用户名: 密码: 验证码:
光纤Bragg光栅传感系统若干技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤Bragg光栅(Fiber Bragg Grating, FBG)传感器是光纤传感器家族中的一员,它不仅具有光纤传感器的所有优点,包括柔软、可挠曲、尺寸小、质量轻、电绝缘、耐腐蚀、工作中不发热、无辐射、抗电磁干扰且能在易燃易爆、毒性气体等复杂环境条件下工作,而且具有灵活的复用能力,包括波分复用、时分复用、空分复用,这种复用能力能较方便的实现分布式传感。FBG传感器这些独特的优点使得其在航空航天、土木工程等领域有着广阔的应用前景,成为近年来国内外的研究热点。在本文中,对FBG传感系统的一些问题包括FBG的封装、FBG的解调、FBG的光谱重构进行了研究。对这些问题的研究,将会进一步推进FBG传感系统的研究,同时拓宽FBG传感系统的应用领域。另外,对新型的FBG—光子晶体光纤Bragg光栅(PhotonicCrystal Fiber Bragg Grating, PCFBG)的研究将促使FBG进入一个新的研究领域,同时也将扩展FBG传感系统的应用领域。故此,本文也对PCFBG技术进行了研究。
     全文的研究内容主要包括以下几个方面:
     (1)对FBG进行理论分析,介绍了FBG的应变和温度传感模型,基于该模型对FBG的应变和温度传感特性进行了分析。在此基础上对FBG的温度和应变封装技术做了理论探讨和实验研究,从增敏和减敏两个方面对FBG温度和应变封装技术进行讨论。
     (2)为实现FBG传感信号的解调,提出了基于级联长周期光栅的FBG解调系统,并对其进行了改进。级联长周期光栅是由两个参数相同的均匀长周期光纤光栅和一段普通单模光纤连接而成,利用级联长周期光栅的带阻滤波特性,获得FBG反射光经级联长周期光栅调制后的出射光,通过光电探测器监测光强的改变量来反推FBG中心波长的变化。通过FBG温度、静态应变以及动态应变(振动)实验对该解调系统及其改进系统的性能进行了研究。
     (3)提出一种利用量子粒子群优化算法对FBG进行参数重构的方法,并与粒子群优化算法进行了对比。该方法以光纤光栅的参数作为计算变量,光纤光栅的反射谱作为目标函数,已知反射谱和重构反射谱之间的误差函数作为适应度函数,通过寻优找到适应度函数小的最优个体。利用量子粒子群优化算法和粒子群优化算法分别对均匀FBG和线性啁啾光纤光栅两种光纤光栅的参数进行了重构。
     (4)进一步将粒子群优化算法和量子粒子群优化算法用于FBG传感器的非均匀应变和温度重构中,分别通过4种非均匀的应变和温度分布来检验算法的有效性和可靠性。同时对量子粒子群优化算法的重构结果和粒子群优化算法的重构结果进行了对比。
     (5)利用OptiFDTD软件结合耦合模理论,研究PCFBG的反射谱特性。并进一步研究了结构改变(间隙孔半径、材料折射率、空气孔塌陷)对PCFBG反射谱特性的影响。
Fiber Bragg grating (FBG) sensors are one of optical fiber sensors. So they have all theadvantages of optical fiber sensors such as flexible, small size, light weight, dielectric, corrosionresistance, not heating in working, nonradiative, immune to electromagnetic interference, can work incomplicated environment such as inflammable and explosive situation and poisonous gases. Further,they possess flexible multiplexing capability such as wavelength division multiplexing (WDM), timedivision multiplexing (TDM) and space division multiplexing (SDM). Because of their own uniqueadvantages, FBG sensors possess great application prospects in aerospace and civil engineering andthey have becoming a hot and focal point in national and abroad in recent years. However, FBGsensors have some problems in the application of structural health monitoring such as encapsulation,demodulation, spectral reconstruction and development of photonic crystal fiber Bragg grating(PCFBG) with better and more flexible performance. If these problems can well been solved, then theapplication of FBG sensing system will be greatly improved. In this paper, we focus on FBG sensingsystem, mainly research on the encapsulation technology, the demodulation technology, spectralreconstruction technique of FBG and PCFBG technique.
     The main research contents are described as follows:
     (1) The theoretical analysis of FBG has been studied. Firstly, we introduce the strain and temperaturesensing model of FBG. Based on the strain and temperature sensing model of FBG, the temperatureand strain sensing properties of FBG sensors are analyzed. Then theoretically and experimentalresearches on the FBG encapsulation technology of strain and temperature are studied, and thepackaging technology are discussed through sensitization and desensitization.
     (2) In order to demodulate FBG sensing signals, a FBG demodulation system based on a cascadedlong period fiber grating (CLPG) is developed and the improved system is also proposed. A CLPGconsists of two identical long-period fiber gratings separated by a short length of single mode fiber.Reflection light of FBG modulated by CPFG is obtained and studied by use of band-stop filtercharacteristics for CLPG, and wavelength change of FBG is deduced by light intensity achieved byphotodetector. The performance of the demodulation system and the improved system are studiedthrough the FBG temperature, static strain and dynamic strain (vibration) experiments.
     (3) A FBG parameter reconstruction method based on quantum-behaved particle swarm optimization(QPSO) algorithm is developed, and then the comparison between QPSO and particle swarm optimization (PSO) is presented. In this method, the parameters of the FBG is considered as variables,the reflection spectrum of the FBG is considered as the objective function, the error between theknown reflection spectrum and the reconstructed reflection spectrum is considered as the fitnessfunction.Then the optimal individual with smallest fitness function is finded by parameter search. Theparameter reconstruction of FBG and chirped FBG is described using PSO and QPSO algorithm.
     (4) The QPSO algorithm and PSO algorithm are further used for the spectrum reconstruction of FBGsensor with non-uniform strain and temperature. The efficiency and reliability of the QPSO algorithmand PSO algorithm are verified through four kinds of non-uniform strain and temperature. Futhher,the comparison between QPSO and PSO is given.
     (5) The reflection spectrum characteristics of PCFBG are analyzed by OptiFDTD software andcoupled-mode theory. Futhermore, the effect of structural change including radius of air hole, materialrefractive index and collapse of air hole on the resonant wavelength of PCFBG is analyzed.
引文
[1] Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges.Engineering Structures,2005,27(12):1715-1725.
    [2] Wood K, Brown T, Rogowski R et al. Fiber Optic Sensors for Health Monitoring of MorphingAirframes: ⅠBragg Grating Strain and Temperature Sensor. Smart Materials and Structures,2000,9(2):163-169.
    [3]姜德生,梁磊,周雪芳等.光纤光栅机敏混泥土的研究.硅酸盐通报,2003,22(3):78-81
    [4] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in Optical Waveguides Application toReflection Filter Fabrication. Applied Physics Letters,1978,32(10):647-649.
    [5] Meltz G, Morey M M, Glenn W H. Formation of Bragg grating in optical fibers by a transverseholographic method. Optics Letters,1989,14(5):823-825.
    [6] Moery W W, Gmeltz, Glenn W H. Fiber Bragg grating sensors. Proceedings of SPIE,1989,1169:98-107.
    [7]童峥嵘,黄勇林,蒙红云等.一种新颖的光纤光栅位移传感的研究.传感技术学报,2002,15(1):10-13
    [8] Dong X Y, Meng H Y, Kai GY et al. Bend measurement with chirp of fiber Bragg grating. SmartMaterials and Structures.2001,10: l-3.
    [9] Dong X Y, Liu Y Q, Liu Z G et al. Simultaneous displacement and temperature measurement withcantilever-based fiber Bragg grating sensor. Optics Communications,2001,192:213-217.
    [10] Giurgiutiu V. Recent advances in smart material rotor control actuation. Proceedings of the41stIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, andAdaptive Structures Forum, Atlanta,3-6April,2000.
    [11] Coombs S. Smart skins: information processing by lateral line flow sensors, Autonomous Robots,2001,11(3):255.
    [12] Tuzcu I, Meirovitch L. Control of flying flexible aircraft using control surfaces and dispersedpiezoelectric actuators, Smart Mater Struct,2006,15(4):893.
    [13] Internet reference:bluerr.com/images/adhesive.pdf.
    [14] Friebele P et al. Fibre Bragg grating strain sensors: present and future applications in smartstructures.Optics and Photonics News,1998,9:33-37.
    [15] Takeda S, Aoki Y, Ishikawa T et al. Structural health monitoring of composite wing structureduring durability test. Composite Structures,2007,79(1):133-139.
    [16] Ferdinand P et al. Applications of Bragg gating sensors in Europe. Proceedings of the OpticalFiber Sensors Conference (OFS-12). Williamsburg, VA, USA,1997,14-19.
    [17] Friebele P et al. Fibre Bragg grating strain sensors: present and future applications in smartstructures. Optics and Photonics News,1998,9:33-37.
    [18] Fuhr P L, SaPmmer S. Fiber Optic Sensors in the waterbury Bridge. SPIE,1998(3489):124-129.
    [19] Slowik V et al. Fibre Bragg Grating Sensors in Concrete Technology. LACER,1998,3:109-119.
    [20] Internet reference:bssm.org/ConferencePage008.ht-ml.
    [21] Vohra S T et al. Quasi-Static Strain Monitoring Dur-ing the ‘Push’ Phase of a Box-Girder BridgeUsing Fiber Bragg Grating Sensors. European Workshop on Optical Fibre Sensors. Scotland, UK,1998.
    [22] Nellen P M et al. Application of fiber optical and re-sistance strain gauges for long-termsurveillance ofcivil engineering structures. Proceedings of SPIE.1997,3043:77-86.
    [23] Kister G, Winter D, Badcock R A et al. Monitoring of an all-composite bridge using Bragggrating sensors. Construction and Building Materials,2007,21(7):1599-1604.
    [24] Kerrouche A, Boyle W J O, Gebremichael Y et al. Field tests of fibre Bragg grating sensorsincorporated into CFRP for railway bridge strengthening condition monitoring. Sensors andActuators A: Physical,2008,148(1):68-74.
    [25] Hammon T E et al. Optical fibre Bragg grating temperature sensor measurements in an electricalpower transformer using a temperature compensated fibre Bragg grating as a reference.Proc.ofthe11th International Conf. on Optical Fibre Sensors. Sapporo, Japan,1996,566-569.
    [26] Theune N M et al.Applications of Fiber Optical Sensors in Power Generators:Current andTemperature Sensors. Proc. OPTO2000Conf.2000,22-25.
    [27] Ogawa Y et al. A multiplexing load monitoring system fo power transmission lines using fibreBragg grating. Proc. of the Optical Fibre Sensors Conf.(OFS-12). Williamsburg, VA, USA,1997,468-471.
    [28] Internet reference: omega.com/literature/transactions/volume3/lad2.html.
    [29] Internet reference: oil-offshore.com/companies/optoplan.html.
    [30] Weis W et al. MWD telemtry system for coiltubing drilling using optical fiber gratingmodulators down-hole. Proc. of the Optical Fiber Sensors Conf.(OFS-12). Williamsburg, VA,USA,1997,416-419.
    [31] Internet reference: kvaerner.com/oilgas/pr/feature/january2000/composit.pdf.
    [32] Internet reference: cidra.com/opticalsensingsystems/technology/bragg-grating.html.
    [33] Spirin V V et al. Fiber Bragg grating sensor for petroleum hydrocarbon leak detection. Opticsand Laser in Engineering,2000,32:497-503.
    [34] Berthold J W. Measurement of Axial and Bending Strain in Pipelines Using Bragg GratingSensors. SPIE Environmental and Industrial Sensing Conference, Boston, Massachusetts,2000.
    [35] Meltz G et al. Fibre grating evanescent-wave sensors. Proc. SPIE,1996,2836:342-350.
    [36] Ecke W et al. Chemicl Bragg grating sensor network basing on side-polished optical fibre. Proc.SPIE,1998,3555:457-466.
    [37] Internet reference: optics. kth. se/fysik2/RIO97/PDF/RIO97B.PDF.
    [38] Peng Y T et al.The characterization of hydrogen sensor based on palladium electroplated fiberBragg gratings(FBG). Proc. SPIE,1999,3670:42-53.
    [39] Rao Y J et al.In-fibre Bragg grating temperature sensor system for medical application. J.Light-wave Technol,1997,15:779-785.
    [40] Rao Y J et al.In-situ trmperature monitoring in NMR machines with a prototype in-fibre Bragggrating sensor system. Proc. of the Optical Fiber Sensors Conf.(OFS-12). Williamsburg, VA,USA,1997,646-649.
    [41] Rao Y J et al.In-fibre Bragg grating flow-directed themodilution catheter for cardiac monitoring.Proc. of the Optical Fiber Sensors Conf.(OFS-12). Williamsburg, VA, USA,1997,354-357.
    [42] Interent reference: cpgei.cefetpr.br/hypolito/artigos/OFS2000f.pdf.
    [43] Internet reference: ntu.edu.sg/eee/research/report/p067bmerc.pdf.
    [44] Fisher N E et al.Response of in-fibre Bragg gratings to focused ultrasound fields[A].Proc.of theOptical Fiber Sensors Conf.(OFS-12). Williamsburg, VA, USA,1997,190-193.
    [45] Nobuaki Takahashi et al. Characteristics of Fiber Bragg Grating Hydrophone. IEICE Trans.Electron,2000, E83-C(3):275-281.
    [46] Interent reference: batmankjist.ac.kr/~laser/Englaser/bk/paper/fibre%20grating.pdf.
    [47] Internet reference: nttc.edu/resources/funding/awards/dod/dodsbir96/phase1/962p losd.asp.
    [48] Xu M G, Reekie L, Chow Y T et al. Optical in-fiber grating high pressure sensor. ElectronicsLetters,1993,29(4):398-399.
    [49]方涛,金永兴,沈为民.钢条封装的光纤布拉格光栅温度传感器.中国计量学院学报,2007,18(3):204-207.
    [50]于国庆,韩兴德,李永伟.光纤布拉格光栅(FBG)温度传感器增敏封装技术.河北工业科技,2009,26(1):1-4.
    [51]张燕君,王海宝,陈泽贵,毕卫红.光纤光栅毛细钢管封装工艺及其传感特性研究.激光与红外,2009,39(1):53-56.
    [52]王文华等.光纤光栅紫铜片封装结构及温度敏感特性研究.半导体光电,2009,30(3):400-402.
    [53]郭明金,姜德生,袁宏才.两种封装的光纤光栅温度传感器的低温特性.半导体光电,2009,30(3):400-402.
    [54]信思金,柴伟.光纤Bragg光栅温度传感器封装方法研究.传感器技术,2004,23(4):10-12.
    [55]詹亚歌等.铝槽封装光纤光栅传感器的增敏特性研究.光子学报,2004,33(8):952-955.
    [56]刘春桐等.铝合金箔片封装光纤光栅传感特性研究.光电子激光,2008,19(7):905-908.
    [57]于秀娟等.钛合金片封装光纤光栅传感器的应变和温度传感特性研究.光电子激光,2006,17(5):564-567.
    [58]禹大宽等.贴片封装的光纤Bragg光栅温度传感器.仪表技术与传感器,2006,(9):4-6.
    [59]于秀娟等.铜片封装光纤光栅传感器的应变和温度传感特性研究.光子学报,2006,35(9):1325-1328.
    [60]孙安等.大范围光纤布拉格光栅温度传感器增敏实验研究.光学学报,2004,24(11):1491-1493.
    [61]尉婷等.改善波形并增敏的光纤光栅温度传感技术.光子学报,2005,34(8):1209-1212.
    [62]李智忠等.光纤光栅二次涂敷封装温度特性的研究.光电子激光,2006,17(10):1191-1195.
    [63]姜德生,徐先东,何伟.聚合物封装的高灵敏度光纤Bragg光栅温度传感器.光学与光电技术,2003,1(1):27-30.
    [64] Xu M G, Geiger H, Dkain J P. Fiber grating perssure sensor wih enhanced sensitivity using aglass-bubble housing. Electronics Letters,1996,32(2):128-129.
    [65] Schulz W L, Conte J P, Udd E Long gage fibre optic Bragg grating strain sensors to monitor civilstructures. Proceedings of SPIE4330,2001,56.
    [66] Zhou Z, Graver T W, Hsu L et al. Techniques of advanced FBG sensors: fabrication,demodulation, encapsulation and their applications in the structural health monitoring of bridges.Package Science Review,2003,5:116-121.
    [67] Ngoi B K A, Paul J, Zhao L P et al. Enhanced lateral pressure tuning of fiber Bragg gratings bypolymer packaging. Optics Communications,2004,242:425-430.
    [68] Leng J S, Mays G C, Fernando G F. Structural NDE of concrete structures using protected EFPIand FBG sensors. Sensors and Actuators A,2006,126:340-347.
    [69] Lo Y L, Kuo C P. Packaging a fibre Bragg grating with metal coating for an athermal design.Journal of Lightwave Technology,2003,21(5):1377-1383.
    [70] Lu S, Xia H. Strengthen and real-time monitoring of RC beam using “intelligent” CFRP withembedded FBG sensors. Journal of Constructor Building Mater,2007,21:1839-1845.
    [71] Chung W, Kang D. Full-scale test of a concrete box girder using FBG sensing system.Engineering Structure,2008,30:643-652.
    [72] P Moyo, Brownjohn J M W, Suresh R et al. Development of fiber Bragg grating sensors formonitoring civil infrastructure. Engineering Structure,2005,27:1828-1834
    [73] T A Dawood, Shenoi R A, Sahin M. A procedure to embed fibre Bragg grating strain sensors intoGFRP sandwich structures. Composites A,2007,38:217-226.
    [74] Melle S M, Liu K etc. Wavelength demodulation system for a fiber optic Bragg grating straingauge. Fiber Optic Sensor-Based Smart Materials and Structures,1992:39-44
    [75] Measures R M. Mellc S M, Liu K. Wavelength demodulated Bragg grating fiber optic sensingsystems for addressing smart structure critical issues. Smart Materials and Structures,1992,1(1):36-52
    [76] Kersey A D, Berkoff T A, Morey W W. High-resolution fiber-grating based strain sensor withinterferometric wavelength-shift detection. Electronics Letters,1992,28(3):236-238.
    [77] Kersey A D, Berkoff T A. Dual wavelength fiber interferometer with wavelength selection viafiber Bragg grating elements. Electronics Letters,1992,28(13):1215-l216.
    [78] Jackson D A, Ribeiro A B L, Reekie L et a1. Simple Multiplexing Scheme for a Fiber-opticGrating Sensor Network. Optics Letters,1993,18(14):1192~1194.
    [79] Davis M A. Demodulator for fiber optic Bragg grating sensors based on fibre wavelengthdivision couplers. Proceedings of SPIE-The International Society for Optical Engineering,1994,v1291:86-93
    [80] Davis M A, Kersey A D. All-fibre Bragg grating strain-sensor demodulation technique using awavelength division coupler. Electronics Letters,1994,30(1):75-77.
    [81] Kersey A D. Multiplexed Fiber Bragg Grating Strain-sensor System with a Fiber Fabry-Perotwavelength Filter. Optics Letters,1993,18(16):1370-1371.
    [82] Yin Y Z, Chen X F, Dai Y T et al. A novel method for inverse fiber Bragg grating structuredesign. Optics Communications,2003,218(1-3):49-54.
    [83] Brinkmeyer E. Simple algorithm for reconstructing fiber gratings from reflectometric data.Optics Letters,1995,20(8):810-812.
    [84]高志鹏,余震虹,邢丽华.一种计算光纤布拉格光栅谱特性的新方法.量子电子学报,2007,24(2):269-272.
    [85]邓芳,余震虹,高志鹏等.一种重构多信道布拉格光栅的混杂算法.量子电子学报,2008,25(5):630-633.
    [86]高志鹏,余震虹,邢丽华.一种重构强反射光纤布拉格光栅的新方法.光学学报,2006,26(7):991-996.
    [87] Winick K A, Roman J E. Design of corrugated waveguide filters by Fourier transform techniques.IEEE Journal Quantum Electronics,1990,26:1918-1929.
    [88] Peral E, Capmany J, Marti J. Iterative solution to the Gel’Fand–Levitan–Marchenko coupledequations and application to synthesis of fibre gratings. IEEE Journal of Quantum Electronics,1996,32:2078-2084.
    [89] Muriel M A, Azana J, Carballar A. Fibre grating synthesis by use of time-frequencyrepresentations. Optics Letters,1998,23:1526-1528.
    [90] Skaar J, Wang L, Erdogan T. On the synthesis of fibre Bragg gratings by layer peeling. IEEEJournal of Quantum Electronics,2001,37:165-173.
    [91] Gill A, Peters K, Studer M. Genetic algorithm for the reconstruction of Bragg grating sensorstrain profiles. Measuement Science and Technology,2004,15:1877-1884.
    [92] Dong P, Azana J, Kirk A G. Synthesis of fibre Bragg grating parameters from reflectivity bymeans of a simulated annealing algorithm. Optics Communications2003,228:303-308.
    [93] Zhang R X, Zheng S J, Xia YJ. Strain profile reconstruction of fiber Bragg grating with gradientusing chaos genetic algorithm and modified transfer matrix formulation. Optics Communications2008;281:3476-3485.
    [94] Shi C Z, Zeng N, Zhang M et al. Adaptive simulated annealing algorithm for the fiber Bragggrating distributed strain sensing. Optics Communications,2003,226:167-173.
    [95] Yun B F, Wang Y P, Li A M et al. Simulated annealing evolutionary algorithm for the fibreBragg grating distributed strain sensor. Measurement Science and Technology,2005,16:2425-2430.
    [96] Ling H Y, Lau K T, Jin W et al. Characterization of dynamic strain measurement using reflectionspectrum from a fiber Bragg grating. Optics Commmunications,2007,70:25-30.
    [97] Huang S, Ohn M, LeBlanc M et al. Continuous arbitrary strain profile measurements with fibreBragg gratings. Smart Materials and Structures,1998,7:248-256.
    [98] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filledhollow-core photonic crystal fiber. Science,2002,298(5592):399-402.
    [99] Limpert J, Schreiber T, Nolte S et al. All fiber chirped-pulse amplification system based oncompression in air-guiding photonic bandgap fiber. Optics Express,2003,11(24),3332-3337.
    [100] Wadsworth W J, Knight J C, Reeves W H, et al.Yb3+-doped photonic crystal fibre laser.Electronics Letters,2000,36(17):1452-1453.
    [101] Kawasaki B S, Hill K O, Jonhnson D C et al. Narrow-Band Bragg Reflectors in Optical Fibers.Optics Letters,1978,3:66-68.
    [102] Torben S L, Siebe B, Otto L. Opto-mechanical accelerometer based on strain sensing by aBragg grating in a planar waveguide. Sensors and Actuators A: Physical,1996,52(3):25-32.
    [103] Dong L, Cruz J L, Eekie L R et al. Chirped Fiber Bragg Gratings Fabricated Using EtchedTapers. Optical Fiber Technology,1995,1(4):363-368.
    [104] Xie W X, Douay M, Bernage P et al. Second order diffraction efficiency of Bragg gratingswritten within germanosilicate fibers. Optics Communications,1993,101(1-2):85-91.
    [105]金发宏,童孝义等.光纤布喇格光栅的理论分析.光子学报,1996,25(9):809-813.
    [106] Erdogan T. Fiber Grating Spectra. IEEE Journal of Light wave Technology,1997,15:1277-1294.
    [107] Othonos A, Lee X, Measure R M. Superimposed Multiple Bragg Gratings. Electronics Letters,1994,30(23):1972-1973.
    [108]余守宪.导波光学物理基础.北京:北京交通大学出版社,2002.
    [109] Gupta S, Mizunami T, YamaoT et al. Fiber Bragg Gratings Gryogenic temperature sensors.Applied Optics,1996,35(25):5202-5205.
    [110] Dong X P, Li S P, Chiang K S et al. Multiwavelength erbium-doped fibre laser based on ahigh-birefringence fibre loop mirror. Electronics Letters,2000,369(19):1609-1610.
    [111] Shao LY, Song J F, Zhang A P et al. Novel FBG triangular filter for interrogating a FBG sensorin dynamic strain measurement. Electronics Letters,2006,2(5):336-338.
    [112] Fallon R W, Zhang L, Everall L A et al. All-fibre optical sensing system: Bragg grating sensorinterrogated by a long-period grating. Measurement Science and Technology1998,9(12):1969-1973.
    [113] Ezbiri A, Kanellopoulos S E, Handerek V A. High resolution instrumentation system forfibre-Bragg grating aerospace sensors. Optics Communications,1998,150(1-6):43-48.
    [114]王其富,乔学光等.光纤光栅传感器信号解调方法综述.光通信研究.2006,135(3):67-68.
    [115] Liu Y, Williams J A R, Zhang L et al. Phase shifted and cascaded long-period fiber gratings.Optics communications,1999,164(1):27-31.
    [116] Jeon S W, Hann S, Park C S. All-optical clock extraction from40-Gbit/s NRZ data usingcascaded long-period fiber grating. Optical Fiber Technolgy,2010,16(3):172-177.
    [117] Frazao O, Correia C, Baptista J M, et al. Ring fibre laser with interferometer based in longperiod grating for sensing applications. Optics Communications,2008,281(22):5601-5604.
    [118] Zhan Y G, Wu H, Yang Q Y et al. A multi-parameter optical fiber sensor with interrogation anddiscrimination capabilities. Optics and Lasers in Engineering,2009,47(11):1317-1321.
    [119] Kennedy J F, Eberhart R C. Particle swarm optimization. Proceedings of IEEE InternationalConference on Neural Network, Perth, Australia,1995:1942-1948.
    [120] Luchinsky D G, Smelyansky V N, Millonas M. Dynamical inference of hidden biologicalpopulation. European Phycical Journal B,2008,65(3):369-377.
    [121] Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization.IEEE Transactions on Evolutionary Computation2004,8:225-239.
    [122] Sun J, Feng B, Xu WB. Particle swarm optimization with particles having quantum behavior.IEEE Proceedings of Congress on Evolutionary Computation,2004:325-331.
    [123] Sun J, Xu W B, Feng B A global search strategy of quantum-behaved particle swarmoptimization. Cybernetics and Intelligent Systems Proceedings of the2004IEEE Conference,2004:111-116.
    [124] Yariv A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics,1973,9(9):919-933.
    [125] Yamada M, Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via afundamental matrix approach. Applied Optics1987,26,3474–3478
    [126]饶云江,王义平,朱涛.光纤光栅原理及应用.北京:科学出版社,2006.
    [127] Huang S, Ohn M M, LeBlanc M. Continuous arbitrary strain profile measurements with fiberBragg gratings. Smart Materials and Structures1998,7,248-256.
    [128]Thomas Sondergaard. Photonic crystal distributed feedback fiber lasers with Bragg gratings.Journal of Lightwave Technology,2000,18(4):589-597.
    [129] Furusawa K, Monro T M, Petropoulos P et al. Modelocked laser based on ytterbium dopedholey fibre. Electronics Letters,2001,37(9):560-561.
    [130] Sharping J E, Fiorentino M, Kumar P et al. All-optical switching based on cross-phasemodulation in microstructure fiber. IEEE Photonics Technology Letters,2002,14(1):77-79.
    [131] Rusell P. Photonic crystal fibers. Science,2003,299(5605):358-362.
    [132] Diez A, Birks T A, Reeves W H et al. Excitation of cladding modes in photonic crystal fibers byflexural acoustic waves. Optics Letters,2000,25(20):1499-1501.
    [133] Siahlo A I, Oxenlowe L K, Berg K S et al. A high speed demultiplexer based on a nonlinearoptical loop mirror with a photonic crystal fiber. IEEE Photonics Technology Letters,2003,15(8):1147-1149.
    [134]陶宝祺.智能材料结构.国防工业出版社,1997.
    [135] Mizrahi V, Sipe J E. Optical Properties of Photosensitive Fiber Phase Gratings. IEEE Journal ofLight wave Technology,1993,11:1513-1517.
    [136] Kogelnik H. Theory of Optical Waveguides in Guided-Wave Opto-Electronics. Springer-Verlag,1990.
    [137] Yariv A, and Yeh P. Optical Waves in Crystals. John-Wiley, New York,1984.
    [138]李燕,刘建国,开桂云等.光子晶体光纤光栅模式截止与高阶模的谐振条件.激光与红外,2007,37(2):147-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700