用户名: 密码: 验证码:
低频自激脉冲射流发生机理及其频率调制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对用于水射流清洗工业的自激脉冲射流装置的打击力与打击频率展开研究,采用数值仿真、流体网络以及模型试验等方法从微观到宏观,对不同的自激脉冲发生机理进行解释,获得了脉冲射流频率及振幅随结构参数和工作参数变化的规律。在总结自激脉冲射流发生机理的相关理论中,针对高压小流量的波-涡作用机理及低压大流量的空气弹簧机理,基于不同的工作条件对其进行解释和统一,提出在高压小流量的装置形式下,由于流速过快,流体在腔内的停止时间小于空化发生的豫驰时间,故自激脉冲现象由波涡扰动产生;而在低压大流量的装置形式下,空化气囊得到充分发展,气囊的周期性夹缩是产生脉冲射流的主因。
     为完善自激脉冲射流装置的数值计算方法,提高模型的预测能力,优化参数范围,基于三维非定常空化模型,对自激脉冲射流装置的结构参数和运行参数进行分析,发现不同参数配比对自激脉冲频率的影响较大,当d2/d1=1.8时,嘴间距Lc为36mm时,自激频率最低,振幅最大,自激效果最为明显。工作压力达到2MPa及以上时,方能产生有效的自激现象,随着压力增加,自激频率减小,振幅增大,且二者的变化趋势渐趋平缓,1~4MPa是压力调制的有效范围。自激喷嘴结构不同导致不同的自激振荡波形;在同一喷嘴结构参数下,改变工作压力将改变自激频率及峰值带宽,但自激脉冲的波形相近。在结构参数一定的情况下,自激频率与入口流速呈幂函数关系。工作压力相同的情况下,斯特劳哈尔数随结构参数的变化不明显。利用改进后的模型进行计算发现,改进后模型对于自激效果参数的模拟精度有所提高,对出口流速峰值持续时间的模拟精度有所提高。
     利用流体网络理论的相关原理研究系统外特性对自激主频和振幅的影响,建立了自激振荡腔的频率响应函数,通过程序计算发现,自激振荡腔具有低通滤波的特性,存在一个和结构参数和运行参数相对应的主频率,当来流脉动频率在主频率附近时,可在自振腔的选择性放大下发生共振,形成脉冲射流。系统主频对应的幅值越高,相应的主频率越小,通频带越窄。对于双腔室自激振荡腔而言,两阶段放大的设计使得扰动波振幅明显增大,但由于扰动反馈路径的延长,其频率较小,沿程水头损失较大。
     为了验证理论分析结果,建立了一套完整的动力输送、自激发生、数据采集系统。通过模型试验和数值计算的自激频率的对比发现,采用本文数值建模方法对自激脉冲频率进行预测足可行的,由于出口射流主要以汽水混合的形式射出,同体积流体的质量较连续射流低,因此虽能够明显提升流速,却无法等倍提高打击力,根据模型试验结果,在下喷嘴直径和工作压力相同的情况下,脉冲射流的打击力可以达到连续射流的1.3-2倍左右,满足最大打击力振幅的最优结构参数为:d1=5.9mm, d2=10.7mm, Dc=72mm, Lc=36.6mm, P=2.9MPa,相应配套关系可作为中低压条件下自激脉冲喷嘴设计的依据。
Directing at the hitting force and hitting frequency of the self-excited pulsing jet device used in the industry of water jet cleaning,methods such as numerical simulation, fluid network theory and model test are used from the micro to the macro.The various kinds of occurrence mechanisms are explained,the law of the pulsing jet frequency and amplitude depending on the structure and working parameters is obtained. Based on different working conditions,the mechanism of wave-vortex under high pressure-small flow and mechanism of air spring under low pressrue-large flow are explained and united through the summary of the related theory of occurrence mechanism of self-excited pulse flow.Because of the high flow rate under the high pressure-small flow, the stagnation time of the fluid in the cavity is less than the relaxation time of cavitation,so the self-excited pulse is caused by the wave-vortex perturbation;while under the low pressrue-large flow,the cavitation gasbag is fully developed and the periodic shrink of the gasbag is the major cause of pulse jet.
     In order to improve the numerical computation method of self-excited pulsing jet device,increase the predictive ability of the model and optimize the range of parameters,based on the3D unsteady cavitation model,structure and working parameters of the self-excited pulsing jet device which have a significant impact on the frequency of the self-excited pulse are analysed.The best self-excited effect with minimum frequency and maximum amplitude is produced when d2/d1=1.8, Lc=36mm. The effective self-excited phenomenon is produced when the working pressure equal or greater than2MPa.The frequency decreases and the ampitude increases with working pressure increasing,but the variation trend slows down, the effective range of the pressure modulation is1~4MPa.Different structures of the self-excited nozzle have different pulse wave form;under the same structure,the change of the working pressure can change the self-excited frequency and peak bandwidth but not the wave form.The relationship between the self-excited frequency and inlet velocity is a power function under the same structure.The Strouhal numbers under same working pressure and different structure parameters nearly the same.The improved cavitation model has higher simulation accuracy which leads to more realistic time of duration of the peak of the outlet flow velocity.
     The frequency response function of the self-excited pulse cavity has been founded based on the correlation theory of fluid network theory so as to study the influence of external characteristic of the system. Calculated by the program,the self-excited pulse cavity has the character of lowpass filter,the main frequency related to the structure and working parameters exists and the resonance leading to pulse jet can be produced by the selective amplification of the cavity when the frequency of the incoming flow pulsation approximately equal to main frequency.The higher of the amplitude,the lower of the relevant main frequency and the shorter of the transmission bands.For double-cavity self-excited pulse nozzle,thc amplitude of disturbance wave significantly increases by the design of two-stage amplification,but the frequency decreases and the frictional head loss increases with the elongation of the path of disturbance feedback.
     The test bed of self-excited pulsing jet device has been founded to prove the results of theoretical analysis and a whole system consist of dynamical transporl,self-excited produce and data collection has been formed. The contrast between the numerical simulation and the model model test shows that the forecast of the self-excited pulsing frequency is feasible using the modeling approach proposed in chapter3.Because of the steam-water mixture form of the outlet flow,the density of the pulsing jet is less than that of the continuous jet which leads to the result that the hitting forcce can not be increased in proportion to the outlet velocity.According to the results of the model test,the hitting force of the pulse jet can be1.3~2times of that of the continuous jet.The best structure parameters with the biggest hitting force amplitude are: d1=5.9mm, d2=10.7mm, Dc=72mm, Lc=36.6mm, P=2.9MPa.The corresponding relationship can be the foundation of the design of self-excited pulse nozzle under mesolow.
引文
[1]Maurer W C, Heilhecker J C, Love W W. High pressure drilling:18F,2T,13R. J. Petroleum Tech. V25, July,1973, P851-859[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974,11(10):211-212.
    [2]陈志荣,袁隆基,高丽霞,等.冰粒磨料射流系统设计[J].煤矿机械,200829(11):10-11.
    [3]李赵杰,姜希彬,邓松圣.空化水射流除锈性能研究[J].中国储运,2009(10):109-111.
    [4]Pater L L, Borst P H. An extrusion-type pulsed jet device:Proceedings of the Second US Water Jet Conference, Rolla,MO.,1983[C].
    [5]Mazurkiewicz M. An analysis of one possibility for pulsating a high pressure water jet:WJTA,1998[C].
    [6]LIAO Z F, HUANG D S. Nozzle Device for the Self-Excited Oscillation of a Jet, 1986[C].
    [7]廖振方,唐川林.自激振荡脉冲射流喷嘴的理论分析[J].重庆大学学报(自然科学版),2002, 25(2):24-27.
    [8]唐川林,胡东,裴江红.自激振荡脉冲射流喷嘴频率特性实验研究[J].石油学报,2007,28(4):122-125.
    [9]易灿,李根生,张定国.自振喷嘴空化起始能力实验研究[J].中国机械工程,2005,16(21):1945-1949,
    [10]李根生,沈忠厚,张召平,等.自振空化射流钻头喷嘴研制及现场试验[J].石油钻探技术,2003,31(5):11-13.
    [11]杨晓红,杨林,王建生,等.自激振荡脉冲射流装置的固有频率特性[J] .煤炭学报,2000,25(6):641-644.
    112]邓晓刚,廖振方,梁春光.自激振荡脉冲射流式增氧机机理及实验研究[J] .渔业现代化,2006(4):32-34.
    [13]高虹,曾丹苓.自激振荡脉冲射流强化换热实验研究[J].热能动力工程,2003,18(4):349-351,360.
    [14]王乐勤,王循明,徐如良,等.自激振荡脉冲喷嘴结构参数配比试验研究[J].工程热物理学报,2004, 25(6):956-958.
    [15]廖勇,李晓红,卢义玉,等.自激振荡脉冲磨料水射流的研究[J].流体机械,2003,31(4):4-5,31.
    [16]杨林,李晓红,王建生,等.自激振荡脉冲磨料射流中波速对频率的影响[J].重庆大学学报(自然科学版),2000,23(5):4-7,20.
    [17]王循明,王乐勤,焦磊.自激脉冲射流喷嘴参数对装置能耗影响分析[J].工程热物理学报,2008,29(5):780-782.
    [18]李江云,徐如良,王乐勤.自激脉冲喷嘴发生机理数值模拟[J].工程热物理学报,2004,25(2):241-243.
    [19]李根生,黄中伟,张德斌,等.自激波动注水振荡波传播规律实验[J].水动力学研究与进展A辑,2004,19(3):370-374.
    [20]高传昌,刘新阳,赵礼,等.淹没条件自激脉冲射流装置性能试验研究:中国工程热物理学会,武汉,2011.
    [21]赵礼,高传昌,王好锋,等.光洁度对低压大流量自激式脉冲射流装置效果的影响研究[J].中国科技信息,2010(21):48-50.
    [22]裴江红,唐川林,胡东.双腔室自激振荡喷嘴频率特性研究[J].振动与冲击,2011,30(4):29-32.
    [23]周利坤,刘宏昭.用自适应粒子群算法求解自激脉冲喷嘴结构参数模型[J].吉林大学学报:工学版,2012,42(6):1415-1420.
    [24]刘新阳,苏泊源,高传昌,等.自激脉冲射流装置结构参数的无量纲研究[J].华北水利水电学院学报,2011,32(6):11-13.
    [25]倪红坚,王传伟,艾尼瓦尔,等.自激振荡脉冲消泡机制分析与性能优化[J].中国石油大学学报(自然科学版),2012,36(2):120-124.
    [26]李江云.气液活塞式脉冲射流泵装置理论和试验研究[D].武汉大学流体机械及工程,2001.
    [27]Edward B F, Kenneth S S. The temperature of cavitation[J]. Science, 1991,253:1397-1399.
    [28]贺成龙,吴建华,刘文莉.空化应用研究进展综述[J].嘉兴学院学报,2008,20(3):57-62.
    [29]Pandit A B, Moholkar V S. Harness Cavitation to Improve Processing[J]. Chemical Engineering Progress,1996(7):57-69.
    [30]Pandit A B, Kumar P S, Kumar M S. Improve Reaction with Hydrodynamic Cavitation[J]. Chemical Engineering Progress,1999(5):43-50.
    [31]朱坤.生物质燃油条件下流场中壁面处空化气泡溃灭过程影响的仿真研究[D].合肥工业大学机械设计及理论,2011.
    [32]Kalumuck K M, Chahine G L. The use of cavitaling jets to oxidize organic compounds in water[J]. ASME Journal of Fluids Engineering, 2000,122(9):465-470.
    [33]Chahine G L, Kalumuck K M, Hsiao C T. Simulation of surface piercing body coupled response to underwater buble dynamics utilizing 3DYNAFS,a three-dimensional BEM code[J]. Computational Mechanics,2003(4):319-326.
    [34]王萍辉.空化射流在管道清洗中应用[J].电力科学与工程,2002(4): 21-24,45.
    [35]Patricia M G, Brooks B S. Hydrokinetic Using the Cleaning of Exchange Tubes and Pipes:Proc. of the 10th American Water Jet conference, Houston,Texas,1999[C].
    [36]Kruus P, Aranda R, Penchuk J. Determ mation of ratios of swfate to loesulfate ious in aqueous solutions by Raman spectroscopy[J]. Chemosphere, 1998,36(8):1182-1811.
    [37]Singh V R, Lafaut J P, WeverS M, et al. Transient cavitation and associated mechanisms of stone disintegration[J]. ITBM-RBM,2000,21(1):14-22.
    [38]Aoyagi R. Possibility of Metal Processing Using Ultrasonic Cavitation Jet[J]. Japanese Journal of Applied Physics,2001,40(5B):3784-3789.
    [39]李根生,沈忠厚.空化射流及其在钻进工程中应用研究[J].石油钻探技术,1996,12:51-54.
    [40]李根生,马加计,沈晓明.高压水射流处理地层的机理及试验[J].石油学报,1998,19(1):96-99.
    [14].毛晶,迟森,黄丽敏,等.高压水旋转射流解堵工艺技术在吉林油田的应用[J].油气井测试,2002, 11(3):35-36,41.
    [42]宫伟力,方湄.喷射磨技术与高压水射流粉碎机理研究的新进展[J].化工进展,1998,17(6):30-33.
    [43]付胜,段雄,张新民.利用热力辅助高压水射流进行超细粉碎的探讨[J].化工矿物与加工,2001,30(10):29-32.
    [44]Soyama H. Improvement in Fatigue Strength of Silicon Manganese Steel SUP 7 by using a Cavitating Jet[J]. JSME International Journal Series A, 2000,43(2):173-178.
    [45]Soyama H. Penning by use of Cavitation Impacts for the Improvement of Fatigue Strength[J]. J. Mater. Sci. Lett.,2001,20(13):1263-1265.
    [46]Soyama H, Satio K, Saka M. Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Pcening[J]. Journal of Engineering And Technology,2002,124(2):135-139.
    [47]Soyama H, Asahara M. Improvement of the Corrosion Resistance of a Carbon Steel Surface by a Cavitation Jet[J]. Journal of materials science letters, 1999,18(23):1953-1955.
    [48]Soyama H. Marked Peening Effects by High-speed Submerged-water-jets-residual Stress Change on SUS304[J]. Journal of Jet Flow Engineering,1996,13(1):25-32.
    [49]Soyama H, Park J, Saka M. Use of Cavitating Jet for Introducing Compressive Residual Stress[J]. Journal of Manufacturing Science And Engineering, 2000,122(1):83-89.
    [50]Soyama H. Increase of Ability of Water Jet by using Cavitation Impacts and its Application to Peening of Material [J]. Journal of Jet Flow Engineering, 1999,16(3):22-28.
    [51]张凤华,廖振方,唐川林,等.空化水射流的化学效应[J].重庆大学学报(自然科学版),2004,27(1):32-35.
    [52]Kalumuck K M, Chahine G L. The use of Cavitating Jets to Oxidize Organic Compounds in Water[J]. ASME Journal of Fluids Engineering, 2000,122(9):465-470.
    [53]Kumar P S, Kumar M S, Pandit A B. Experimental Quantification of Chemical Effects of Hydrodynamic Cavitations[J]. Chemical Engineering Science, 2000,55(9):1633-1639.
    [54]Pandit A B, Joshi J B. Hydrodynamic of Fatty oils:Effect of Cavitation[J]. Chemical Engineering Science,1993,48(19):3440-3442.
    [55]Rockwell D, Naudascher E. Review-self-sustaining oscillations of flow past cavities[J]. ASME Transactions Journal of Fluid Engineering, 1978,100:152-165.
    [56]Liao Z F, Tang C L. Theoretical Analysis and Experimental Study of the Pulsed Jet Device:Proceeding 4th US Water Jet Conference, Berkeley,1984[C].
    [57]Grow S C, Champagne F H. Orderly structure in jet turbulence[J]. FluidMech, 1971,48:547-591.
    [58]唐川林,廖振方.石油钻井钻头应用自激振荡喷嘴的研究[J].石油学报,1993,14(1):124-130.
    [59]普朗特德L..流体力学概论[M].1966.
    [60]李江云.低压脉冲射流装置的数值理论及应用研究[D].浙江大学化工过程机械,2004.
    [61]KUNZ R F, BOGER D A, STINEBRING D R, et al. A preconditioned Navier-Stokes method for two-phase Hows with application to cavitation prediction[J]. Comput Fluids,2000,29:849-867.
    [62]Huang B, Wang G, Yuan H. A cavitation model for cavtating flow simulations[J]. Journal of Hydrodynamics, Ser. B,2010,22(5, Supplement 1):798-804.
    [63]Huang B, Wang G, Yuan H. A cavitation model for cavtating flow simulations[J]. Journal of Hydrodynamics, Ser. B,2010,22(5, Supplement 1):798-804.
    [64]Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers & Fluids,2000,29(8):849-875.
    [65]Coutier-Delgosha O, Fortes-Patella R, Reboud J L, et al. Stability of preconditioned Navier-Stokes equations associated with a cavitation model[J]. Computers & Fluids,2005,34(3):319-349.
    [66]Chatterjee D. Use of ultrasonics in shear layer cavitation control [J]. Ultrasonics, 2003,41(6):465-475.
    [67]Amromin E. Two-range scaling for tip vortex cavitation inception[J]. Ocean Engineering,2006,33(3-4):530-534.
    [68]Chen H, Li X, Wan M. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound[J]. Ultrasonics,2006.44, Supplement(0):e427-e429.
    [69]Tsuda S, Takagi S, Matsumoto Y. A study on the growth of cavitation bubble nuclei using large-scale molecular dynamics simulations[J]. Fluid Dynamics Research,2008,40(7-8):606-615.
    [70]Arrojo S, Benito Y. A theoretical study of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry,2008,15(3):203-211.
    [71]Bapat P S, Pandit A B. Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water[J]. Ultrasonics Sonochemistry,2008,15(1):65-77.
    [72]Payri F, Payri R, Salvador F J, et al. A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation[J]. Computers & Fluids,2012,58(0):88-101.
    [73]Li Z, Pourquie M, Van Terwisga T J C. A numerical study of steady and unsteady cavitation on a 2d hydrofoil[J]. Journal of Hydrodynamics, Ser. B, 2010,22(5, Supplement 1):770-777.
    [74]Arrojo S, Benito Y, Martinez Tarifa A. A parametrical study of disinfection with hydrodynamic cavitation [J]. Ultrasonics Sonochemistry, 2008,15(5):903-908.
    [75]MAKINEN K. CAVITATION MODELS FOR STRUCTURES EXCITED BY A PLANE SHOCK WAVE[J]. Journal of Fluids and Structures, 1998,12(1):85-101.
    [76]Zhang X B, Qiu L M, Qi H, et al. Modeling liquid hydrogen cavitating flow with the full cavitation model[J]. International Journal of Hydrogen Energy, 2008,33(23):7197-7206.
    [77]Behbahani-Nejad M, Changizian M. A fast non-iterative numerical algorithm to predict unsteady partial cavitation on hydrofoils[J]. Applied Mathematical Modelling,2013,37(9):6446-6457.
    [78]Soh W K, Willis B. A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble [J]. Experimental Thermal and Fluid Science,2003,27(5):537-544.
    [79]Samiei E, Shams M, Ebrahimi R. A novel numerical scheme for the investigation of surface tension effects on growth and collapse stages of cavitation bubbles[J]. European Journal of Mechanics-B/Fluids, 2011,30(1):41-50.
    [80]Singhal A K, Li H Y, Athavale M M. Mathematical Basis and validation of the full cavitation model[J]. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF FLUIDS ENGINEERING,2002, 124(3):617-624.,2002,124(3):617-624.
    [81]Kozubkova M, Rautova J, Bojko M. Mathematical Model of Cavitation and Modelling of Fluid Flow in Cone[J]. Procedia Engineering,2012,39(0):9-18.
    [82]Mi J, Nathan G J. Self-excited jet-precession Strouhal number and its influence on downstream mixing field[J]. Journal of Fluids And Structures, 2004,19:851-862.
    [83]Goodson R E, Leonard R G. A survey of modeling techniques for fluid line transients[J]. Journal of Basic Engineering,1972,94:474.
    [84]Iberall A S. Attenuation of oscillatory pressures in instrument lines[M]. Defense Technical Information Center,1950.
    [85]Nichols N B. The linear properties of pneumatic transmission lines [J]. ISA Transactions,1962,1 (1):5-14.
    [86]Brown F T. The transient response of fluid lines [J]. Journal of Basic Engineering,1962(84):547-553.
    [87]Rohmann C P, Grogan E C. On the dynamics of pneumatic transmission lines [J]. Trans. ASME,1957,79(4):853-867.
    [88]Ezekial F D, Paynter H M. Computer representation of engineering systems involving fluid transients [J]. Trans. ASME,79(8):1840-1850.
    [89]Boothe W A. A lumped parameter technique for predicting analog fluid amplifier dynamics [J].1964.
    [90]罗志昌,何绍德.流体管道系统瞬态流动的网络分析方法[J].北京工业大学学报,1984(01):1-12.
    [91]佘鎏.压力阶跃信号在流体管路中的传输[J].复旦学报(自然科学版),1975(02):42-59.
    [92]Kirshner J M. Fluid amplifiers[M]. New York:McGraw-Hill,1966.
    [93]Foster K, Parker G A. Fluidics:components and circuits[M]. New York: Wiley-Interscience,1970.
    [94]Lundgren T S, Sparrow E M, Starr J B. Pressure drop due to the entrance region in ducts of arbitrary cross section[.I].1964,86:620-626.
    [95]Belsterling C A. Fluidic systems design[M]. New York:Wiley-Interscience, 1971.
    [96]Dommel H W. Digital computer solution of electromagnetic transients in single-and multiphase networks[J]. [J]. Power Apparatus and Systems, 1969(4):388-399.
    [97]罗志昌,何绍德.流体管道系统瞬态流动的网络分析方法[J].北京工业大学学报,1984(01):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700