用户名: 密码: 验证码:
富水孔隙砂岩含水层扰动过程的水动力学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中生界富水孔隙砂岩在我国西部矿区分布较普遍,立井施工和井下采掘揭露此类含水层时往往水害严重,水害治理不但大幅增加工程费用,而且也会严重延误工期、影响生产,成为普通法建井领域关键技术难题。针对立井建设中的水害防治难题,本文通过理论分析、试验研究、数值建模计算等方法对立井开挖过程富水砂岩含水层的水动力特征进行了综合研究,取得了如下成果:
     基于洛河组砂岩孔隙性和渗透性特点,采用大尺度弱胶结砂岩物理模型进行了地下水和化学浆液两种粘滞性差异较大液体的对比性渗透试验,研究了天然状态下不同粘度流体的渗流特征。根据一次场电位和激励电流的响应规律,获得了试验条件下的水位上升高度和渗流速度;根据自然电位的响应规律得出随着注水的进行模型非饱和厚度与自然电位呈负线性关系。利用测点处自然电位下降和激励电流跃升可以反映化学浆液的渗流到达,通过视电阻率的变化判断出化学浆液渗流充填效果。相同情况下,浆液渗流速度和扩散半径随渗透系数增大近似呈平方根关系增加。
     根据伺服渗透试验所反映的全应力-应变过程砂岩的渗透性演化特点及其与应力、应变的耦合特点,探讨了孔隙砂岩的力学性状与抗渗能力的关联性,总结提出了临界抗渗强度与峰值应力比值的量化关系式。在此基础上,基于Kozeny-Carman方程和多孔介质质量守恒方程,对砂岩损伤过程中孔隙渗流阶段的渗透系数与体积应变的关系进行了解析分析;发现岩石进入塑性变形阶段以后,以裂隙渗流为主,应采用双孔隙度/双渗透率模型来反映渗透性与体积应变之间的关系。
     物理模拟试验和数值建模分析揭示了立井开挖过程孔隙砂岩含水层的水动力场响应规律:单一渗流条件下,随着开挖深度的增加,等水压面经历了水平面"“倒锥形”"“倒圆台形”降落漏斗的发展演变过程;获得了水压降随开挖深度和距井中心距离增加而变化的规律;发现开挖过程中出现水平、竖直和三维渗流分区现象;研究了不同开挖深度时涌水量的变化规律,并探讨了涌水量与渗透系数、开挖半径、井底水压降、含水层厚度、模型长度等因素之间的关系。采用变渗透系数法对立井开挖过程中渗流场—应变场进行了流固耦合分析,获得了立井周边围岩渗透性变化特征;对比分析了考虑与不考虑流固耦合作用下不同开挖深度时含水层水压力分布和立井涌水量变化规律。
     基于数值计算结果,通过多元非线性拟合分析,建立了考虑流固耦合作用下不同开挖深度时立井涌水量计算公式,利用该公式对文家坡矿主、副及风井涌水量进行了计算,结果表明预计值和实际涌水量较为符合,比承压-无压公式预计值更接近实际。
Water hazards usually are serious when vertical shaft construction and underground miningreveal mesozoic porous and water-enriched sandstone which widely distributed in westernmining area in China. Water hazards management becomes a key technical challenges becausethe hazards increase project costs, delay the construction period and affect production. Aimed atthe prevention and control of water hazards challenges in vertical shaft construction, by theoryanalysis, experimental in the lab, numerical modeling calculation, this thesis deeply studies thehydrodynamic characteristics of porous and water-enriched sandstone aquifer during disturbedprocess. The following results are obtained.
     This thesis are studied the seepage characteristics of different viscosity fluid (groundwaterand chemical grout) under the natural state using the method of natural electric field and artificialelectric field combining by water injection and the grouting test of weakly consolidatedsandstone model. The water level rise height and flow velocity under the condition of the test areattained according to primary field potential and exciting current. The natural potential lineardecrease with increase of model unsaturated thickness as the water injection according to theresponse of natural potential. The natural potential began to fall and exciting current jumpindicates that the chemical grout seepage reach monitoring point, chemical grout filling effect isjudged by changes in apparent resistivity. The average diffusion speed and radius increasedapproximately by the square root with the permeability coefficient in different permeabilitymedia under the same conditions.
     The correlativity of mechanical properties and anti-permeability of porous sandstone isdiscussesed, the expression of ratio of critical anti-permeability strength and peak strength isproposed, based on characteristics of permeability evolution and its coupling with stress andstrain before peak pressure during complete stress-strain path. The relational expression ofpermeability coefficient and the volume strain in pore seepage phase in damage process isestablished on the basis of Kozeny-Carman formula and mass conservation equation of porousmedia. The relationship between permeability coefficient and the volume strain is described bydouble porosity/dual permeability model in the plastic deformation stage which fracture seepageis mainly.
     Hydrodynamic field response law of porous sandstone aquifer during vertical shaftexcavation by physical simulation experiment and numerical modeling analysis is that thehydraulic pressure isobaric surface is a horizontal plane in the beginning, afterwards, becomes toreverse cone-shape and reverse truncated-cone with the increase of excavation depth under single seepage conditions. The law of hydraulic pressure drop changes with excavation depth anddistance from the center of the well is obtained. There is a phenomenon that the aquifer havehorizontal, vertical and three dimensional seepage area in excavation. The change rule of waterinflow, and the relationship between water inflow and permeability coefficient, excavation radius,hydraulic pressure drop in vertical shaft bottom, thickness of the aquifer, model length arein-depth researched. The fluid-mechanical interaction module in FLAC3D with changeablepermeability coefficient is adopted to simulate the seepage field-strain field of sandstone aquiferin vertical shaft excavation, and variation characteristics of permeability of surrounding rock isgained. Hydraulic pressure distribution in aquifer and vertical shaft water inflow change ruleunder considering and not considering fluid-mechanical coupling effect at different excavationdepth are comparative studied.
     The calculate formula of vertical shaft water inflow is established by multivariate nonlinearfitting analysis based on the results of numerical calculation. The water inflow expected value ofmain shaft, auxiliary shaft and air shaft of Wen jiapo coalmine using the established formula ismore in line with and closer to the the the actual value compared with the calculated value byunder pressure-without the pressure formula.
引文
[1]钱鸣高.煤炭产能扩张引发中西部环境隐忧[J].资源环境与发展,2011,4:4-7.
    [2]国家安全生产监督管理总局信息研究院,煤炭信息研究院.
    [3]国家能源局.煤炭工业发展“十二五”规划.
    [4]李勋千.井筒涌水量预测及注浆堵水[M].北京:煤炭工业出版社,1992.
    [5]中国煤炭学会矿井建设专业委员会,中煤建设集团公司,煤炭科学院研究总院北京建井研究所编著.立井井筒施工技术:中国凿井技术50年论文集[M].北京:煤炭工业出版社,1999.
    [6]黄德发,赵社邦,吴里扬,等.河南煤矿立井井筒设计与施工技术[M].北京:煤炭工业出版社,2008.
    [7]郑灿堂.应用自然电场法检测土坝渗漏隐患的技术[J].地球物理学进展,2005,20(3):854-858.
    [8]龙凡,韩天成.赤峰地区玄武岩地下水赋存类型及其地电特征[J].水文地质工程地质,2002,6:60-62.
    [9]马安丽,郑贺祥.电法找水在临涣矿区奥灰水勘测中的应用[J].地下水,2007,29(5):110-111.
    [10]余东,赵明阶,杨建国.土石坝坝体渗漏通道的电阻率成像诊断试验研究[J].重庆交通大学学报(自然科学版),2010,29(2):224-226.
    [11]闫述,石显新,陈明生.华北型煤田水文地质电法勘探的深度问题[J].煤炭科学技术,2006,34(12):5-8.
    [12]李永军,彭苏萍,徐忠信.煤田水文地质条件探查的三维电阻率测井方法[J].煤炭学报,2009,34(20):198-202.
    [13]刘树才,岳建华,刘江.西部保水开采中的水文电法勘探技术[J].中国矿业大学学报,2004,33(2):187-189.
    [14] Thony J L, Morat P, Vachaud G, et al.Field characterization of the relationship between electricalpotential gradients and soil water flux[J]. Comptes Rendus De L Academie Des Sciences Serie IIFascicule A-Sciences De La Terre Et Des Planetes,1997,325(5):317-321.
    [15] Doussan C, Jouniaux L, Thony J L. Variations of self-potential and unsaturated water flow with time insandy loam and clay loam soils[J]. Journal of Hydrology,2002,267(3-4):173-185.
    [16] Darnet M, Marquis G. Modelling streaming potential (SP)signals induced by water movement in thevadose zone[J]. Journal of Hydrology,2004,285(1-4):114-124.
    [17] Revil A, Pezard P A, Glover P. Streaming potential in porous media theory of the zeta potential[J].Journal of Geophysical Research-solid Earth,1999,104(B9):20021-20031.
    [18] Jardani A, Revil A, Boleve A, et al. Tomography of the Darcy velocity from self-potentialmeasurements[J]. Geophysical Research Letters,2007,34(24):24403.
    [19] Minsley B J, Sogade J, Morgan F D. Three-dimensional self-potential inversion for subsurface DNAPLcontaminant detection at the Savannah River Site, South Carolina[J]. Water Resources Research,2007,43(4).
    [20]宋晓磊,黄清华.降水渗透过程分析及其对视电阻率的影响[J].北京大学学报(自然科学版)网络版,2006, pkuxbw200611.
    [21]杨磊,周启友,雷鸣,等.基于自然电位方法的土壤水分入渗过程监测[J].水文地质工程地质,2012,39(3):1-5.
    [22] Zhou Q Y, Shimada J, Santo A. Three-Dimensional Spatial and Temporal Monitoring of Soil WaterContent Using Electrical Resistivity Tomography[J]. Water Resource Res,2001,37(2):273-285.
    [23]刘汉乐,周启友,徐速.非饱和带中非均质条件下LNAPL运移与分布特性的实验研究[J].水文地质工程地质,2006,33(5):52-57.
    [24]张峰.地层深部流体流动电位实验研究[D].武汉:中国地质大学(武汉)博士论文,2010.
    [25] Zhou Q Y, Matsui H, Shimada J. Characterization of the unsaturated zone around a cavity in fracturedrocks using electrical resistivity tomography[J]. Journal of Hydraulic Research,2004,42:25-31.
    [26]杨建龙,周启友,杨磊,等.基于高密度电阻的洞室周围含水量时空变化监测[J].水文地质工程地质,2013,40(1):24-28.
    [27]李宏,张伯崇.水压致裂试验过程中自然电位测量研究[J].岩石力学与工程学报,2006,25(7):1425-1429.
    [28]程久龙,王玉和.工作面内隐伏含水体电法探测的实验研究[J].煤炭学报,2008,33(1):59-62.
    [29]李文.工作面水害电阻率CT法探测实验研究[D].青岛:山东科技大学硕士论文,2005.
    [30]牟义.矿井工作面突水地质异常体电阻率响应特征实验研究[D].青岛:山东科技大学硕士论文,2009.
    [31]韩德品,李丹,程久龙.超前探测灾害性含导水地质构造的直流电法[J].煤炭学报,2010,35(4):635-639.
    [32]刘盛东,王勃,周冠群.基于地下水渗流中地电场响应的矿井水害预警试验研究[J].岩石力学与工程学报,2009,28(2):267-272.
    [33]刘盛东杨胜伦,曹煜.煤层顶板透水水量与地电场参数响应分析[J].采矿与安全工程学报,2010,27(3):341-344.
    [34]刘盛东,杨彩,赵立瑰.含水层渗流突变过程地电场响应的物理模拟[J].煤炭学报,2011,36(5):772-777.
    [35]刘盛东,吴荣新,张平松.三维并行电法勘探技术与矿井水害探查[J].煤炭学报,2009,34(7):927-932.
    [36]刘静,刘盛东,杨胜伦.煤层顶板水渗流视电阻率响应实验研究[J].中国煤炭地质,2010,22(3):50-55.
    [37]杨彩,刘盛东,胡泽安.基于地电场响应的矿井顶板突水模拟实验[J].物探与化探,2012,36(2):220-223.
    [38]刘斌,李术才,李树忱.电阻率层析成像法监测系统在矿井突水模型试验中的应用[J].岩石力学与工程学报,2010,29(2):297-307.
    [39]刘斌,李术才,李树忱.基于图像熵值的矿井突水电阻率CT图像量化评价[J].采矿与安全工程学报,2010,27(3):382-38388.
    [40]刘斌,聂利超,李术才.隧道突水灾害电阻率层析成像法实时监测数值模拟与试验研究[J].岩土工程学报,2012,34(11):2026-2035.
    [41]杨天鸿.岩石破裂过程中渗透性质及其与应力耦合作用研究[D].沈阳:东北大学博士论文,2001.
    [42]韩国锋,王恩志,刘晓丽.岩石损伤过程中的渗流特性[J].土木建筑与环境工程,2010,33(5):41-50.
    [43] Zhang S, Cox S F, Paetrson M S.The influence of room temperature deformatioin on porosity andpermeability in calcite aggregates[J]. J. Geophys. Res.,1994,99:15761-15775.
    [44] Mordecai M, Morris L H. An investigation into the changes of permeability occurring in a sandstonewhen failed under triaxial stress conditions[J]. Proc. U.S. Rock Mech. Symp.1971,12:221-239.
    [45] Zoback M D, Byerlee J D. The effect of microcrack dilancy on the permeability of Westerly granite[J]. J.Geophys. Res,1975,80:752-755.
    [46] Oda M T, Takemura, Aoki T. Damage growth and permeability change in triaxial compression tests ofInada granite[J]. Mechanics of Materials,2002,34:313-331.
    [47] Colin J, Peach, Christopher J. Spiers. Influence of crystal plastic deformation on dilatancyy andpermeability development in synthetic salt rock[J]. Tectonophysiscs,1996,256:101-128.
    [48] Stormont J C, Daemen J K. Lablratory study of gas permeability changes in rock salt duringdeformation[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1992,29(4):325-342.
    [49] F.M.R. Ferfera, J-P. Sarda, M. Bout6ca, et al. Experimental study of monophasic permeability changesunder various stress paths[J]. Int. J. RockMech.&Min. Sci.1997,34(2):1-12.
    [50] Heiland J, Raab S. Experimental investigation of the influence of differential stress on permeability of alower permian(rotliegend) sandstone deformed in the brittle deformation field[J]. Phys. Chem. Earth,2001,26(1):33-38.
    [51] Bieniawski Zt. Mechanism of brittle fracture of rock[J]. Int J Rock Mech Min Sci,1967,4(4):407-423.
    [52] Paterson S. Experiment deformation of rock: the brittle field[M].Berlin:Springer,1978.
    [53]吴景浓,龚钢延,严玉定,等.岩石渗透特性的实验研究[J].西北地震学报,1989,11(1):59-67.
    [54]贾军,唐培琴.三轴应力对煤层渗透性的影响[J].探矿工程,1994,1:43-47.
    [55]王轩,吴泽源.应力对煤岩渗透率的影响[J].重庆大学学报,1990,13(3):60-65.
    [56]谭学术,鲜学福,张广洋,等.煤的渗透性研究[J].西安矿业学院学报,1994,1:22-26.
    [57]陈祖安,伍向阳,孙德明,等.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159.
    [58]龚钢延,谢原定.岩石渗透率变化的实验研究[J].岩石力学与工程学报,1989,8(3):219-227.
    [59]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率应变方程[J].岩土工程学报,1995,17(2):13-19.
    [60]彭苏萍,屈洪亮,罗立平,等.沉积岩石全应力应变过程的渗透性试验研究[J].煤炭学报,2000,25(2):113116.
    [61]王金安,彭苏萍,孟召平.岩石三轴全应力应变过程中的渗透规律[J].北京科技大学学报,2001,23(6):489-491.
    [62] Wang J A, Park H D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J].Engineering Geology,2002,63(4):291-300.
    [63] Zhu W, Wong T F. The transition from brittle faulting to cataclastic flow:permeability evolution[J]. J.Geophys. Res.1997,102(B2):3027~3041
    [64]庞义辉,张勇.三维应力下岩石渗透率试验研究[J].采矿与安全工程学报,2009,26(3):367-371.
    [65] Jincai Zhang, Mao Bai, Roegiers J C, et al. Experimental determination of stress-permeabilityralationship. Paciffic2000, Girard, Liebman, Breeds&Doe, Balkema, Rotterdam:817-822.
    [66]杨天鸿,唐春安,朱万成,等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-494.
    [67]杨天鸿,徐涛,冯启言,等.脆性岩石破裂过程渗透性演化试验[J].东北大学学报(自然科学版),2003,24(10):974-977.
    [68]李长洪,张立新,姚作强,等.两种岩石的不同类型渗透特性实验及其机理分析[J].北京科技大学学报,2010,32(2):158-164.
    [69]韩宝平,冯启言,于礼山,等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127129.
    [70]韩宝平.任丘油田迷雾山组白云岩储集层的渗透性试验研究[J].地质科学,2000,35(4):396-403.
    [71]朱珍德,张爱军,徐卫亚.脆性岩石全应力应变过程渗流特性试验研究[J].岩土力学,2002,23(5):555559.
    [72]朱珍德,刘立民.脆性岩石动态渗流特性试验研究[J].煤炭学报,2003,28(6):588-592.
    [73]姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153156.
    [74]姜振泉,季梁军,左如松,等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩石力学与工程学报,2002,21(10):14421446.
    [75]王环玲,徐卫亚,杨圣奇.岩石变形破坏过程中渗透率演化规律的试验研究[J].岩土力学,2006,27(10):1703-1708.
    [76]王小江,荣冠,周创兵.粗砂岩变形破坏过程中渗透性试验研究[J].岩石力学与工程学报,2012,31(S1):2940-2947.
    [77]刘洪磊,杨天鸿,于庆磊,等.凝灰岩破坏全过程渗流演化规律的实验研究[J].东北大学学报(自然科学版),2009,30(7):10301033.
    [78] Brace W F, Walsh J B, Frangos W T. Premeability of granite under high pressure[J]. J. Geophys. Res.1978,73(6):2225-2236.
    [79] Zoback M D, et al. Permeability and effective stress[J]. Am. Ass. Petrol. Geol. Bull,1975,59(1):154-158.
    [80] Gnagi A F. Variation of whole and fractured porous permeabiliy with confining pressure[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1978,15(5):249-257.
    [81] Walsh J B. Effect of pore pressure and confining pressure on fracture permeability[J]. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1981,18(5):429-435.
    [82] Patsouls G, Gripps J C. An investigation of the permeability of Yorkshire chalk under differing porewater and confining pressure conditions[J]. Energy Sources,1982,6(4):321-334.
    [83] Jones F O. A Laboratory study of the effccts of confining pressure on fracture flow and storage capacityin carbonate rock[J]. Journal of Petroleum Technology,1975,27(1):21-27.
    [84] Kranz R L, Frankel A D, Engelder T, et al. The permeability of whole and jointed Barre granite.[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1979,16(4):225-234.
    [85] Keighni C W, Sampath K. Evaluatioin of pore geometry of some low-permeability sandstone-UintaBasin [J]. Journal of Petroleum Technology,1982,34(1):65-70.
    [86] Senseny P E, et al. Influence of deformation history on permeability and specific storage of masaverdesandstone[C]. Proceeding of24th US symposium on rock mechanics,1983,525-531.
    [87] Li S P, Wu D X, Xie W H, et al. Effect of confining pressure,pore pressure and specimen dimension onpermeability of Yinzhuang Sandstone[J]. International Journal of Rock Mechanics&Mining Sciences,1997,34(3/4):431-435.
    [88]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报,2003,22(5):742746.
    [89]刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报,2001,7(1):41-44.
    [90]徐德敏,黄润秋,张强,等.高围压条件下孔隙介质渗透特性试验研究[J].工程地质学报,2007,15(6):752-756.
    [91]李相臣,康毅力,罗平亚.应力对煤岩裂缝宽度及渗透率的影响[J].煤田地质与勘探,2009,37(1):29-32.
    [92]黄远智,王恩志.低渗透岩石渗透率对有效应力敏感系数的试验研究[J].岩石力学与工程学报,2007,26(2):410-414.
    [93]黄远智,王恩志.低渗透岩石渗透率与有效围压关系的试验研究[J].清华大学学报(自然科学版),2007,47(3):340-343.
    [94]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报,2004,23(3):415-419.
    [95]梁宁慧,刘新荣,包太,等.岩体卸荷渗流特性的试验[J].重庆大学学报:自然科学版,2005,28(10):133-135.
    [96]杨天鸿,唐春安,徐涛,等.岩石破裂过程的渗流特性-理论、模型与应用[M].北京:科学出版社,2004.
    [97]杨天鸿,李连崇,唐春安.岩石破坏过程中渗流-损伤关系的认识[J].岩石力学与工程学报,2004,23(24):4254~4257.
    [98] Cristescu N, Hunsche U. Time Effects in Rock Mechnics, Seriea, Materials, Modelling andComputation[M]. Chichester: Wiley,1998,342-438.
    [99] Otto S, Till P, Hartmut K. Development of damage and permeability in deforming rock salt[J].Engineering Geology,2001,62:163-180.
    [100] Elsworth D, Bai M. Flow-deformation response of dual-porosity media[J]. Journal of GeotechnicalEngineering,1992,118(1):107-124.
    [101] Yuan S C, Harrison J P. Numerical modeling of progressive damage and associated fluid flow using ahydro-mechanical local degradation approach [J].International Journal of Rock Mechanics and MiningSciences&Geomechanics Abstracts,2004,41(S1):317-322.
    [102]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报,1998,20(2):69-73.
    [103]卢平,沈兆武,朱贵旺,等.岩样应力应变全程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002,32(6):678-684.
    [104]蔚立元.水下隧道围岩稳定性研究及其覆盖层厚度确定[D].济南:山东大学博士论文,2010.
    [105]丁浩,蒋树屏,陈林杰.公路隧道外水压力的相似模型试验研究[J].公路交通科技,2008,25(10):99-104.
    [106]张明德.岩溶隧道围岩渗流场分布和衬砌水压力特征研究[D].北京:北京交通大学硕士论文,2008.
    [107]吴金刚.高水压隧道渗流场的流固耦合研究[D].北京:北京交通大学硕士论文,2006.
    [108]谭忠盛,李健,薛斌,等.岩溶隧道衬砌水压力分布规律研究[J].中国工程科学,2009,11(12):87-92.
    [109]李廷春,李术才,陈卫忠,等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397-401.
    [110]李建波,陈健云,李静.渗流场对地铁隧道沉降与受力影响的流固耦合分析[J].防灾减灾工程学报,2008,28(4):441-446.
    [111]刘文剑.基于渗流场-损伤场藕合理论的隧道涌水量预测研究[D].长沙:中南大学博士论文,2008.
    [112]侯伟.公路隧道的渗流场与应力场的耦合分析[D].西安:西安理工大学硕士论文,2006.
    [113]许金华,何川,夏炜洋.水下盾构隧道渗流场应力场耦合效应研究[J].岩土力学,2009,30(11):3519-3523.
    [114]王克忠,李仲奎.深埋长大引水隧洞三维物理模型渗透性试验研究[J].岩石力学与工程学报,2009,28(4):725-731.
    [115]张宪堂,王洪立,周红敏,等. FLAC3D在海底隧道涌水量预测中的应用[J].岩土力学,2008,29(S1):258-262.
    [116]蔚立元,李术才,徐帮树,等.水下隧道流固耦合模型试验与数值分析[J].岩石力学与工程学报,2011,30(7):1467-1474.
    [117]王育奎.海底隧道渗流场分布规律及涌水量预测方法研究[D].济南:山东大学硕士论文,2011.
    [118]刘新荣,石建勋,刘元锋,等.隧道水灾害模型试验研究[J].中国公路学报,2013,26(1):121-126.
    [119]高新强,仇文革,孔超.高水压隧道修建过程中渗流场变化规律试验研究[J].中国铁道科学,2013,34(1):50-58.
    [120]张后全,杨天鸿,赵德深,等.采场工作面顶板突水的渗流场分析[J].煤田地质与勘探,2004,32(5):17-19.
    [121]胡耀青.带压开采岩体水力学理论与应用[D].太原:太原理工大学博士论文,2003.
    [122]弓培林,胡耀青,赵阳升,等.带压开采底板变形破坏规律的三维相似模拟研究[J].岩石力学与工程学报,2005,24(23):4396-4402.
    [123]胡耀青,严国超.承压水上采煤突水监测预报理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):56-60.
    [124]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.
    [125]隋旺华,董青红.近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报,2008,27(9):1908-1916.
    [126]杨伟峰.薄基岩采动破断及其诱发水砂混合流运移特性研究[D].徐州:中国矿业大学博士论文,2009.
    [127]刘爱华,彭述权,李夕兵,等.深部开采承压突水机制相似物理模型试验系统研制及应用[J].岩石力学与工程学报,2009,28(7):1335-1341.
    [128]陈红江,李夕兵,刘爱华,等.水下开采顶板突水相似物理模型试验研究[J].中国矿业大学学报,2010,39(6):854-859.
    [129]徐智敏.深部开采底板破坏及高承压突水模式、前兆与防治[D].徐州:中国矿业大学博士论文,2010.
    [130]李术才,李利平,李树忱,等.地下工程突涌水物理模拟试验系统的研制及应用[J].采矿与安全工程学报,2010,27(3):299-304.
    [131]冯现大.井巷围岩破断突水模型试验及其数值模拟方法研究[D].济南:山东大学硕士论文,2010.
    [132]李树忱,冯现大,李术才,等.矿井顶板突水模型试验多场信息的归一化处理方法[J].煤炭学报,2011,36(3):447-451.
    [133]姚多喜,鲁海峰.煤层底板岩体采动渗流场-应变场耦合分析[J].岩石力学与工程学报,2012,31(S1):2738-2745.
    [134]韩涛.富水基岩单层冻结井壁受力规律及设计理论研究[D].徐州:中国矿业大学博士论文,2011.
    [135]周晓敏,周国庆,胡启胜,等.高水压基岩竖井井壁模型试验研究[J].岩石力学与工程学报,2011,20(12):2514-2522.
    [136]傅良魁.电法勘探教程[M].北京:地质出版社,1983.
    [137]王齐仁.自然电场分布规律及其分析[J].湘潭矿业学院学报,1992,7(1):38-42.
    [138]姚普.水泥基复合注浆材料工程性能及模拟试验研究[D].徐州:中国矿业大学硕士论文,2007.
    [139]姜春露,姜振泉,等.基于地电场响应的多孔岩石注水-注浆模拟试验[J].煤炭学报,2012,37(4):602-605.
    [140]张改玲.化学注浆固砂体高压渗透性及其微观机理[D].徐州:中国矿业大学博士论文,2001.
    [141]王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000,162-176.
    [142]叶林宏,何泳生,冼安如,等.论化灌浆液与被灌岩土的相互作用[J].岩土工程学报,1994,16(6):47-56.
    [143]张良辉,熊厚金,张清.浆液的非稳定渗流过程分析[J].岩石力学与工程学报,1997,16(6):564~570.
    [144]张瑛颖,韩同春,祝卫东.浆液的吸渗性在化学灌浆中的作用研究[J].人民长江,2007,38(8):181-182.
    [145] Kelsall P C, Case J B, Chabannes C R. Evaluation of excavation-induced changes in rockpermeability[J]. Int. J. Rock Mech.Min. Sci.&Geomech. Abstr.,1984,21(3):37-46.
    [146] Pusch R. Alteration of the hydraulic conductivity of rock by tunnel excavation[J]. Int. J. Rock Mech.Min. Sci.&Geomech. Abstr.,1989,26(1):79-83.
    [147] Falls S D, Young R P. Acoustic emission and ultrasonic-velocity methods used to characterize theexcavation disturbance associated with deep tunnels in hard rock[J]. Tectonophysics,1998,289(1/2):1-15.
    [148]吉小明.隧道开挖的围岩损伤扰动带分析[J].岩石力学与工程学报,2005,24(10):1697-1702.
    [149] Bardy G H, Brown E T. Rock mechanics for underground mining[M]. Gorge Allen and Unwin,1985.
    [150]周创兵,陈益锋,姜清辉,等.复杂岩体多场广义耦合分析导论[M].北京:中国水利水电出版社,2008.
    [151] Backblom G. Recent experiments in hard rocks to study the excavatioin response:Implications for theperformance of a nuclear waste geological repository[J].Tunnelling and Underground Space Technology,1999,14(3):377-394.
    [152] Martin C D, Kaiser P K, McCreathe D R. Hoek-Brown parameters for predicting the depth brittle failurearound tunnel[J].Canadian Geotechnical Journal,1999,36(1).25-41.
    [153] Read R S.20years of excavation response sdudies at AECL’s Underground Research Laboratory[J].International Journal of Rock Mechanics&Mining Sciences,2004,41(8):1251-1275.
    [154]靖洪文.深部巷道大松动圈围岩位移分析及应用[M].徐州:中国矿业大学出版社,2001.
    [155]靖洪文.深部巷道破裂围岩位移分析及应用[D].徐州:中国矿业大学博士论文,2001.
    [156]褚卫江.低孔隙度岩石细观本构模型及损伤-渗流耦合研究[D].南京:河海大学博士论文,2007.
    [157] Souley M, Homand F, Pepa S, et al. Damage-induced permeability changes in granite: a case example atthe URL in Canada[J]. International Journal of Rock Mechanics&Mining Sciences,2001,38(2):297-310
    [158] Martino J B. Chandler N A. Excavation-induced damage studies at the Underground ResearchLaboratory[J]. International Journal of Rock Mechanics&Mining Sciences,2004,41(9):1413-1426.
    [159]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [160]许江,李贺,鲜学福,等.对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J].力学与实践,1986,8(4):16-20.
    [161]孙强,朱术云,姜春露,等.岩石应力-应变过程中渗透率变化分析[J].煤田地质与勘探,2012,40(1):60-63.
    [162] Bieniawski Z T. Time-dependent behaviour of fractured rock[J]. Rock Mechanics and Rock Engineering,1970,2(3):123-127.
    [163]秦四清,徐锡伟,胡平,等.孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J].地球物理学报,2010,53(4):10011014.
    [164] Martin C D. Rock stability considerations for siting and constructing a KBS-3repository[D]. Edmonton:University of Alberta,2001.
    [165]孟召平,王保玉,徐良伟,等.煤炭开采对煤层底板变形破坏及渗透性的影响[J].煤田地质与勘探,2012,40(2):39-43.
    [166]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):74-82.
    [167] Hirata T, Satoh T, Ito K.Fractal structure for spatial distribution of microfracturing in rock[J].Geophys. J. R. Astr. Soc.,1987,90:369-374.
    [168]秦四清,李造鼎,张卓元,等.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [169]彭成斌,陈颙.地震中的分形结构[J].中国地震,1989,5(2):19-25.
    [170] Chen Rong, Yao Xiaoxin, Xie Eungsen. Studies of the fracture of Gabbro[J]. Int. J. Rock Mech. Min.Sci&Geomech. Abstr.,1979,16(3):187-193.
    [171]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    [172]葛修润,任建喜.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,4:104~111.
    [173]仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报,2002,10(1):93~97
    [174]仵彦卿,曹广祝,王殿武.基于X-射线CT方法的岩石小裂纹扩展过程分析[J].应用力学学报,2005,22(3):484492.
    [175]刘冬梅,蔡美峰,周玉斌.岩石细观损伤演化与宏观变形响应关联研究[J].中国钨业,2006,21(4):16-19.
    [176]梁昌玉,李晓,王声星,等.岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J].岩石力学与工程学报,2012,31(9):1830-1838.
    [177] M. Cai, P.K. Kaisera,Y. Tasaka,et al. Generalized crack initiation and crack damage stress thresholds ofbrittle rock masses near underground excavations[J]. International Journal of Rock Mechanics&MiningSciences,2004,41(2):833-847.
    [178]姜春露,姜振泉,孙强,等.脆性岩石全应力应变过程中渗透性突变研究[J].中南大学学报(自然科学版),2012,43(2):688-693.
    [179] Hudson J A, Fairhurst C. Tensile strength, Weibull’s theory and a general statistical approach to rockfailure[C]//The Proceedings of the Southampton1969Civil Engineering Materials Conference,Southampton, England.1969:901-914.
    [180] Allegre C J, Mouel J L L, Provost A. Scaling rules in rock fracture and possible implications forearthquake prediction[J]. Nature,1982,297:47-49.
    [181] Smalley R F, Turcotte D L, Solla S A. A renormalization group approach to the stick slip behavior offaults[J]. J Geophys Res,1985,90:1894-1900.
    [182] Wilson K G.. Problems in physics with many scales of length[J]. Sci Am,1979,241:158-179.
    [183]冯增朝,赵阳升,吕兆兴.强随机分布裂隙介质的二维逾渗规律研究[J].岩石力学与工程学报,2006,25(S2):3904-3908.
    [184]陈忠辉,谭国焕,杨文柱.岩石脆性破裂的重正化研究及数值模拟[J].岩土工程学报,2002,24(2):183-187.
    [185]曹文贵,赵明华,刘成学.基于weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [186]贝尔著.李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [187] Coussy O. Poromechanics[M].[S.l.]:John Wiley and Sons Inc.,2004:12-14.
    [188]白茅,刘天泉.孔隙裂隙弹性理论及应用导论[M].北京:石油工业出版社,1999.
    [189]李玉寿,马占国,贺耀龙,等.煤系地层岩石渗透特性试[J].实验力学,2006,21(2):129-134.
    [190]杨友运,侯光才,王治华.鄂尔多斯早白垩世自流水盆地沉积特征岩性分布与盆地演化[J].兰州大学学报(自然科学版),2006,42(3):25-31.
    [191]邓国仕,谢渊,杨桂花,等.鄂尔多斯盆地白垩系含水砂岩的特征[J].四川地质学报,2008,28(2):124-130.
    [192]于波,张忠义,刘显阳,等.鄂尔多斯盆地白垩系洛河组至环河华池组砂体展布规律研究[J].地层学杂志,2008,32(3):285-289.
    [193]张忠义.鄂尔多斯盆地白垩系洛河组-环河华池组沉积特征研究[D].西安:长安大学硕士论文,2005.
    [194]魏斌,张忠义,杨友运.鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J].地层学杂志,2006,30(4):367-372.
    [195]谢渊,王剑,江新胜,等.鄂尔多斯盆地下白垩统含水层储水岩石特征与介质结构研究[J].水文地质工程地质,2005,2:11-18.
    [196]赵正明,傅宏科.黄陵矿区洛河组砂岩水文地质特征及水资源开发与保护[J].中国煤田地质,2002,14(3):28-30.
    [197]李良平.鄂尔多斯盆地白垩系渗透结构随机模拟及可视化[D].北京:中国地质大学(北京)硕士论文,2006.
    [198]陈忠胜,李爱民,裔传标.建南井田洛河砂岩水文地质特征及其对矿井充水影响[J].能源技术与管理,2008,2:44-46.
    [199]田冲,汤达祯,周志军,等.彬长矿区水文地质特征及其对煤层气的控制作用[J].2012,40(1):43-46.
    [200]牛永强,李世峰.核桃峪井田华池-洛河组水文地质条件评价[J].河北工程大学学报(自然科学版),2012,29(1):62-65.
    [201]陶玉敬.不同JRC单裂隙渗流特征的试验研究[D].成都:西南交通大学硕士论文,2007.
    [202]华福才. FLAC3D在青岛地铁渗流场中的应用[J].岩土力学,2013,34(1):299-304.
    [203]张玉军.基于固流耦合理论的覆岩破坏特征及涌水量预计的数值模拟[J].煤炭学报,2009,34(5):610-613.
    [204]郭牡丹,王述红,荣晓洋,等.基于流固耦合理论的隧道涌水量预测[J].东北大学学报(自然科学版),2011,32(5):745-748.
    [205]李毅,伍嘉,李坤.基于FLAC3D的饱和-非饱和渗流分析[J].岩土力学,2012,33(2):617-622.
    [206]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [207]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [208] Itasca Consulting Group,Inc.. FLAC3D user manuals(version3.0)[R].Minneapolis,Minnesota: ItascaConsulting Group,Inc.,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700