹婷婷,徐思煌,王约,等.四川盆地南江杨坝地区下寒武统烃源岩形成的地球生物学条件[J].石油与天然气地质,2011,32(1):11-16.
    [24]殷鸿福,谢树成,颜佳新,等.海相碳酸盐烃源岩评价的地球生物学方法[J].中国科学:地球科学,2011,41(7):895-909.
    [25]谢树成,殷鸿福,解习农.地球生物学方法与海相优质烃源岩形成过程的正演和评价[J].地球科学——中国地质大学学报,2007,32(6):727-740.
    [26]杜远生,地球生物相中的生境型:概念、模式和编图[J].地球科学——中国地质大学学报,2007,32(6):741-747.
    [27]郄文昆,张雄华,蔡雄飞,等.华南地区石炭纪—早二叠世早期成冰期的地球生物学过程与烃源岩的形成[J].地球科学——中国地质大学学报,2007,32(6):803-810.
    [28]郄文昆,张雄华,张扬.桂北南丹巴平剖面早石炭亚纪盆地相烃源岩的地球生物学特征[J].古地理学报,2010,12(2):233-243.
    [29]颜佳新,刘新宇.从地球生物学的角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式[J].地球科学——中国地质大学学报,2007,32(6):789-796.
    [30]湖北省地质矿产局.湖北省区域地质志[M].地质出版社.1990,1-705.
    [31]王成善,陈洪德,寿建峰,等.中国南方二叠纪层序地层划分与对比[J].岩相古地理,1999,17(4):499-507.
    [32]王鸿祯,史晓颖,王训练,等.中国层序地层研究[M].广州:广东科技出版社.2000.
    [33]吴基文,李东平.皖南地区二叠纪层序地层研究[J].Journal of stratigraphy,2001,25(1):18-22.
    [34]田望学,张汉金,李雄伟,等.鄂西南二叠系层序地层与盆地演化[J].资源环境与工程.2007,21(2):95-10.
    [35]王鸿祯.中国古地理图集[M].北京:地图出版社.1985.
    [36]刘宝珺,许效松,潘杏南,等.中国南方古大陆边缘沉积壳演化与矿产[J].北京:科学出版社.1993.
    [37]冯增昭.中下扬子地区二叠纪岩相古地理[M].北京:地质出版社.1994.
    [38]Ishiga H. Paleozic radiolarians. In:Ichikawa K. et al. (eds.), Pre-Cretaceous Terranes of Japan[J]. Publication of IGCP 224, Osaka,1990,285-295.
    [39]Blome C.D., Reed K.M.. Permian and Early Triassic radiolarian faunas from the Grindstone Terrane, central Oregon[J]. Journal of Paleontology,1992,66 (3):351-383.
    [40]王玉净,杨群.中国石炭-二叠纪放射虫化石带及古生物地理学意义[J].微体古生物学报,2007,24(4):337-345.
    [41]Wang Y.J., Yang Q.. Biostratigraphy, phylogeny and paleobiogeography of Carboniferous-Permian radiolarians in South China[J]. Paleoworld,2011,20:134-145.
    [42]Wang Y.J., Cheng Y.N. and Yang Q.. Biostratigraphy and Systematics of Permian Radiolarian in China[J]. Palaeoworld,1994,4:172-202.
    [43]Zhang, N., Henderson, C.M., Xia, W.C., et al. Conodonts and radiolarians through the Cisuralian-Guadalupian boundary from the Pingxiang and Dachongling sections, Guangxi region, South China[J]. An Australasian Journal of Palaeontology,2010,34(2):135-160.
    [44]Kozur, H. Permian conodont zonation and its importance for the Permian stratighaphic standard scale[J], Geol. Paleont. Mitt. innsbruck,1995,20:165-205.
    [45]Glenister, B.F., Wardlaw, B.R., Lambert, L.L., et al. Proposal of Guadalupian and Component Roadian, Wordian and Capitanian Stage as International Standards for the Middle Permian Series[J]. Permophiles,1999,34:3-11.
    [46]Mei, S.L., Henderson, C.M. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,170:237-260.
    [47]Mei, S.L., Henderson, C.M. Comments on some Permian conodont faunas reported from Southeast Asia and adjacent areas and their global correlation[J]. Journal of Asian Earth Sciences,2002b,20:599-608.
    [48]Sun, Y.D., Lai, X.L., Jiang, H.S., et al. Guadalupian (Middle Permian) conodont faunas at Shangsi section, Northeast Sichuan Province[J]. Journal of China University of Geosciences, 2008,19(5):451-460.
    [49]尚海静,张宁,夏文臣.广西凭祥剖面Guadalupian(中二叠统)底界附近的凉水和温水混生牙形石动物群[J].地质科技情报,2008,27(5):47-53.
    [50]吴沙,张宁,夏文臣,等.鄂西茅草街剖面罗德阶-沃德阶界线附近的牙形石及地层意义[C],中国古生物学会第26届学术年会论文集,2011.
    [51]Kametaka M., Nagai H., Zhu S., et al. Middle Permian radiolarians from Anmenkou, Chaohu, Northeastern Yangtze platform, China[J]. Island Arc,2009,18:108-125.
    [52]Ishiga, H. Late Carboniferous and Permian radiolarian biostratigraphy of Southwest Japan. Journal of Geosciences[J], Osaka City University,1986,29:89-100.
    [53]Sun, D., Xia, W. Identification of the Guadalupian-Lopingian boundary in the Permian in a bedded chert sequence, South China[J]. Palaeongeography, Palaeoclimatology, Palaeoecology,2006,236:272-289.
    [54]胡世忠.对孤峰组的新认识[J].火山地质与矿产,2000,21(1):63-68.
    [55]孔庆玉,龚玉觐.苏皖地区下二叠统放射虫硅质岩形成环境探讨[J].石油与天然气地质,1987,(1):86-89.
    [56]朱同兴.安徽南部下二叠同结核状硅质岩和层状硅质岩的沉积学特征及其成因探讨[J].岩相古地理,1989,43(5):1-8.
    [57]冯庆来,钟长汀.层状硅质岩沉积环境研究的一种新方法(酸溶蚀法)—兼论武昌地区孤峰组沉积环境[J].岩相古地理,1994,14(5):45-55.
    [58]He W., Wu S., Zhang K., et al. Classification of radiolarian fossil zones and environmental analysis of Gufeng Formation in Lower Yangtze region[J]. Jiangsu Geology,1999,23, 17-23.
    [59]Kametaka M., Takebe M., Nagai H., et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation:a continental shelf radiolarian chert[J]. Sedimentary Geology,2005,174(3-4): 197-222.
    [60]吕炳全,瞿建忠.下扬子区早二叠世海进和上升流形成的缺氧环境沉积[J].科学通报,1989,(22):1721-1724.
    [61]Canfield D.E.. Factors influencing organic carbon preservation in marine sediments[J]. Chemical Geology,1994,114:315-329.
    [62]Tribovillard N., Algeo T. J., Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies[J]:An update. Chemical Geology,2006,232:12-32.
    [63]王文耀.苏皖地区的孤峰组[J].地层学杂志,1988,12(1):76-80.
    [64]朱洪发,秦德余,刘翠章.论华南孤峰组和大隆组硅质岩成因,分布规律及其构造机制[J].石油实验地质,1989,11(4):341-348.
    [65]毕仲其.南京附近二叠系孤峰组和大隆组中放射虫化石的发现及其指相意义[J].中国地质科学院南京地质矿产研究所所刊,1982,03:111-112.
    [66]盛金章,王玉净.南京龙潭孤峰组的放射虫化石[J].古生物学报,1985,24(2):171-180.
    [67]王汝建.安徽巢湖孤峰组的放射虫化石[J].古生物学报,1993a,32(4):442-457.
    [68]王汝建.南京湖山地区孤峰组硅质岩中的放射虫化石[J].微体古生物学报,1993b,10(4):459-458.
    [69]王汝建.南京湖山地区下二叠统孤峰组放射虫动物群[J].地质科学,1995a,30(2):139-146.
    [70]王汝建.安徽巢湖孤峰组放射虫化石新资料[J].地球科学-中国地质大学学报,1995b,20(5):508-510.
    [71]王玉净,齐敦伦.苏皖南部孤峰组放射虫从动物群[J].微体古生物学报,1995,12(4):374-387.
    [72]王玉净,李家骧.二叠纪放射虫Follicucullus bipartitus-F. charveti组合带的发现及其地质意义[J].微体古生物学报,1994,11(2):201-212.
    [73]何卫红,吴顺宝.下扬子区孤峰组放射虫组合带划分[J].地球科学——中国地质大学学报,1999,24(1):20-21.
    [74]赵金科,郑灼官.浙西、赣东北早二叠世晚期菊石[J].古生物学报,1977,16(2):217-261.
    [75]Gibbard, P., Cohen, K., Ogg, J.. Permian Period. In Ogg, J., Ogg, G. and gradstein, F., eds, The concise Geologic Time Scale[M], Cambridge Univ, Press,2008,85-93.
    [76]Kuwahara, K., Yao, A., Yao, J.X., et al. Middle Permian radiolarian biostratigraphy on the Gufeng Formation in the Songzi-Wufeng area, Hubei Province, China[J]. Jour. Geosciences Osaka City Univ.,2007a,50:55-66.
    [77]Kuwahara, K., Yao, A., Yao, J.X., et al. Findings of Middle Permian radiolarian and conodont fossils from the Gufeng Formation of the Zigui area, Hubei Province, China[J]. Journal of Geosciences Osaka City University,2008a,51:9-19.
    [78]马强分,冯庆来.湖北建始罗家坝剖面孤峰组放射虫分类及地层研究[J].微体古生物学报,2012,29(4):402-415.
    [79]Kuwahara, K., Yao, A., Yao, J.X., et al. Permian and Triassic radiolarian assemblages from the Yangtze platform (Part 10)-Radiolarian biostratigraphy of the Permian Gufeng Formation in the northern Sichuan, China[J]. Abstr.2007 Ann. Meet., Palaeontol. Soc. Japan, 2007c,50.
    [80]Kuwahara, K., Yao, A., Yao, J.X., et al. Permian and Triassic radiolarian assemblages from the Yangtze platform (Part 11)-Radiolarian fossils from the Middle and Upper Permian in the northern Sichuan, China[J]. Abstr.157th, Meet., Palaeontol. Soc. Japan,2008b,61.
    [81]梅仕龙,金玉玕,Bruce, R. W.四川宣汉渡口二叠纪“孤峰组”牙形石序列及其全球对比意义[J].古生物学报,1994,33(1):1-23.
    [82]谢树成,龚一鸣,童金南,等.从古生物学到地球生物学的跨越[J].科学通报,2006,51(19):2327-2336.
    [83]殷鸿福,杨逢清,谢树成,等.生物地质学[M].武汉:湖北科学技术出版社.2004.
    [84]Neuendorf K K, Nehl J P, Jackson J A. Glossary of Geology[M].5th ed. Alexandria: American Geological Institute,2005.779.
    [85]Goodwin D. Geobiology, biogeology, and the colleague across the Hall[J]. Palaios,2006, 21(1):1-2.
    [86]Dutkiewicz, A., Volk, H., Ridley, J., et al. Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia[J]. Geology,2003,31(11):981-984.
    [87]Rasmussen, B. Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales[J]. Geology,2005,33:497-500.
    [88]Knoll, A. H., Hayes, J. M. Geobiology:Articulating a concept. In:Lane, R. H., Lipps, J., Steininger, F. F., et al., eds., Paleontology in the 21st century[J]. Frankfurt, international Senckenberg conference. Kleine Senckenberg,1997,25:105-108.
    [89]Knoll, A. H., Hayes, J. M. Geobiology:Problems and prospects. In:Lane, R. H., Steininger, F. F., Kaesler, R.L., et al., eds, Fossils and the future:Paleontology in the 21st century[J]. Senckenberg-Buch,2000,74:149.
    [90]Amend,J. P., Fedo, C., Cady, S. L., et al. Geobiology and geomicrobiology in the 21st century[J].GSA Today,2001,11:10.
    [91]Pennisi, E. Geobiologists:As diverse as the bugs they study[J]. Science,2002,296:1058-1060.
    [92]Knoll, A. H. The geological consequences of evolution[J]. Geobiology,2003,1:3-14.
    [93]Noffke, N. Geobiology-A holistic scientific discipline[J]. Palaeogeography, Palaeoclimatology, Palaleoecology,2005,219:1-3.
    [94]Stein, R. Origin of marine petroleumsource rocks from the Late Jurassic to Early Cretaceous Norwegian Greenland Seaway:Evidence for stagnation and upwelling[J]. Marineand Petroleum Geology,2004,21:157-176.
    [95]Tyson, R.V. The"productivityversuspreservation" controversy:Cause, flaws, and resolution. In:HarrisNicholasB, ed.,The deposition of organic-carbon-rich sediments:Models, mechanisms, and consequences[J]. Special Publication-Society for Sedimentary Geology, 2005,82:17-33.
    [96]Demaison, G. J., Moore, G. T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry,1980,2:9-31.
    [97]Pedersen, T. F., Calvert, S. E. Anoxia versus productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rock[J]? AAPGBulletin,1990,74:454-466.
    [98]Tyson, R. V., Pearson, T. H. Modern and ancient continental shelf anoxia[J]. Geological Society of Special Publication,1991,58:470-482.
    [99]Parrish, J. T. Upwelling and petroleumsource beds with reference to Palaeozoic[J]. AAPG Bulletin,1982,66:750-774.
    [100]Priscu, J. C., Adams, E. E., Lyons, W. B., et al. Geomicrobiology of subglacial ice above Lake Vostok[J], Antarctica. Science,1999,286:2141-2144.
    [101]Walker, J. J., Spear, J. R., Pace, N. R., et al. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment[J]. Nature,2005,434:1011-1014.
    [102]阎桂林.第四纪沉积物磁性勘查油气法的原理及应用[J].物探与化探,1997,21(4):254-262.
    [103]Xie S C, Yin H F, Xie X N, et al. On the geobiological evaluation of hydrocarbon source rocks[J]. Front Earth Sci China,2007,1:389-398.
    [104]王红梅,马相如,刘邓,等.2007.从生物脂类化合物到沉积有机质的变化及其对正演烃源岩有机质形成的启示[J].地球科学---中国地质大学学报,32(6):748-754.
    [105]Ragueneau, O., Troguer, P., Leynaert, A.,et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change,2000,26:317-365.
    [106]Bishop J K B. The barite-opal-organic carbon association in ocean particulate matter[J]. Nature,1988,332:341-343.
    [107]Dehairs F, Baeyens W, Goeyens L. Accumulation of suspended barite at Mesopelagic depths and export production in the Southern Ocean[J]. Science,1992,258:1332-1335.
    [108]殷鸿福,丁梅华,张克信,等.扬子地台及其周缘东吴-印支期生态地层学[M].北京: 科学出版社,1995.338.
    [109]Cisne J L, Rabe B D. Coenocorrelation:Gradient analysis of fossil communities and its application in stratigraphy [J]. Lethaia,1978,11:341-364.
    [110]Dodd J R, Stanton R J. Paleoecology, Concepts and Applications[M]. New York:John Wiley and Sons,1981.559.
    [111]Jorissen, F. J., Rohling, E. J. Faunal prespectives on paleoproductivity[J]. Marine Micropaleontology,2000,40(3):131-134.
    [112]Holbourn, A. E., Kuhnt, W., SEding, E. Atlantic paleobathymetry, paleoproductivity and paleocirculation in the late Albian:The benthic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,170:171-196.
    [113]Piper D Z, Perkins R B. A modern versus Permian black shale -The hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology,2004,206: 177-197.
    [114]Henderson,G. M. New oceanic proxies for paleoclimate[J]. Earthand Planetary Science Letters,2002,203:1-13.
    [115]Paytan A, Kastner M, Chavez F P. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite[J]. Science,1996,274:1355-1357
    [116]McManus J, Berelson W M, Klinkhammer G P. Geochemistry of barium in marine sediments:Implications for its use as a paleoproxy[J]. Geochim Cosmochim Acta,1998,62: 3458-3473
    [117]Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochim Cosmochim Acta, 1996,60:3869-3878
    [118]Brocks,J.J.,Logan,G. A.,Buick,R.,et al. Archean molecular fossils and the early rise of eukaryotes[J]. Science,1999,285:1033-1036.
    [119]Kuypers,M. M.M.,VanBreugel,Y.,Schouten,S.,et al. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events[J]. Geology,2004,32:853-856.
    [120]Xie, S. C.,Pancost, R. D.,Yin, H. F., et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature,2005,434:494-497.
    [121]Brocks,J.J.,Pearson,A. Building the biomarker tree of life[J], Rev. Mineral. Geochem., 2005,59:233-258.
    [122]沈国英,施并章.海洋生态学[M].北京:科学出版社.2002.
    [123]Mucci,A.,Sundby,B.,Gehlen,M.,et al. The fate of carbon in continental shelf sediments of eastern Canada:Acase study[J]. Deep-Sea Research Ⅱ,2000,47:733-760.
    [124]秦建中.中国的烃源岩[M].北京:科学出版社.2005.
    [125]Ibach, L. E. J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin,1982,66:170-188.
    [126]杨浩,王永标,陈林,等.地球微生物过程与潜在烃源岩的形成:钙质微生物岩[J].地 球科学——中国地质大学学报,2007,32(6):797-802.
    [127]Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chem Geol,1992, 99:65-82.
    [128]Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient muds tones[J]. Chem Geol,1994,111:111-129.
    [129]李红敬,解习农,林正良,等.四川盆地广元地区大隆组有机质富集规律[J].地质科技情报,2009,28(2):98-103.
    [130]雷勇,冯庆来,桂碧雯.安徽巢湖平顶山剖面上二叠统大隆组有机质富集的地球生物学模式[J].古地理学报,2010,12(2):202-211.
    [131]Watanate S, Tada R, Ikehara K, et al. Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaleoecology.2007,247:50-64.
    [132]Meyers S R, Sageman B B, Lyons T W. Organic carbon burial rate and the molybdenum proxy:Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event 2[J]. Paleoceanography,2005,20:2002-2020.
    [133]Mozley P S, Burns S J. Oxygen and carbon isotopic composition of marine carbonate concretions:An overview[J]. J Sediment Petrol,1993,61:73-83.
    [134]Huggett J M, Gale A S, Evans S. Carbonate concretions from the London Clay (Ypresian, Eocene) of Southern England and the excep tional preservation of wood-boring communities[J]. J Geol Soc,2000,157:187-200.
    [135]Woo K S, Khim B K. Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea:Types of concretions and formation condition[J]. Sedimen Geol,2006,183:15-30.
    [136]Siebert C, McManus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth and Planetary Science Letters,2006,241:723-733.
    [137]Voigt,S.,Gale,A. S.,Voigt,T. Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of Northwest Europe:An integrated palaeoenvironmental analysis[J]. Cretaceous Research,2006,27(6):836-858.
    [138]Falkowski, G., Barber, R. T., Smetacek, V. Biogeochemical Controls and Feedbacks on Ocean Primary Production[J]. Science,1998,281:200-206.
    [139]Lazarus, D., Bittniok, B., Diester H, et al. Radiolarian and sedimentologic paleoproductivity proxies in late Pleistocene sediments of the Benguela Upwelling System, ODP Site 1084[J]. Marine Micropaleontology,2008,68:223-235.
    [140]Okazaki, Y., Takahashi, K., Asahi, H., et al. Productivity changes in the Bering Sea during the late Quaternary. Deep Sea Research Part II[J]. Topical Studies in Oceanography,2005, 52(16-18):2150-2162.
    [141]Jin, Y., Noble, P. J., Poulson, S. R. Paleoenvironmental and paleoecological implications of Permian (Guadalupian) radiolarian and geochemical variations in the Lamar Limestone, Delaware Basin, West Texas (USA)[J]. Palaeogeography, Palaeoclimatiology, Palaeoecology, 2012,346-347,37-53.
    [142]Dennett, M.R., Caron, D.A., Michaels, A.F., et al. Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific[J]. Journal of Plankton Research,2002,24:787-805.
    [143]冯庆来.放射虫古生态的初步研究[J].地质科技情报,1992,11(2):41-46.
    [144]Ishitani Y, Takahashi K, Okazaki Y.. Vertical and geographic distribution of selected radiolarian species in the North Pacific[J]. Micropaleontology,2008,54:27-39.
    [145]Anderson O R, Swanberg N R, Bennett P.. Assimilation of symbiont-derived photosynthates in some solitary and colonial radiolarian[J]. Mar Biol,1983,77:265-269.
    [146]De Wever, P., Dumitrica, P., Caulet, J. P., et al.. Radiolarians in the Sedimentary Record[M]. Singapore:Gordon and Breach Science Publishers,2001,525.
    [147]Thurman H V, Trujillo A P. Introductory Oceanography[M]. New Jersey:Upper Saddle River,2004,405.
    [148]Kozur, H.. Upper Permian radiolarians from the Sosio Valley area, western Sicily (Italy) and from the uppermost Lamar Limestone of West Texas[J]. Jahrbuch der Geologischen Bundesanstalt Wien,1993,136:99-123.
    [149]何卫红.煤山D剖面的放射虫动物群与海平面变化[J].地球科学,2006,31(2):159-164.
    [150]Renz G W.. The distribution and ecology of radiolaria in the central Pacific:Plankton and surface sediments[J]. Bulletin of the Scripps Institution of Oceanography,1976,22: 267-280.
    [151]王汝建,陈荣华.白令海表层沉积物中硅质生物的变化及其环境控制因素[J].地球科学—中国地质大学学报,2004,29(6):685-690.
    [152]杜永灯,沈俊,冯庆来.放射虫在生产力和烃源岩研究中的应用[J].地球科学---中国地质大学学报,2012,37(S2):147-155.
    [153]Angel D L.. Carbon flow within the colonial radiolarian microcosm[J]. Symbiosis,1991,10: 195-217.
    [154]Caron, D.A., Michaels, A.F., Swanberg, N.R., Howse, F.A.. Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda[J]. Journal of Plankton Research,1995,17:103-129.
    [155]陈木宏,黄良民,涂霞,等.南海放射虫与初级生产力的古海洋学转换关系[J].科学通报,1999,44:327-333.
    [156]Takahashi K.. Siliceous microplankton fluxes in the east subarctic Pacific,1982-1986[J]. J Oceanogr,1997,53:455-466.
    [157]Lazarus D, Bittniok B, Diester H, et al. Comparison of radiolarian and sedimentologic paleoproductivity proxies in the latest Miocene-Recent Benguela Upwelling System[J]. Mar Micropaleontol,2006,60:269-294.
    [158]向宇,冯庆来,沈俊,等.贵州安顺长兴阶放射虫动物群及其与TOC、古生产力的关系[J].中国科学,待刊
    [159]Taylor, S.R., Mclennan, S.M.. The Continental Crust:Its Composition and Evolution[M]. Blackwell Scientific Publication, Oxford,1985
    [160]Khramov, A.N., Ustritsky, V.I.. Paleopositions of some northern Eurasian tectonic blocks: paleomagnetic and paleobiologic constraints[J]. Tectonophysics,1990,184:101-109..
    [161]Pessagno, E.A., Newport, L.A.. A techinique for extracting Radiolarian from radiolarian chert[J]. Micropaleontology,1972,18:231-234.
    [162]Loucks, R. G., Ruppel, S. C. Mississippian Barnett Shale:Lithofacies and depositional setting of a deepwater shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin,2007,91(4):579-601. doi:10.1306/11020606059
    [163]Singh, P. Lithofacies and sequence-stratigraphic framework of the Barnett Shale, northeast Texas[D]. University of Oklahoma, Norman, Oklahoma,2008,1-181.
    [164]Schieber, J., John, B. S. Bed-load transport of mud by floccules ripples:Direct observation of ripple migration processes and other implications[J]. Geology,2009,37(6):483-486. doi:10.1130/G25319A.1
    [165]Schieber, J., John, B. S., Thaisen, K. Accretion of mudstone beds from migrating floccule ripples[J]. Science,2007,318(5857):1760-1763. doi:10.1126/science.1147001
    [166]Slatt, R. M., Abousleiman, Y. Merging sequence stratigraphy and geomechanics for unconventional gas shales[J]. The Leading Edge,2011,30(3):274-282. doi:10.1190/1.3567258
    [167]Mark, E. C., Carl, H. S., Raymond, J. A., et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012,96(4):665-677. doi:10.1306/08151110188
    [168]Loucks, R.G., Reed, R.M., Ruppel, S.C., et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79(12):848-861. doi:10.2110/jsr.2009.092
    [169]Roger, M. S., Neal R. O. Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin,2011,95(12):2017-2030. doi:10.1306/03301110145
    [170]Milner M., McLin R., Petriello J. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion-milled backscatter SEM methods[C]. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, October 19-21.2010.
    [171]李玉喜,乔德武,姜文利,等.页岩气含气量和页岩气地质评价综述[J].地质通报,2011,30(2-3):308-317.
    [172]聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例 [J].石油实验地质,2011,33(3):219-225.
    [173]Jarvie, D. M. Unconventional Shale Resource Plays:Shale -Gas and Shale -Oil Opportunities[C]. Fort Worth Business Press meeting,2008.
    [174]Jarvie, D. M. Shale plays:Making Gas and Oil From Shale Resource Systems[C]. Dalas Geological Society,2010.
    [175]Cole G A, Drozd R J, Sedivy R A, et al. Organic geochemistry and oil-source correlations, Paleozoic of Ohio[J]. AAPG Bulletin,1987,71(7):788-809.
    [176]Hill D G, Nelson C R. Gas productive fractured shales:An overview and update[J]. GRI Gas TIPS,2000,6(2):4-13.
    [177]蒲泊伶.四川盆地页岩气成藏条件分析[D].中国石油大学(华东),2008
    [178]蒋恕,蔡东升,朱筱敏,等.辽东湾地区孔隙演化的机理[J].地球科学--中国地质大学学报,2007,32(3):366-372.
    [179]王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.
    [180]龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-532.
    [181]刘德华,肖佳林,关富佳,等.页岩气开发技术现状及研究方向[J].石油天然气学报,2011,33(1):119-123.
    [182]熊伟,郭为,刘洪林,等.页岩的储层特征以及等温吸附特征[J].天然气工业,2012,32(1):113-116.
    [183]翟光明,何文渊,王世洪,等.中国页岩气实现产业化发展需重视的几个问题[J].天然气工业,2012,32(2):1-4.
    [184]O'Brien, N. R., Slatt, R. M. Argillaceous rock atlas[M]. New York, Springer-Verlag,141. 1990.
    [185]Mulder, T., Syvitski, J. P. M., Migeon, S., er al. Marine hyperpycnal flows:Initiation, behavior, and related deposits-A review[J]. Marine and Petroleum Geology,2003,20(6-8): 861-882. doi:10.1016/j.marpetgeo.2003.01.003
    [186]Nakajima, T. Hyperpycnites deposited 700 km away from river mouths in the central Japan Sea[J]. Journal of Sedimentary Research,2006,76(1):60-73.
    [187]Soyinka, O. A., Slatt, R. M. Identification and microstratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology,2008,55(5):1117-1133. doi:10.1111/j.1365-3091.2007.00938.x
    [188]Jarvie, D. M., Hill, R. J., Ruble, T. E., et al. Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007,91(4):475-499.
    [189]Chalmers, G. R. L., Bustin, R. M. Lower Cretaceous gas shales in northeastern British Columbia, Part II:evaluation of regional potential gas resources[J]. Bulletin of Canadian Petroleum Geology,2008,56(1):22-61.
    [190]Mazzullo, S. J., Wilhite, B.W., Woolsey, I.W. Petroleum reservoirs within a spiculite-dominated depositional sequence:Cowley Formation (Mississippian- Lower Carboniferous), south-central Kansas[J]. AAPG Bulletin,2009,93(12):1649-1689. doi:10.1306/06220909026
    [191]O'Brien, N. R. The effects of bioturbation on the fabric of shale[J]. Journal of Sedimentary Research,1987,57(3):449-455.
    [192]Turner, J. T. Zooplankton fecal pellets, marine snow, and sinking phytoplankton blooms[J]. Aquatic Microbial Ecology,2002,27:57-102. doi:10.3354/ame027057
    [193]李明诚.石油与天然气运移[M].北京:石油工业出版社,2004,50-103.
    [194]Ross, D. J. K., Bustin R. M. Shale gas pot ential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology,2007, 55(3):51-75.
    [195]Curtis, M. E., Sondergergeld, C. H., Ambrose, R. J., et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin,2012,96(4):665-677.
    [196]Julia, F. W. G., Robert, M. R., Jon, H. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments [J]. AAPG Bulletin,2007,91(4):603-622.
    [197]胡琳,朱炎铭,陈尚斌,等.中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[J].煤炭学报,2012,37(11):1871-1877.
    [198]朱定伟,丁文龙,邓礼华,等.中扬子地区泥页岩发育特征与页岩气形成条件分析[J].特种油气藏,2012,19(1):34-37.
    [199]李艳霞,林娟华,龙幼康,等.中扬子地区下古生界海相泥-页岩含气勘探远景[J].地质通报,2011,30(2-3):349-356.
    [200]董大忠,程克明,王世谦,等.页岩气资源评价方法及其在四川盆地的应用[J].天然气工业,2009,29(5):33-39.
    [201]聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.
    [202]蒋裕强董大忠漆麟等.页岩气储层的基本特征及其评价[J].天然气工业,2010,30(10):7-12.
    [203]张海全,余谦,李玉喜,等.中上扬子区下志留统页岩气勘探潜力[J].新疆石油地质,2011,32(4):353-355.
    [204]梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(一).南方四套区域性海相烃源岩的分布[J].海相石油地质,2008,13(2):1-16.
    [205]刘东英.苏皖下扬子区中古生界油气勘探方向[J].江汉石油学院学报,2003,25(6):46-47.
    [206]郭念发,赵红格,陈红.下扬子地区海相地层油气赋存条件分析及选区评价[J].西北大学学报,2002,32(5):526-530.
    [207]冯增昭,何幼斌,吴胜和.中下扬子地区二叠纪岩相古地理[J].沉积学报,1993,11(3): 13-24.
    [208]张金川,薛会,张德明,等.页岩气及其成藏机理[J].现代地质,2003,17(4):466.
    [209]张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-141.
    [210]张金川,姜生玲,唐玄,等.我国页岩气富集类型及资源特点[J].天然气工业,2009,29(12):1-6.
    [211]蒋志文.页岩气简介[J].云南地质,2010,29(1):109-110.
    [212]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    [213]Bowker K A. Barnett Shale gas production, Fort Worth Basin:Issues and discussion[J]. AAPG Bulletin,2007,91(4):523-533.
    [214]Curtis J B. Fractured shale gas systems [J]. AAPG Bulletin,2002,86(11):1921-1938.
    [215]Caldwell R. Unconventional Resources:are they for real? [J]. Scotia Newsletter,2006, 91(3):1-2.
    [216]Jarcie D M, Ronald J H, Tim E R, et al. Unconventional shale gas systems:the Mississippian Barnett Shale of north central Texas as one model for thermo-genic shale gas assessment[J]. AAPG,2007,91(4):475-499.
    [217]Shurr G W, Jennie L R. Unconventional shallow biogenic gas systems[J]. AAPG,2002, 86(11):1939-1969.
    [218]Scott L M, Daniel M J, Kent A B, et al. Mississippian Barnett Shale Fort Worth basin north-central Texas:Gas-shale play with multi-trillion cubic foot potential [J]. AAPG Bulletin,2005,89(2):155-175.
    [219]Hill D G, Lombardi T E. Fractured gas shale potential in New York[M]. Colorado:Arvada, 2002:1-16.
    [220]袁志华,张玉清.利用油气微生物勘探技术寻找页岩气有利目标区[J].地质通报,2011,30(2-3):407-409.
    [221]姜文斌,陈永进,李敏.页岩气成藏特征研究[J].复杂油气藏,2011,4(3):1-5.
    [222]聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.
    [223]张金川,聂海宽,徐波,等.四川盆地页岩气成藏地质条件[J].天然气工业,2008,28(2):151-156.
    [224]蒲泊伶,包书景,王毅,等.页岩气成藏地质条件分析——以美国页岩气盆地为例[J].石油地质与工程,2008,22(3):33-39.
    [225]王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.
    [226]聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质,2011,33(3):219-225.
    [227]李智锋,李治平,王杨.页岩气储层渗透性测试方法对比分析[J].断块油气田,2011,18(6):761-764.
    [228]聂海宽,张金川.页岩气藏分布地质规律与特征[J].中南大学学报(自然科学版),2010,41(2):700-708.
    [229]Montgomery S L, J arvie D M, Bowker K A, et al. Mississippian Barnett Shale, Fort Worth basin, north-central Texas:Gas-shale play with multi-trillion cubic foot potential [J]. AAPG Bulletin,2005,89 (2):155-175.
    [230]Charles B, John K, Roberto S R. Producing Gas from its source[J]. Oilfield review autumn 2006,18(3):36-49.
    [231]李艳丽.页岩气储量计算方法探讨[J].天然气地球科学,2009,20(3):466-470.
    [232]Burnaman M D, Xia Wenwu, Shelton J. Shale gas play Screening and Evaluation Criteria[J]. China Petroleum Exploration,2009,14(3):51-64.
    [233]李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业,2009,29(5):27-32.
    [234]Hill R J, Zhang E, Katz B J. Modeling of gas generation from the Barnett Shale, Fort Worth Bssin, Texas[J]. AAPG Bulletin,2007,91(4):501-521.
    [235]陈更生,董大忠,王世谦,等.页岩气储层形成机理与富集规律初探[J].天然气工业,2009,29(5):17-21.
    [236]林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,23(4):25-30.
    [237]盛连喜,冯江,王娓.环境生态学导论[M].北京,高等教育出版社,2002.
    [238]闫存章,黄玉珍,葛春梅,等.页岩气是潜力巨大的非常规天然气资源[J].天然气工业,2009,29(5):1-6.
    [239]李政.东营凹陷页岩气勘探潜力初步评价[D].成都理工大学,2011.
    [240]邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.
    [241]应凤祥,杨式升,张敏等.激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报,2002,20(1):75-79.
    [242]刘伟新,史志华,朱樱,等.扫描电镜/能谱分析在油气勘探开发中的应用[J].石油实验地质,2001,23(3):341-343.
    [243]陈丽华.扫描电镜在石油地质上的应用[M].北京:石油工业出版社,1990,20-56.
    [244]吴勘,马强分,冯庆来.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义[J].地球科学——中国地质大学学报,2012,37(S2):175-183.
    [245]许峰,胡小方,卢斌,等.碳化硼固相烧结微观结构演化的同步辐射CT观测[J].无机材料学报,2009,24(1):175-181.
    [246]殷宗军,朱茂炎,肖体乔.同步辐射X射线相衬显微CT在古生物学中的应用[J].物理,2009,38(7):504-510.
    [247]Tian Y C, Li W J, Chen J, et al. High resolution hard x-ray microscope on a second generation synchrotron source [J]. Review of Scientific Instruments,2008,79(10):103-108.
    [248]Attwood D. Nanotomography comes of age[J]. Nature,2006,442(10):642-643.
    [249]罗蓉,李青.页岩气测井评价及地震预测、监测技术探讨[J].天然气工业,2011,31(4):34-39.
    [250]赵鹏飞,余杰,杨磊.页岩气储量评价方法[J].海洋地质前沿,2011,27(7):57-63.
    [251]Passey Q R, Creaney S, Kulla J B, et al. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin,1990,74(12):1777-1794.
    [252]吴勘.高一过成熟区页岩气藏烃源岩评价方法探索[J].石油天然气学报,2012,34(10):37-39.
    [253]陈践发,张水昌,孙省利,等.海相碳酸岩盐优质烃源岩发育的主要影响因素[J].地质学报,2006,80(3):467-472.
    [254]金之钧,蔡立国.中国海相层系油气地质理论的继承与创新[J].地质学报,2007,8(8):1017-1024.
    [255]张水昌,梁狄刚,张大江.关于古生界烃源岩有机质丰度的评价标准[J].石油勘探与开发,2002,29(2):8-12.
    [256]高林,周雁.中下扬子区海相中-古生界烃源岩评价与潜力分析[J].油气地质与采收率,2009,16(3):30-33.
    [257]杨树春,卢庆治,宋传真,等.库车前陆盆地中生界烃源岩有机质成熟度演化及影响因素[J].石油与天然气地质,2005,26(6):770-777.
    [258]冯增昭.单因素分析多因素综合作图法----定量岩相古地理重建[J].古地理学报,2004,6(1):1-19.
    [259]聂海宽,张金川,包书景,等.四川盆地及其周缘上奥陶统—下志留统页岩气聚集条件[J].石油与天然气地质,2012,33(3):335-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700