用户名: 密码: 验证码:
土壤—地下水系统对天然植被生长的影响研究:以敦煌盆地为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西北内陆干旱地区生态地质环境极其脆弱,干旱区的天然植被系统是生态地质环境系统中的重要组成部分。敦煌盆地位于河西走廊西段,是我国典型的内陆干旱地区。近几十年来,敦煌盆地以地下水资源为中的生态地质环境问题日益突出,尤其是天然植被系统和湿地退化严重,区内天然植被系统已经严重影响河西走廊乃至我国西北的生态安全,其天然植被系统的生态恢复已经成为“引哈济党”工程的首要目标。
     论文以敦煌盆地为研究区,对敦煌盆地浅地表层0-100cm内的土壤含盐量、含水量、有机质和地下水盐赋存特征进行分析研究,并利用遥感技术定量反演植被覆盖度和植物群落分布特征,深入开展了地下水-土壤-植被之间的相互关系研究,确定了地下水对天然植被格局的控制作用及其表现形态。通过研究地下水系统对天然植被系统生长的影响,以期为敦煌盆地的生态环境保护、植被恢复提供科学支撑,也为“引哈济党”工程提供有效的科学支撑,并为内陆干旱区依赖地下水天然植被生态系统的研究提供思路。
     本论文通过以上研究,得到如下结论:
     (1)利用2010年Rapideye影像,基于宏观尺度对敦煌盆地的天然植被信息进行提取,并采用归一化植被指数(NDVI),提取分类出芦苇群落、骆驼刺群落、红柳群落、胡杨林群落、盐穗木群落、白刺群落、黑枸杞群落分布的空间位置以及他们平均植被覆盖度分别为:13.1%、8.6%、8.2%、4.2%、3.8%、3.4%、2.8%。
     (2)研究区浅地表土壤盐渍化空间分布特征研究。通过分析5个不同深度梯度环境下(0-20cm、20-40cm、40-60cm、60-80cm和80-100cm)土壤盐渍化(含盐量、有机质、含水量.K+、Na+、ca2+、Mg2+、cl-、SO42-、NO3-)的垂直和水平分布特征,确定了土壤盐渍化的类型及其空间分布特征:工作区盐分表现出比较强烈的表聚性,土壤含盐量按其含量大小呈自上而下递减的垂直分异规律:有机质含量最高层位在20-40cm,研究区东湖和北湖大部分地区有机质含量低;含水量由高到低分别为40-60cm、60-80cm、80-100cm、20-40cm和0-20cm,在0-60cm深度下,含水量随着深度的增加而增加的趋势,在60-80cm内土壤含水量基本保持不变。
     (3)研究区土壤盐渍化类型划分:依据土壤Cl-/SO42-当量比值结果,显示5个不同深度下的土壤盐渍化主要类型以氯化物、氯化物-硫酸盐和硫酸盐-氯化物为主。氯化物含量自上而下逐渐减小,表现出很强的表聚性;硫酸盐呈自上而下增多的趋势;氯化物-硫酸盐基本保持不变和硫酸盐-氯化物有自上而下增加的趋势,表现出强底聚性。此外,土壤含盐量主成分分析结果显示,研究区土壤盐盐渍化主要是以Na2SO4和NaCl为主。
     (4)研究区不同深度下土壤含盐量、有机质与盐基离子相关性分析表明:不同深度下土壤含盐量与Cl-、Na+、SO42有较高的正相关性;在深度为80-100cm时,土壤含盐量与Cl-、SO42-、Ca2+、K+和Na+(P<0.01)呈现较好相关性;0-20cm内有机质与含盐量、C1-和Na+(P<0.01)有着较好相关性;.在深度为0-60cm时,C1-.与5042-、Na+之间都具有较好正相关性;深度为60-100cm时,主要以C1-与S042-为主。
     (5)研究区不同深度下土壤含盐量与天然植被覆盖度的响应关系:在0-80cm深度下的植被覆盖度随着土壤含盐量的增加均有减小的趋势,其中0-40cm内对天然植被覆盖度的影响比较大;有机质在0-20cm、20-40cm、40-60cm、60-80cm范围内随着有机质的增高植被覆盖度呈现出降低的趋势,说明有机质与天然植被覆盖度的关系非常弱且呈现一定的负相关性。
     (6)不同土壤盐渍化类型下土壤含盐量与植被盖度关系:按照CI/SO42-比值范围分三类,硫酸盐型、硫酸盐-氯化物型和氯化物-硫酸盐型、氯化物型下平均植被覆盖度分别为10.4%、9.7%和7.1%,在硫酸盐类型随着盐度的增加植被覆盖度呈现出减小的趋势,而在硫酸盐-氯化物型和氯化物-硫酸盐型、氯化物型下植被覆盖度与盐度没有明显趋势。
     (7)不同土壤盐渍化类型下地下水潜水埋深与植被盖度的关系:在硫酸盐型地区、氯化物-硫酸盐类型地区、氯化物型地区三类不同的盐渍化地区适宜植被生长的最大地下水潜水埋深分别是1.82m、2.17m和3.3m,超过这个潜水埋深植被生长明显受到抑制,说明不同盐渍化类型下,相同地下水潜水埋深,对天然植被生长影响存在着差异。
     (8)不同土壤盐渍化类型下TDS与植被覆盖度的关系:天然植被覆盖度和TDS有很好的对应关系,适宜植被发育的土壤盐渍化类型顺序为硫酸盐地区>硫酸盐-氯化物地区>氯化物地区;当TDS大于10g/L时,任何土壤盐渍化类型下的植被覆盖度都有明显降低的趋势。
     (9)土壤含水量与植被覆盖度的关系:土壤含水量对植被覆盖度的关系表现为先增大后减小的规律,对植物生长影响的深度在0-60cm表现突出,且当土壤含水量达到25%左右,植被覆盖度达到最高值,之后随着含水量的增大,植被覆盖度迅速降低。
     (10)植物群落分布与地下水补、径、排关系研究:不同地下水补径排条件下,植被群落分布特征明显,具体表现为:一是植物在地下水排泄到地表之前植物对其进行吸收利用,主要是从潜水面或毛细上升带内直接吸收利用地下水而存在的耐干旱植物;二是在地下水排泄到地表之后对其进行利用的喜水性植物。
     (11)地下水对天然植被格局的控制作用研究:依据天然植物对地下水的依赖程度、天然植物对地下水的利用方式和地下水的排泄方式把敦煌盆地地下水作用的天然植被系统划分为3种类型。分别为:(1)非地下水作用的植被系统;(2)地下水部分作用的植被系统;(3)地下水作用的植被系统,并根据每个GEDs进行了区域的划分和植被面积统计。
     (12)地下水流系统对天然植被群落格局具有宏观的控制影响,其地下水补给区、径流区和排泄区发育着不同的优势植被群落。而在排泄区的地下水位埋深、土壤含盐量和含水量等对局部植被群落局部格局的演化起着非常重要的作用。
The system of natural vegetation in arid areas is an important part of ecological and geological environment system; especially it is fragile in region ecological and geological environment of the northwest of China. For recent decades, ecological geological environment problems in relation to groundwater resource had been increasingly prominent happened in the areas of natural vegetation system and wetland degradation. As a typical inland arid area of the Hexi corridor, Dunhuang basin has been seriously affected by degradation of natural vegetation system. And the natural ecological restoration of vegetation system has become a primary goal by the engineering of guide water from Ha er teng river into the Dang river.
     The thesis focused on the relationship the groundwater and soil-vegetation and to determine the groundwater effect on the control of natural vegetation structure and its expression form by means of analyzing the surface of0-100cm different depth of soil salinity, soil water content, organic matter and the occurrence features of groundwater and salt, also through using remote sensing quantitative inversion of the distribution characteristics of vegetation coverage and plant community in Dunhuang basin. It would provide scientific support for ecological environment protection, vegetation restoration and guide water from Ha'erteng river into the Dang River through studying the influence of the groundwater system of natural vegetation growth, as well would offer scientific mind for research of dependent groundwater ecosystems.
     This paper get the following conclusions through the above-mentioned-research:
     (1) Using Rapideye images technology of the normalized difference vegetation index (NDVI) has extracted the natural vegetation information about the reed community, alhagi community, Philippine community, lam wood community in iminqak community, salt, white communities, and the spatial location of black Chinese wolfberry community distribution and their average vegetation coverage is respectively:13.1%,8.6%,8.2%,4.2%,8.2%,3.4%and2.8%, respectively, based on a large scale in the dunhuang basin in2010.
     (2)The research of surface of soil salinization, the distribution characteristics and salinization type. Through analying the vertical and horizontal distribution characteristics of five different depth (0-20cm、20-40cm、40-60cm、60-80cm and80-100cm) and soil salinization (soil salinity, K+, Na+, Ca2+, Mg2+, Cl-, SO42-, NO3-) to determine the type of soil salinization in the study area and its spatial distribution features, to clarify the workspace salt has a relatively strong cohesion and also certify the soil salinity decrease size is top-down according to its content of the rule of vertical differentiation. Area of soil organic matter content is low and the highest value in20-40cm, high organic content areas are mainly distributed in the Mamitu of west lake to Yumen pass, and most of east lake and north lake have low organic content in the study area. Characteristics of soil water content distribution in the study area:the average depth of soil water content from high to low is (40-60cm,60-80cm,80-100cm,20-40cm,0-20cm), water content has increased with the increase of depth from0to60cm deep.
     (3)The classification of soil salinization in the study area:the types of salinization are main of chloride, chloride-sulfate and sulfate-chloride by the Cl-/SO42-equivalent weight in the study area. The performances are the chloride content from top to bottom gradually decreases, and showed a strong surface concentration, the sulfate showed a trend of increased from top to bottom, the chloride basic remains the same, the sulfate and sulfate-chloride has a tendency to increase from top to bottom, and showed a strong bottom concentration. In addition, the soil salt salinization results of under the different depth of soil salinity of the principal component analysis show that the study area is the main NaCl and Na2SO4.
     (4)The correlation analysis of soil base cation and soil salinity under different depth in study area:the soil base cations of Cl-, Na+and SO42-have higher positive correlation with the soil salinity. It shows that the organic content and soil salinity has certain relevance in the0-20cm and it becomes weaken with the increase of depth. There have well positive correlation about Cl-, SO42-,Na+from0to60cm, while there has low relationship Cl-and SO42-in the60-100cm.
     (5)The soil salinity and the vegetation fraction have a certain relationship under different depth of the study area. The vegetation fraction decrease with the soil salinity increase in the0-80cm, especially in the0-40cm has a significant impact on natural vegetation. The vegetation fraction increase with decrease of organic content that shows the relationship between organic matter and natural vegetation fraction.
     (6)The research of relationship between the soil salinity and vegetation fraction under type of different soil salinization according to the Cl-/SO42-equivalent weight ratio shows average vegetation fraction of the sulfate, sulfate-chloride and chloride-sulfate, chloride were10.4%,9.7%and7.1%. The general trend is salinity increase with the decrease of vegetation fraction within the sulfate area but there is no clearly trend in the sulfate-chloride, chloride-sulfate and chloride area.
     (7)The research of relationship between the groundwater buried depth and vegetation fraction under type of different soil salinization according to the Cl-/SO42-equivalent weight ratio shows the different groundwater buried depth has various impact on the natural vegetation growth. The suitable for natural vegetation growth groundwater buried depth are1.82m,2.17m and3.3m in the sulfate area, chloride-sulfate area, chloride area.
     (8)The research of relationship between the TDS and the vegetation fraction in different type of salinization indicate that the natural vegetation fraction and TDS has a good corresponding relation. It suitable for vegetation development order for sulfate> sulfate-chloride> chloride. When the TDS is greater than10g/L, the natural vegetation fraction has the trend of decrease.
     (9)The research of relationship between the soil water content and the vegetation fraction shows the vegetation fraction increase first and then decrease with increase the soil water content in0-100cm and the soil water content affect on the natural plant growth in0-60cm. When the soil water content is25%the vegetation fraction up to the highest value, but when the soil water content continue increase the vegetation fraction rapidly reduced.
     (10)Study on the relationship between the plant community's distribution and groundwater recharge, runoff and discharge shows the plant communities distribution different under different conditions of groundwater. The drought resistance plant absorbs the water from the phreatic surface or the capillary rise. And the hydrophile plant uses the water after the groundwater reach to surface.
     (11)The study on groundwater effect on the control of natural vegetation structure come up with three vegetation systems are the effect by groundwater system of natural vegetation, part of the groundwater system of natural vegetation and non-groundwater system of natural vegetation according to extent of natural plant dependence on groundwater, the natural vegetation use of groundwater and the way of groundwater discharge, also according to each characteristic of GDEs divide the area and calculate the vegetation area in the Dunhuang basin.
     (12) Groundwater flow system has a macro control influence on natural vegetation community pattern. There have different vegetation community in the groundwater recharge area, runoff area, and drainage area. And buried depth of underground water level, the soil salt content and water content play a very important role to the evolution of the local vegetation pattern, in the drainage area.
引文
(1) 陈伟涛.敦煌盆地地下水生态环境效应的遥感研究[博士论文].中国地质大学(武汉),2012.
    (2) 河西走廊典型地区地下水资源合理开发利用调查报告(2007)
    [1]邬建国.景观生态学——概念与理论[J].生态学杂志,2000,(01):42-52;
    [2]李令跃,甘泓.试论水资源合理配置和承载能力概念与可持续发展之间的关系[J].水科学进展,2000,(03):307-313;
    [3]粟晓玲,康绍忠.干旱区面向生态的水资源合理配置研究进展与关键问题[J].农业工程学报,2005,(01):167-172;
    [4]Witczak S, Kania J, Rozanski K, et al. Environmental water requirements of groundwater dependent ecosystems:conflict between nature and man; 2012.3708.
    [5]Cramer V A, Hobbs R J. Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia:impacts and possible management responses[J]. Austral Ecology, 2002,27(5):546-564;
    [6]Kingsford R. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia[J]. Austral Ecology,2000,25(2):109-127;
    [7]陈德华,刘少玉,王昭.疏勒河流域中游生态环境变化及成因分析[J].水文地质工程地质,2001,(06):23-25;
    [8]Danielopol D L, Griebler C, Gunatilaka A, et al. Present state and future prospects for groundwater ecosystems[J]. Environmental Conservation,2003,30(2):104-130;
    [9]Bazihizina N, Barrett-Lennard E G, Colmer T D. Plant growth and physiology under heterogeneous salinity[J]. Plant and soil,2012,354(1-2):1-19;
    [10]万力,曹文炳,胡伏生等.生态水文学与生态水文地质学[J].地质通报,2005,(08):700-703;
    [11]George R, Clarke C, Hatton T.2001. Computer-modelled groundwater response to recharge management for dryland salinity control in Western Australia. Advances in Environmental Monitoring and Modelling, p 3-35.
    [12]Merz S K, Evans R, Clifton C A, et al. Environmental water requirements to maintain groundwater dependent ecosystems[M]. Environment Australia,2001.
    [13]Eamus D.2009. Identifying groundwater dependent ecosystems. Univ. of Technol., Land and Water Australia, Sydney, Australia, p 140-152.
    [14]Murray B B R, Zeppel M J, Hose G C, et al. Groundwater-dependent ecosystems in Australia:It's more than just water for rivers[J]. Ecological Management & Restoration,2008,4(2):110-113;
    [15]Daily G C. Restoring value to the world's degraded lands[J]. Science-new York Then Washington-, 1995:350-350;
    [16]Hatton T J. Dependence of ecosystems on groundwater and its significance to Australia[M]. Land& Water Resources Research & Development Corporation,1998.
    [17]Groom P, Froend R, Mattiske E, et al. Long-term changes in vigour and distribution of Banksia and Melaleuca overstorey species on the Swan Coastal Plain[J]. Journal of the Royal Society of Western Australia,2001,84:63-69;
    [18]Groom P. Groundwater-dependency and water relations of four Myrtaceae shrub species during a prolonged summer drought[J]. Journal of the Royal Society of Western Australia,2003,86:31-40;
    [19]Smerdon B, Mendoza C, Devito K. The impact of gravel extraction on groundwater dependent wetlands and lakes in the Boreal Plains, Canada[J]. Environmental Earth Sciences,2012:1-11;
    [20]Humphreys W F. Aquifers:the ultimate groundwater-dependent ecosystems[J]. Australian Journal of Botany,2006,54(2):115-132;
    [21]Munch Z, Conrad J. Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal,2007,15(1):19-28;
    [22]Pronk M, Goldscheider N, Zopfi J. Microbial communities in karst groundwater and their potential use for biomonitoring[J]. Hydrogeology Journal,2009,17(1):37-48;
    [23]Kl(?)ve B, Allan A, Bertrand G, et al. Groundwater dependent ecosystems. Part Ⅱ. Ecosystem services and management in Europe under risk of climate change and land use intensification[J]. Environmental Science & Policy,2011,14(7):782-793;
    [24]Klove B, Ala-aho P, Bertrand G, et al. Groundwater dependent ecosystems. Part Ⅰ:Hydroecological status and trends[J]. Environmental Science & Policy,2011,14(7):770-781;
    [25]Koundouri P, Stithou M, Kougea E, et al.2012. The Effects of Climate Change on the Value of Groundwater Dependent Ecosystems:The Rokua Esker, Northern Finland. Athens University of Economics and Business.
    [26]Bertrand G, Goldscheider N, Gobat J-M, et al. Review:From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems[J]. Hydrogeology Journal,2012: 1-21;
    [27]Jeevarathinam C, Rajasekar S, Sanjuan M A. Vibrational resonance in groundwater-dependent plant ecosystems[J]. Ecological Complexity,2013,15:33-42;
    [28]Bertrand G, Masini J, Goldscheider N, et al. Investigation of spatio-temporal variability of water uptake in a groundwater-dependent ecosystem using a stable isotope approach (deltal8O, delta2H): Pfyn Forest, Switzerland; 2012.8131.
    [29]赵辉,陈文芳,崔亚莉.中国典型地区地下水位对环境的控制作用及阈值研究[J].地学前缘,2010,v.17;No.86(06):159-165;
    [30]贾宝全,慈龙骏,蔡体久等.绿洲-荒漠交错带环境特征初步研究[J].应用生态学报,2002,(09):1104-1108;
    [31]张长春,邵景力,李慈君等.地下水位生态环境效应及生态环境指标[J].水文地质工程地质,2003,(03):6-10;
    [32]赵明,郭志中,王耀琳等.不同地下水位植物蒸腾耗水特性研究[J].干旱区研究,2003,(04):286-291;
    [33]张志强,王盛萍,贾宝全等.甘肃民勤地区不同地下水埋深花棒蒸腾耗水研究[J].生态学报, 2004,(04):736-742;
    [34]孔金玲,王文科,赵成.河西走廊水资源与生态环境关系分析[J].干早区地理,2005,(05):581-587;
    [35]杨根生,曲耀光,董光荣等.疏勒河下游生态保护研究[J].中国沙漠,2005,(04):472-482;
    [36]张红旗,王立新,贾宝全.西北干旱区生态用地概念及其功能分类研究[J].中国生态农业学报,2004,(02):10-13;
    [37]闫成云.地表水调配引起的地下水环境变化——以疏勒河流域为例[J].干旱区研究,2007,(04):428-433;
    [38]周仰效.地下水-陆生植被系统研究评述[J].地学前缘,2010,V.17;No.86(06):21-30;
    [39]张茂省,卢娜,陈劲松.陕北能源化工基地地下水开发的植被生态效应及对策[J].地质通报,2008,No.159(08):1299-1312;
    [40]金晓媚.黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系[J].地学前缘,2010,v.17;No.86(06):181-186;
    [41]陈志云.基于RS/GIS的西辽河平原地下水位埋深变化与植被生态的响应研究.吉林大学,2012.
    [42]赵阳.黑河下游不同地下水位胡杨叶形态学生理学响应.兰州大学,2012.
    [43]黄金廷,侯光才,尹立河等.干旱半干旱区天然植被的地下水水文生态响应研究[J].干旱区地理,2011,v.34;No.139(05):788-793;
    [44]刘世增.石羊河流域中下游河岸植被变化及其驱动因素研究.北京林业大学,2010.
    [45]张克新,刘普幸,霍华丽等.敦煌绿洲天然胡杨林下土壤水盐空间变化特征研究[J].土壤通报,2012,v.43;No.258(03):563-570;
    [46]尹力,赵良菊,阮云峰等.黑河下游典型生态系统水分补给源及优势植物水分来源研究[J].冰川冻土,2012,v.34(06):1478-1486;
    [47]刘普幸,张克新,霍华丽等.疏勒河中下游绿洲胡杨林土壤水盐的空间变化特征与成因[J].自然资源学报,2012,v.27(06):942-952;
    [48]程东会,王文科,侯光才等.毛乌素沙地植被与地下水关系[J].吉林大学学报(地球科学版),2012,v.42(01):184-189;
    [49]孙禹,洪涛,赵珍伟.利用遥感方法分析鄂尔多斯盆地植被与降水的依赖关系[J].中国水利,2012,No.712(22):56-59;
    [50]杨森.石羊河流域不同年代气候演变特征及与生态过程的协同关系.兰州大学,2012.
    [51]张竟.植被对地下水依赖程度的实验研究.中国地质大学(北京),2012.
    [52]Canadell J, Jackson R, Ehleringer J, et al. Maximum rooting depth of vegetation types at the global scale[J].Oecologia,1996,108(4):583-595;
    [53]Schenk H J, Jackson R B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems[J]. Journal of Ecology,2002,90(3):480-494;
    [54]O'Grady A P, Eamus D, Cook P G, et al. Groundwater use by riparian vegetation in the wet-dry tropics of northern Australia[J]. Australian Journal of Botany,2006,54(2):145-154;
    [55]Humphreys W. Groundwater calcrete aquifers in the Australian arid zone:the context to an unfolding plethora of stygal biodiversity[J]. Records of the Western Australian Museum, Supplement,2001,64:63-83;
    [56]Thurgate M, Gough J, Clarke A, et al. Stygofauna diversity and distribution in Eastern Australian cave and karst areas[J]. Records of the Western Australian Museum Supplement,2001,64:49-62;
    [57]Gibert J, Brancel J, Camacho A, et al. Groundwater Biodiversity, Protocols for the ASsessment and Conservation of Aquatic Life In the Subsurface (PASCALIS):overview and main results; 2005. 39-51.
    [58]Goldscheider N, Hunkeler D, Rossi P. Review:Microbial biocenoses in pristine aquifers and an assessment of investigative methods[J]. Hydrogeology Journal,2006,14(6):926-941;
    [59]Hahn H J. A proposal for an extended typology of groundwater habitats[J]. Hydrogeology Journal, 2009,17(1):77-81;
    [60]Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regime needed to maintain the health of ground water-dependent vegetation[J]. Australian Journal of Botany,2006,54(2):97-114;
    [61]Boulton A J. Chances and challenges in the conservation of groundwaters and their dependent ecosystems[J].Aquatic Conservation-Marine and Freshwater Ecosystems,2005,15(4):319-323;
    [62]Boulton A J, Findlay S, Marmonier P, et al. The functional significance of the hyporheic zone in streams and rivers[J]. Annual Review of Ecology and Systematics,1998:59-81;
    [63]Winter T C. Ground water and surface water:a single resource[M]. DIANE Publishing,1999.
    [64]Gondwe B R N, Auken E, Bauer-Gottwein P. Exploration, modelling and management of groundwater-dependent ecosystems in karst-the Sian Ka'an case study, Yucatan, Mexico[M]. Technical University of DenmarkDanmarks Tekniske Universitet, Department of Geology and Geotechnical EngineeringInstitut for Geologi og Geoteknik,2010.
    [65]Johannes R, Hearn C. The effect of submarine groundwater discharge on nutrient and salinity regimes in a coastal lagoon off Perth, Western Australia[J]. Estuarine, Coastal and Shelf Science, 1985,21(6):789-800;
    [66]Pritchett D, Manning S J. Response of an intermountain groundwater-dependent ecosystem to water table drawdown[J]. Western North American Naturalist,2012,72(1):48-59;
    [67]Nath B, Lillicrap A, Ellis L, et al. Hydrological and chemical connectivity dynamics in a groundwater-dependent ecosystem impacted by acid sulfate soils[J]. Water Resources Research, 2013,49:441-457;
    [68]Lubczynski M. The hydrogeological role of trees in water-limited environments[J]. Hydrogeology Journal,2009,17(1):247-259;
    [69]Boulton A, Hancock P. Rivers as groundwater-dependent ecosystems:a review of degrees of dependency, riverine processes and management implications[J]. Australian Journal of Botany,2006, 54(2):133-144;
    [70]Hamilton-Smith E, Eberhard S. Conservation of cave communities in Australia[J]. Ecosystems of the World,2000:647-664;
    [71]夏军,丰华丽,谈戈等.生态水文学概念、框架和体系[J].灌溉排水学报,2003,(01):4-10;
    [72]Hinsby K, de Melo M T C, Dahl M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health[J]. Science of the Total Environment,2008,401(1-3):1-20;
    [73]Schneidewind U, El-Rawy M, De Becker P, et al. Analysis and Rehabilitation of a Groundwater-Dependent Ecosystem in Belgium; 2012.3721.
    [74]Eamus D, Macinnis-Ng C M, Hose G C, et al. TURNER REVIEW No.9. Ecosystem services:an ecophysiological examination[J]. Australian journal of botany,2005,53(1):1-19;
    [75]Costanza R, d'Arge R, de Groot R, et al. The value of the world's ecosystem services and natural capital[J]. Ecological economics,1998,25(1):3-15;
    [76]Smedema L K, Shiati K. Irrigation and salinity:a perspective review of the salinity hazards of irrigation development in the arid zone[J]. Irrigation and drainage systems,2002,16(2):161-174;
    [77]Cramer G R. Differential effects of salinity on leaf elongation kinetics of three grass species[J]. Plant and soil,2003,253(1):233-244;
    [78]Hasegawa P M, Bressan R A, Zhu J-K, et al. Plant cellular and molecular responses to high salinity [J]. Annual review of plant biology,2000,51(1):463-499;
    [79]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59:651-681;
    [80]Severino L, Cordoba G, Zanotto M, et al. The influence of the caruncle on the germination of castor seed under high salinity or low soil water content[J]. Seed Science and Technology,2012,40(1): 139-143;
    [81]Xavier R P, Rusk B, Emsbo P, et al. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajas Mineral Province, Brazil[J].2009:
    [82]Hatton T, Salama R. Is it feasible to restore the salinity affected rivers of the Western Australian wheatbelt,1999.313-317.
    [83]Francois L. Salinity effects on asparagus yield and vegetative growth[J]. Journal of the American Society for Horticultural Science,1987,112(3):432-436;
    [84]Burns G, Billard T, Matsui K. Salinity threat to upper Egypt[J].1990,344:25;
    [85]El Gharib E, Kadry W. Effect of potassium on tolerance of cotton plants salinity of irrigation water [J]. Annals of Agricultural Science, Moshtohor,1983,20:
    [86]Pedersen P, Gjems L. Effects of deicing salt on soil, water and vegetation. Effects of deicing salt (sodium chloride) on plants. Literature examination[J].1996:
    [87]王宏卫,塔西甫拉提·特依拜.干旱区盐渍地遥感动态监测及其驱动力研究——以渭干河-库车河三角洲绿洲为例[J].干旱区地理,2009,(03):445-453;
    [88]赵传燕,李守波,贾艳红等.黑河下游地下水波动带地下水与植被动态耦合模拟[J].应用生态学报,2008,v.19(12):2687-2692;
    [89]郑丹,李卫红,陈亚鹏等.干旱区地下水与天然植被关系研究综述[J].资源科学,2005,(04):160-167;
    [90]Singh A, Dwivedi R. Delineation of salt-affected soils through digital analysis of Landsat MSS data[J]. Remote Sensing,1989,10(1):83-92;
    [91]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2001,(04):12-15;
    [92]史晓霞.基于CA模型的长岭县土壤盐渍化时空演变可视化模拟.东北师范大学,2005.
    [93]张恒云,肖淑招. NOAA/AVHRR资料在监测土壤盐渍化程度中的应用[J].遥感信息,1992,(01):24-26;
    [94]李海涛,P.Brunner,李文鹏等ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,2006,(05):75-79;
    [95]塔西甫拉提·特依拜,张飞,赵睿等.新疆干旱区土地盐渍化信息提取及实证分析[J].土壤通报,2007,(04):625-630;
    [96]张飞,塔西甫拉提·特依拜,丁建丽等.新疆干旱区绿洲土壤盐渍化信息提取对比研究[J].遥感技术与应用,2008,(04):398-404;
    [97]塔西甫拉提·特依拜,张飞,丁建丽等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理,2007,(04):544-551;
    [98]张飞,塔西甫拉提·特依拜,丁建丽等.塔里木河中游典型绿洲盐渍化土壤的反射光谱特征[J].地理科学进展,2012,(07):921-932;
    [99]王飞,丁建丽,哈学萍等,干旱区盐渍地景观危险度评价方法——以新疆渭干河-库车河流域为例[J].自然灾害学报,2012,(05):79-87;
    [100]何岩.松嫩平原西部荒漠化景观动态及驱动力研究[J].2006:
    [101]刘强,杨志峰,崔保山.盐渍土区生态水文过程及其盐渍化效应[J].科技导报,2007,(20):64-70;
    [102]严登华,何岩,邓伟等.生态水文学研究进展[J].地理科学,2001,(05):467-473;
    [103]李昌华.松嫩平原地下水和土壤的近代积盐过程[J].土壤学报,1964,(01):34-42;
    [104]杨建强,罗先香.土壤盐渍化与地下水动态特征关系研究[J].水土保持通报,1999,(06):11-15;
    [105]尤全刚,薛娴,黄翠华.地下水深埋区咸水灌溉对土壤盐渍化影响的初步研究——以民勤绿洲为例[J].中国沙漠,2011,(02):302-308;
    [106]关元秀,卢文喜,水资源管理数据库系统的设计与实现[J].勘察科学技术,1998,(05):40-45;
    [107]关元秀,刘高焕,王劲峰.基于GIS的黄河三角洲盐碱地改良分区[J].地理学报,2001,(02):198-205;
    [108]关元秀,刘高焕.黄河三角洲盐碱地动态变化遥感监测[J].国土资源遥感,2003,(02):19-22+33;
    [109]姚荣江,杨劲松.黄河三角洲典型地区地下水位与土壤盐分空间分布的指示克立格评价[J].农业环境科学学报,2007,(06):2118-2124;
    [110]王文勇,高佩玲,郎新珠等.基于3S的地下水位埋深与土地盐渍化时空动态变化关系研究—以山东省德州市齐河县为例[J].水土保持研究,2011,(06):157-161+166+295;
    [111]管孝艳,王少丽,高占义等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J].生态学报,2012,(04):198-206;
    [112]麦麦提吐尔逊·艾则孜.伊犁河谷灌区土壤盐渍化与地下水调控研究.新疆大学,2010.
    [113]吐尔逊·艾山.渭—库绿洲盐渍化土壤与地下水特征时空变化研究.新疆大学,2012.
    [114]杨会峰.次生盐渍化地区包气带水盐运移试验及地下水位动态调控研究.中国地质科学院,2011.
    [115]陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟[J].水利学报,1997,(05):78-84+36;
    [116]赵银,柴琦,陈盈盈等.河西走廊盐渍化草地改良及利用[J].草业科学,2008,(02):21-25;
    [117]杨月红,孙庆艳.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2;
    [118]古丽娜尔·哈里别克.于田绿洲土壤盐分对芦苇生长的影响研究.新疆大学,2012.
    [119]张为政.松嫩平原羊草草地植被退化与土壤盐溃化的关系[J].植物生态学报,1994,(01):50-55;
    [120]周冠男.盐渍化土壤和植被的分布与地形关系研究.新疆大学,2010.
    [121]李昌龙,肖斌,王多泽等.石羊河下游盐渍化弃耕地植被演替与土壤养分相关性分析[J].生态学杂志,2011,(02):241-247;
    [122]丁晓妹.甘肃省秦王川灌区土壤盐分特征变化分析.兰州大学,2011.
    [123]宁立波,张阳,杨俊仓等.敦煌盆地重点区土地荒漠化变化特征及原因分析[J].地理与地理信息科学,2011,(06):65-68+115;
    [124]桑学锋,张明泉,王浩等.敦煌盆地地下水数值模拟及可视化与管理[J].兰州大学学报(自然科学版),2007,(03):18-22;
    [125]桑学锋.敦煌盆地地下水数值模拟及可视化与管理.兰州大学,2006.
    [126]张明泉,赵转军,曾正中.敦煌盆地水环境特征与水资源可持续利用[J].干旱区资源与环境,2003,(04):71-77;
    [127]殷跃平,张作辰,黎志恒等.兰州皋兰山黄土滑坡特征及灾度评估研究[J].第四纪研究,2004,(03):302-310;
    [128]徐恒力,周爱国,肖国强等.西北地区干旱化趋势及水盐失衡的生态环境效应[J].地球科学,2000,(05):499-504;
    [129]白福,范高功.西北典型内流干旱盆地土壤盐渍化特征及成因分析-以黑河流域为例[J].工程勘察,2008,(S1):230-235;
    [130]乔木,周生斌,卢磊等.新疆渭干河流域土壤盐渍化时空变化及成因分析[J].地理科学进展,2012,(07):904-910;
    [131]王燕,赵哈林,赵学勇等.荒漠绿洲农田盐渍化过程中的水盐动态[J].水土保持学报,2013,(01):186-192+280;
    [132]杨贵羽,陈亚新.土壤水分盐分空间变异性与合理采样数研究[J].干旱地区农业研究,2002,(04):64-66;
    [133]薛志婧,侯晓瑞,程曼等.黄土丘陵区小流域尺度上土壤有机碳空间异质性[J].水土保持学报,2011,(03):160-163+168;
    [134]任云霞.基于RS/GIS的绿洲土壤盐渍化特征分析.新疆师范大学,2011.
    [135]古丽格娜·哈力木拉提.于田绿洲土壤盐分、有机质季节性变化规律研究.新疆大学,2008.
    [136]杨景成,韩兴国,黄建辉等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,(04): 787-796;
    [137]王雪梅.干旱区典型绿洲土壤盐渍化及其生态效应研究.新疆大学,2010.
    [138]瓦哈甫·哈力克,海米提·依米提,塔西甫拉提·特依拜等.绿洲耕地变化趋势及其驱动力—塔里木盆地南部策勒绿洲为例[J].地理学报,2004,(04):608-614;
    [139]安乐生.黄河三角洲地下水水盐特征及其生态效应.中国海洋大学,2012.
    [140]李慧芳.敦煌绿洲胡杨林土壤水盐特征研究.西北师范大学,2008.
    [141]古丽娜尔·哈里别克,海米提·依米提,努尔模达·达拉拜等.于田绿洲典型区域土壤盐分空间分异规律研究[J].水土保持通报,2012,(03):28-32+4;
    [142]刘国华,海米提·依米提,王庆峰等.于田绿洲土壤盐分特征分析[J].水土保持研究,2009,(03):260-263+297;
    [143]李建国,濮励杰,朱明等.土壤盐渍化研究现状及未来研究热点[J].地理学报,2012,(09):1233-1245;
    [144]古丽格娜·哈力木拉提,木合塔尔·吐尔洪,于坤等.喀什葛尔河流域盐渍化土壤盐分特征分析[J].干旱区资源与环境,2012,(01):169-173;
    [145]潘玉英,付腾飞,赵战坤等.海水入侵-地下水位变化-土壤盐渍化自动监测实验研究[J].土壤通报,2012,(03):571-576;
    [146]鲁春霞,于云江,关有志.甘肃省土壤盐渍化及其对生态环境的损害评估[J].自然灾害学报,2001,(01):99-102;
    [147]孙倩,塔西甫拉提·特依拜,丁建丽等.干旱区典型绿洲土地利用/覆被变化及其对土壤盐渍化的效应研究——以新疆沙雅县为例[J].地理科学进展,2012,(09):1212-1223;
    [148]王雪梅,柴仲平,塔西甫拉提·特依拜.干旱区绿洲土壤盐分空间异质性及人为驱动力分析[J].干旱区资源与环境,2012,(03):111-115;
    [149]余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,(06):581-586;
    [150]廖晓勇,陈治谏,刘邵权等.三峡库区小流域土地利用方式对土壤肥力的影响[J].生态环境,2005,(01):99-101;
    [151]黄焱宁.甘肃省土壤有机质含量空间分布及与土地利用的关系.甘肃农业大学,2009.
    [152]Kinraide T B. Interactions among Ca2+, Na+and K+in salinity toxicity:quantitative resolution of multiple toxic and ameliorative effects[J]. Journal of Experimental Botany,1999,50(338): 1495-1505;
    [153]孙月,毛晓敏,杨秀英等.西北灌区地下水矿化度变化及其对作物的影响[J].农业工程学报,2010,(02):103-108;
    [154]李惠娣,杨琦,聂振龙等.土壤结构变化对包气带土壤水分参数的影响及环境效应[J].水土保持学报,2002,(06):100-102+106;
    [155]Kl(?)ve B, Ala-aho P, Bertrand G, et al. Groundwater dependent ecosystems. Part I:Hydroecological status and trends[J]. Environmental Science & Policy,2011,14(7):770-781;
    [156]Krause S, Heathwaite A L, Miller F, et al. Groundwater-dependent wetlands in the UK and Ireland: controls, functioning and assessing the likelihood of damage from human activities[J]. Water Resources Management,2007,21(12):2015-2025;
    [157]Steube C, Richter S, Griebler C. First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems[J]. Hydrogeology Journal,2009,17(1):23-35;
    [158]赵微.基于GIS的北京市平原区浅层地下水动态变化研究.首都师范大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700