用户名: 密码: 验证码:
高尔基体堆叠蛋白GRASP65和卵泡抑素样蛋白Fstl1的结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高尔基体在蛋白质和脂类的加工、修饰、分选、运输等许多方面起着至关重要的作用。哺乳动物高尔基体的扁平囊堆叠之间依靠管状结构侧向连接形成了高尔基体带状结构。高尔基体堆叠蛋白GRASP65(Golgi ReAssembly Stacking Protein, GRASP65)位于高尔基体顺面及顺面网。作为维系高尔基体的支架蛋白,GRASP65在与其它蛋白的共同作用下参与高尔基体顺面的侧向连接。
     磷酸化GRASP65会使GRASP65反式寡聚体解聚,引起高尔基体的去堆叠和片段化。高尔基体的片段化对于细胞周期进程和生长分裂至关重要。此外,GRASP65在纺锤体形成、细胞凋亡、非常规的蛋白运输等方面发挥重要作用。
     本文首次解析了GRASP65GRASP结构域的三维晶体结构。基于结构,比较和分析了该结构域与同源蛋白之间的结构异同。在体外生化试验中进行了一系列的点突变,初步确定了引起蛋白聚合的关键氨基酸位点,并对这些位点导致聚集状态变化的可能原因进行了分析和阐述。随后,对这些突变体进行了细胞内的功能实验,进一步验证了这些位点对高尔基体堆叠的影响。本论文对GRASP65GRASP结构域的解析,为理解高尔基体顺面堆叠蛋白的作用机制奠定了结构学基础。
     此外,利用果蝇S2表达系统获得了分泌型糖蛋白Follistatin-likel(Fstl1). Fstl1在肺部发育、输尿管发育以及骨骼发育等许多发育过程中都发挥着重要的调控作用。首次解析得到了Fstl1蛋白N-端FOLN-KAZAL结构域的三维晶体结构,分析了Fstl1的FOLN-KAZAL结构域与其它含有KAZAL结构域的蛋白在序列和折叠方式上的显著差异。Fstl1与其同源蛋白在配体结合及功能等方面存在差异,本论文对Fstll FOLN-KAZAL结构域的解析,为了解和分析Fstl1与其同源蛋白在配体结合和功能上的差异提供了结构上的依据,也为Fstl1参与调控的疾病的预防和治疗提供了线索。
The Golgi apparatus play crucial roles in processing and glycosylation of proteins and lipids. It is also responsible for protein sorting and transportation. In mammalian cells, the Golgi apparatus consists of many stacks of cisternae, which are laternally linked by tubules forming the Golgi ribbon.The GRASP65(Golgi ReAssembly Stacking Protein65) is found at cis-golgi and cis-golgi network. As a scaffold protein, GRASP65together with other proteins, participates in laternally linking of stacks.
     GRASP65phosphorylation leads to trans-oligomer disassembly, and eventurally results in Golgi ribbon unlinking and fragmentation. The fragmentation of Golgi apparatus is crucial for cell-cycle and mitosis progression. In addition, The Golgi apparatus is involved in the formation of spindle, apoptosis and unconventional secretion in the cell.
     The crystal structure of GRASP65GRASP domain was determined. It is the first high resolution structure reported for GRASP65. The difference between GRASP65and its homologous proteins were analyzed based on their crystal structures. Critical residues involved in protein polymerization were identified, and roles of these residues on dimerization and oligomerization were analyzed by series of mutations. To verify the significance of these mutations, the mutant proteins were overexpressed within the Hela cell, and their effect on Golgi stacking were checked by confocal microscopy. Overall, from molecular structure to cell level, our research provides a basis for understanding the stacking mechanism of this cis-golgi stacking protein.
     Moreover, the secretory glycoprotein follistatin-likel (Fstl1) have been successfully expressed in Drosophila S2cell. Fstll play important roles in mediating many developmental processes, such as lung development, ureter development and skeleton development. Different ligand binding and function exist between Fstll and its homologous proteins. The crystal structure of Fstll FOLN-KAZAL domain was determined. The difference between Fstll FOLN-KAZAL domain and that of homologous proteins were compared. The crystal structure of Fstll FOLN-KAZAL domain is helpful in illustrating the different function of these proteins, and may provide clues for the prevention and treatment of Fstll-related diseases.
引文
[1]Altan-Bonnet N., Sougrat R., Lippincott-Schwartz J., Molecular basis for golgi maintenance and biogenesis. Curr Opin Cell Biol,2004.16(4):364-372.
    [2]Kupfer A., Dennert G.,Singer S.J., Polarization of the Golgi apparatus and the microtubule-ogranizing center within cloned natural killer cells bound to their targets. Proc. Natl.Acad.Sci,1983.80(23):7224-7228.
    [3]Shorter J., Warren G. Golgi architecture and inheritance. Annu Rev Cell Dev Biol,2002.(18): 379-420.
    [4]Ward T. H., Polishchuk R. S., Caplan S. et al.,Maintenance of golgi structure and function depends on the integrity of er export. J Cell Biol.2001.155(4):557-570.
    [5]Barr F. A., Puype M., Vandekerckhove J. et al.,Grasp65, a protein involved in the stacking of golgi cisternae.Cell,1997.9(2):253-262.
    [6]Sengupta D.. Linstedt A. D., Mitotic inhibition of grasp65 organelle tethering involves polo-like kinase 1 (plkl) phosphorylation proximate to an internal pdz ligand. J Biol Chem, 2010.285(51):39994-40003.
    [7]Vinke F. P., Grieve A. G., Rabouille C., The multiple facets of the golgi reassembly stacking proteins. Biochem J,2011.433(3):423-433.
    [8]Tang D., Yuan H., Wang Y., The role of grasp65 in golgi cisternal stacking and cell cycle progression. Traffic,2010.11(6):827-842.
    [9]Nakamura N., Emerging new roles of gm 130, a cis-golgi matrix protein,in higher order cell functions. J Pharmacol Sci,2010.112(3):255-264.
    [10]Marra P., Salvatore L., Mironov A., et al. The biogenesis of the golgi ribbon:The roles of membrane input from the er and of gm130. Mol Biol Cell,2007.18 (5):1595-1608.
    [11]Yoshimura S. I., Nakamura N., Barr F. A. et al., Direct targeting of cis-golgi matrix proteins to the golgi apparatus. J Cell Sci,2001.114 (Pt 22):4105-4115.
    [12]Nakamura N., Rabouille C., Watson R. et al., Characterization of a cis-golgi matrix protein, gm130.J Cell Biol,1995.131(6 Pt 2):1715-1726.
    [13]Sutterlin C., Polishchuk R., Pecot M. et al., The golgi-associated protein grasp65 regulates spindle dynamics and is essential for cell division. Mol Biol Cell,2005.16(7):3211-3222.
    [14]An Y., Chen C. Y.,Moyer B. et al., Structural and functional analysis of the globular head domain of p115 provides insight into membrane tethering. J Mol Biol,2009.391 (1):26-41.
    [15]Short B., Barr F. A., Membrane traffic-A glitch in the golgi matrix. Curr Biol,2003.13(8): R311-313.
    [16]Barr F. A., Preisinger C.,Kopajtich R. et al., Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the golgi apparatus. J Cell Biol,2001.155(6): 885-891.
    [17]Corda D., Barretta M. L., Cervigni R. I. et al., Golgi complex fragmentation in g2/m transition:An organelle-based cell-cycle checkpoint. IUBMB Life,2012.64(8):661-670.
    [18]Wada I., Rindress D., Cameron P. H. et al., Ssr alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem,1991. 266(29):19599-19610.
    [19]Stamnes M. A., Craighead M. W., Hoe M. H. et al., An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc Natl Acad Sci U S A,1995.92(17):8011-8015.
    [20]Rojo M., Pepperkok R., Emery G. et al., Involvement of the transmembrane protein p23 in biosynthetic protein transport. J Cell Biol,1997.139(5):1119-1135.
    [21]Fiedler K., Veit M., Stamnes M. A. et al., Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science,1996.273(5280):1396-1399.
    [22]Sohn K., Orci L., Ravazzola M. et al., A major transmembrane protein of golgi-derived copi-coated vesicles involved in coatomer binding. J Cell Biol,1996.135(5):1239-1248.
    [23]Dominguez M., Dejgaard K., Fullekrug J. et al., Gp251/emp24/p24 protein family members of the cis-golgi network bind both cop i and ii coatomer. J Cell Biol,1998.140(4):751-765.
    [24]Muniz M., Nuoffer C., Hauri H. P. et al., The emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol,2000.148(5):925-930.
    [25]Yoshimura S., Yoshioka K., Barr F. A. et al., Convergence of cell cycle regulation and growth factor signals on grasp65. J Biol Chem,2005.280(24):23048-23056.
    [26]Wang Y., Wei J. H., Bisel B. et al., Golgi cisternal unstacking stimulates copi vesicle budding and protein transport. PLoS One,2008.3(2):e1647.
    [27]Bisel B., Wang Y., Wei J. H. et al., Erk regulates golgi and centrosome orientation towards the leading edge through grasp65. J Cell Biol,2008.182(5):837-843.
    [28]Sutterlin C., Hsu P., Mallabiabarrena A. et al., Fragmentation and dispersal of the pericentriolar golgi complex is required for entry into mitosis in mammalian cells. Cell, 2002.109(3):359-369.
    [29]Preisinger C., Korner R., Wind M. et al., Plkl docking to grasp65 phosphorylated by cdkl suggests a mechanism for golgi checkpoint signalling. EMBO J,2005.24(4):753-765.
    [30]Feinstein T. N., Linstedt A. D., Mitogen-activated protein kinase kinase 1-dependent golgi unlinking occurs in g2 phase and promotes the g2/m cell cycle transition. Mol Biol Cell, 2007.18(2):594-604.
    [31]Colanzi A., Corda D., Mitosis controls the golgi and the golgi controls mitosis. Curr Opin Cell Biol,2007.19(4):386-393.
    [32]Oshimori N.,Ohsugi M., Yamamoto T. The plkl target kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol,2006.8(10):1095-1101.
    [33]Lane J. D., Lucocq J.,Pryde J. et al., Caspase-mediated cleavage of the stacking protein grasp65 is required for golgi fragmentation during apoptosis. J Cell Biol,2002.156(3): 495-509.
    [34]Jesch S. A., Inheriting a structural scaffold for golgi biosynthesis. Bioessays,2002.24(7): 584-587.
    [35]Javier R. T.,Rice A. P. Emerging theme:Cellular pdz proteins as common targets of pathogenic viruses. J Virol,2011.85 (22):11544-11556.
    [36]李华,林葵,吴更.PDZ结构域的结构特点及其识别特异性配体的机制.中国生物化学与分子生物学,2011,Vol.27(12):1107-1112.
    [37]牟一,蔡鹏飞,高友鹤.PDZ结构域中间序列结合特性及其临床应用.基础医学与临床.2012,Vol.32(10):1320-1324
    [38]Brenman J. E.> Chao D. S.,Gee S. H. et al. Interaction of nitric oxide synthase with the postsynaptic density protein psd-95 and alpha1-syntrophin mediated by pdz domains. Cell, 1996.84(5):757-767.
    [39]Truschel S. T., Sengupta D., Foote A. et al., Structure of the membrane-tethering grasp domain reveals a unique pdz ligand interaction that mediates golgi biogenesis. J Biol Chem, 2011.286(23):20125-20129.
    [40]Jesch S. A., Lewis T. S., Ahn N. G. et al., Mitotic phosphorylation of golgi reassembly stacking protein 55 by mitogen-activated protein kinase erk2. Mol Biol Cell,2001.12(6): 1811-1817.
    [41]Hillier B. J., Christopherson K. S., Prehoda K. E. et al., Unexpected modes of pdz domain scaffolding revealed by structure of nnos-syntrophin complex. Science,1999.284(5415): 812-815.
    [42]Penkert R. R., DiVittorio H. M., Prehoda K. E., Internal recognition through pdz domain plasticity in the par-6-pals1 complex. Nat Struct Mol Biol,2004.11(11):1122-1127.
    [43]Truschel S. T., Zhang M., Bachert C. et al., Allosteric regulation of grasp protein-dependent golgi membrane tethering by mitotic phosphorylation. J Biol Chem,2012.287(24): 19870-19875.
    [44]Li X., Wang B., Feng L. et al., Cleavage of rsea by rsep requires a carboxyl-terminal hydrophobic amino acid following degs cleavage. Proc Natl Acad Sci U S A,2009.106(35): 14837-14842.
    [45]Hambrock H. O.,Kaufrnann B., Muller S. et al., Structural characterization of tsc-36/flik: Analysis of two charge isoforms. J Biol Chem,2004.279(12):11727-11735.
    [46]Shibanuma M., Mashimo J., Mita A. et al., Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur J Biochem,1993.217(1):13-19.
    [47]Geng Y., Dong Y., Yu M. et al., Follistatin-like 1 (fstll) is a bone morphogenetic protein (bmp) 4 signaling antagonist in controlling mouse lung development. Proc Natl Acad Sci U S A,2011.108(17):7058-7063.
    [48]Bellusci S., Henderson R.. Winnier G. et al., Evidence from normal expression and targeted misexpression that bone morphogenetic protein (bmp-4) plays a role in mouse embryonic lung morphogenesis. Development,1996.122(6):1693-1702.
    [49]Weaver M., Yingling J. M., Dunn N. R. et al., Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development,1999.126(18): 4005-4015.
    [50]Sylva M., Moorman A. F., van den Hoff M. J., Follistatin-like 1 in vertebrate development. Birth Defects Res C Embryo Today,2013.99(1):61-69.
    [51]Zimmerman L. B., De Jesus-Escobar J. M., Harland R. M. The spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell,1996.86(4):599-606.
    [52]Xu J., Qi X., Gong J. et al., Fstll antagonizes bmp signaling and regulates ureter development. PLoS One,2012.7(4):e32554.
    [53]Miyazaki Y., Oshima K., Fogo A. et al., Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int, 2003.63(3):835-844.
    [54]Miyazaki Y., Oshima K.., Fogo A. et al., Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest,2000.105(7):863-873.
    [55]Oshima Y., Ouchi N., Sato K. et al., Follistatin-like 1 is an akt-regulated cardioprotective factor that is secreted by the heart. Circulation,2008.117(24):3099-3108.
    [56]Ouchi N., Oshima Y., Ohashi K. et al., Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem,2008.283(47):32802-32811.
    [57]Clutter S. D., Wilson D. C., Marinov A. D. et al., Follistatin-like protein 1 promotes arthritis by up-regulating ifn-gamma. J Immunol,2009.182(1):234-239.
    [58]Li D., Wang Y., Xu N. et al., Follistatin-like protein 1 is elevated in systemic autoimmune diseases and correlated with disease activity in patients with rheumatoid arthritis. Arthritis Res Ther,2011.13(1):R17.
    [59]Tanaka M., Ozaki S., Osakada F. et al., Cloning of follistatin-related protein as a novel autoantigen in systemic rheumatic diseases, Int Immunol,1998.10(9):1305-1314.
    [60]莫丽莎,魏强华Follistatin-like protein 1的生物学作用及其研究进展.免疫学杂志,2012,Vol.28(7):637-641
    [61]Tanaka M., Ozaki S., Kawabata D. et al., Potential preventive effects of follistatin-related protein/tsc-36 on joint destruction and antagonistic modulation of its autoantibodies in rheumatoid arthritis. Int Immunol,2003.15(1):71-77.
    [62]Kawabata D.,Tanaka M.,Fujii T. et al., Ameliorative effects of follistatin-related protein/tsc-36/fstll on joint inflammation in a mouse model of arthritis. Arthritis Rheum, 2004.50(2):660-668
    [63]Sylva M., Li V. S., Buffing A. A. et al., The bmp antagonist follistatin-like 1 is required for skeletal and lung organogenesis. PLoS One,2011.6(8):e22616.
    [64]Murakami K., Tanaka M., Usui T. et al., Follistatin-related protein/follistatin-like 1 evokes an innate immune response via cdl4 and toll-like receptor 4. FEBS Lett,2012.586(4): 319-324.
    [65]Johnston I. M., Spence H. J., Winnie J. N. et al., Regulation of a multigenic invasion programme by the transcription factor, ap-1:Re-expression of a down-regulated gene, tsc-36, inhibits invasion. Oncogene,2000.19(47):5348-5358.
    [66]周晓莹.鼻咽癌甲基化谱的建立:[硕士学位论文].广西:广西医科大学,2009
    [67]Chan Q. K., Ngan H. Y., Ip P. P. et al., Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis:A differential expression and functional analysis. Carcinogenesis,2009.30(1):114-121.
    [68]Hambrock H. O., Kaufmann B., Muller S. et al., Structural characterization of tsc-36/flik: Analysis of two charge isoforms. J Biol Chem,2004.279(12):11727-11735.
    [69]Zhou J., Liao M., Hatta T. et al., Identification of a follistatin-related protein from the tick haemaphysalis longicornis and its effect on tick oviposition. Gene,2006.372:191-198.
    [70]Qasim M. A., Ganz P. J., Saunders C. W. et al., Interscaffolding additivity. Association of p1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry,1997.36(7):1598-1607.
    [71]Schwarzbauer J. E., Spencer C. S., The caenorhabditis elegans homologue of the extracellular calcium binding protein sparc/osteonectin affects nematode body morphology and mobility. Mol Biol Cell,1993.4(9):941-952.
    [72]Ledda M. F., Adris S., Bravo A. I. et al., Suppression of sparc expression by antisense ma abrogates the tumorigenicity of human melanoma cells. Nat Med,1997.3(2):171-176.
    [73]Lane T. F., Iruela-Arispe M. L., Johnson R. S. et al., Sparc is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol,1994.125(4):929-943.
    [74]Sage E. H., Terms of attachment:Sparc and tumorigenesis. Nat Med,1997.3(2):144-146.
    [75]Hohenester E., Maurer P., Timpl R. Crystal structure of a pair of follistatin-like and ef-hand calcium-binding domains in bm-40. EMBO J,1997.16(13):3778-3786.
    [76]Villarreal X. C, Mann K. G., Long G. L., Structure of human osteonectin based upon analysis of cdna and genomic sequences. Biochemistry,1989.28(15):6483-6491.
    [77]Innis C. A., Hyvonen M.Crystal structures of the heparan sulfate-binding domain of follistatin. Insights into ligand binding. J Biol Chem,2003.278(41):39969-39977.
    [78]Harrington A. E.,Morris-Triggs S. A., Ruotolo B. T. et al.,Structural basis for the inhibition of activin signalling by follistatin. EMBO J,2006.25(5):1035-1045.
    [79]Keutmann H. T., Schneyer A. L., Sidis Y.The role of follistatin domains in follistatin biological action. Mol Endocrinol,2004.18(1):228-240.
    [80]Lerch T. F., Shimasaki S.,Woodruff T. K. et al., Structural and biophysical coupling of heparin and activin binding to follistatin isoform functions. J Biol Chem,2007.282(21): 15930-15939.
    [81]Cash J.N., Rejon C. A., McPherron A.C. et al., The structure of myostatin:Follistatin 288: Insights into receptor utilization and heparin binding. EMBO J,2009.28(17):2662-2676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700