用户名: 密码: 验证码:
液压机非线性控制方法的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于非线性模型的液压机高精度控制一直是该领域的研究热点和难点,这主要是因为该领域尚存在一些关键问题至今仍未得到较好解决,而与之相关的高效非线性控制策略研究亦有待完善和深入。为此,本文围绕液压机非线性控制方法的若干问题,开展了以下几方面的研究工作:
     1.针对目前主流非线性控制方法仍然存在控制策略推导复杂、参数引入过多、对象特点针对性不强等问题,本文提出了基于Lyapunov直接法的控制器设计方法,为一类电液伺服系统找到了相应的Lyapunov函数,并给出了确定相关参数的具体方法,所设计的控制律保证了系统的收敛及稳定性,为该领域的控制方法研究提供了新的设计思路;
     2.针对单缸液压机系统存在的较强负载扰动及参数不确定性等问题,本文为一类具有非正则高阶模型的单缸液压系统设计了基于已知干扰上确界的滑模自适应控制器,在保证滑模面可达的条件下,给出了增益及不确定参数的具体设计方法,使系统实现高精度跟踪的同时,获得了较强的鲁棒性;
     3.通过对多缸液压机的组成及原理分析,给出了多缸液压机数学模型的一般描述,构建了统一的标准模型,为各类多缸液压机模型的进一步建立奠定了基础,并以五缸及四缸系统为例,给出了其具体建模过程;
     4.鉴于多缸液压机的过驱动问题研究至今仍为空白,本文深入探讨多缸液压机的冗余控制方法,提出了采用控制分配理论解决多缸液压机出力分配问题的控制策略,并形成了以控制分配为纽带的多级控制器设计思路,解决了多点调平问题;在此基础上,探索了基于动态控制分配策略的控制器设计方法,仿真实验证明各个液压缸得到了变化更为平缓的出力分配结果,改善了因负载力跳变等因素引起的液压缸冲击问题。
     5.探讨了多缸液压机的容错控制问题,提出通过考虑故障信息的容错控制分配方法,充分调动非故障状态执行器输出能力,以解决系统出现的局部故障问题,使得系统的原有性能得到完好的保持。
     综合以上研究成果,本文针对液压机非线性控制的若干问题,提出了一系列新型控制器设计策略,改善了传统控制器设计存在的缺陷,解决了液压机的出力分配、多点调平及容错控制等问题,为实现液压机的高性能控制提供了理论依据,推进了液压机非线性控制方法的进一步研究与发展。
High accuracy control of hydraulic press based on nonlinear model are thedifficulty and hotspot in recent years.The reason is that there are some key issues arenot solved ideally,and the relevant efficient nonlinear control method is still needed tobe developed.So some research was carried out against the issues around the nonlinearcontrol method of hydraulic press in this paper:
     1. A control scheme based on Lyapunov’s direct method was proposed for a classof electro-hydraulic servo system.The scheme improve the problems such ascomplex derivation,too many parameters and vague target,and find the appropriateLyapunov function and parameters.The design method ensures the stability of thesystem.
     2. A adaptive sliding mode controller was designed based on the interferencesupremum for a single cylinder hydraulic press which had a high-level non-canonicalform.This methods was mainly proposed against the problems such as strong loaddisturbance and parameter uncertainty.The specific design method on the gain anduncertain parameter was given to ensure the reaching condition of sliding surface.Theresult proves that the proposed scheme can realize high accuracy track and have abetter robustness.
     3. By analysis of compositon and principle,a general description ofmulti-cylinder hydraulic press model was given,and a unified standard model wasformed.After that,a specific modeling process for four and five cylinders press wasgiven.
     4. The redundant control method was investigated deeply against theoveractuated problems of multi-cylinder hydraulic press.A control scheme based oncontrol allocation theory was proposed to solve the force allocation problem,and amulti-level design idea which take the control allocation as a link was formed.Thescheme can deal with multi-point leveling problem.Then a dynamic control allocationmethod for multi-cylinder hydraulic press was explored,the simulation proves that thecylinder can get a more gentle allocation result,and the hydraulic cylinder impactproblem is improved which may be caused by the load force transition.
     5. The fault tolerant control research for multi-cylinder hydraulic press wasexplored,and a fault tolerant control allocation method which considers the fault information was proposed.By mobilize the actuator output capability of non-failedstate,the original performance of the system was retained intact.
     In summary research,a series novel control scheme were proposed againstrelevant problems of nonlinear control method about hydraulic press.The design flawsof traditional control scheme was improved,and the problems of force allcation、multi-point leveling、fault tolerant control were solved effectively.The researchachievement can provide a theoretical basis for high-performance control of hydraulicpress,and promote the further research and development of nonlinear control methodabout hydraulic press.
引文
[1] Karam M. Elbayomy, Jiao Zongxia,etc. PID Controller Optimization by GA andIts Performances on the Electro-hydraulic Servo Control System [J]. ChineseJournal of Aeronautics,2008,21:378~384.
    [2] D.Q. Truong, K.K.Ahn. Force Control for Press Machines Using an OnlineSmart Tuning Fuzzy PID Based on a Robust Extended Kalman Filter [J]. ExpertSystems with Applications,2011,38:5879~5894.
    [3] Jianjun Yao, Liquan Wang,etc. ANN-based PID Controller for anElectro-hydraulic Servo System [C]. Proceedings of the IEEE InternationalConference on Automation and Logistics,Qingdao,China,(2006).
    [4]叶军,娄建国.电液伺服系统在非线性干扰下的神经网络控制[J].液压与气动,2005,(4):14~16.
    [5] Shaojuan Yu, Xu Ding,etc.Fuzzy PID-type Iterative Learning Control forElectro-hydraulic Servo System [C]. International Conference onComputational Aspects of Social Networks,(2010).
    [6]徐一鸣,孙威,杨华勇等.三维非线性比例微分与小脑模型神经网络复合控制的变柔性负载电液力控制系统[J].机械工程学报,2009,45(3):144~149.
    [7]高为炳.变结构控制理论基础.北京:中国科学技术出版社,1996.
    [8] Paul C.-P. Chao, Chien-Yu Shen. Sensorless Tilt Compensation for a Three AxisOptical Pickup Using a Sliding-Mode Controller Equipped With aSliding-Mode Observer [J]. IEEE Transactions on control systems technology,2009,17(2):267–282.
    [9] S. Janardhanan, B. Bandyopadhyay. On Discretization of Continuous-TimeTerminal Sliding Mode [J]. IEEE Transactions on automatic control,2006,51(9):1532–1536.
    [10] Han Ho Choi. LMI-Based Sliding Surface Design for Integral Sliding ModeControl of Mismatched Uncertain Systems [J]. IEEE Transactions on automaticcontrol,2007,52(4):736–742.
    [11] Vincent Acary, Bernard Brogliato, Yury V. Orlov. Chattering-Free DigitalSliding-Mode Control With State Observer and Disturbance Rejection [J]. IEEETransactions on automatic control,2012,57(5):1087–1101.
    [12] Jinhui Zhang, Yuanqing Xia. Design of Static Output Feedback Sliding ModeControl for Uncertain Linear Systems [J]. IEEE Transactions on industrialelectronics,2010,57(6):2161–2170.
    [13] I. Boiko, L. Fridman. Analysis of Chattering in Continuous Sliding-ModeControllers [J]. IEEE Transactions on automatic control,2005,50(9):1442–1446.
    [14] Mohammed J. Franqoise L. L. A new robust sliding mode controller for ahydraulic actuator. Proceedings of40th IEEE Conference on Decision andControl Orbdo, Florida USA,(2001).
    [15] Zhong-Hua Miao, Jian-Gang Chu, Xu-Yong Wang etc. Sliding Mode Control ofa Hydraulic Servo System with Large Frictional Torque. Chinese Control andDecision Conference,(2011).
    [16] N.Z. Azlan, J. H.S.Osman. Modeling and Proportional Integral Sliding ModeControl of Hydraulic Manipulators.4thStudent Conference on Research andDevelopment (SCORED2006), Shah Alam, Selangor, MALAYSIA,(2006).
    [17] J. Komsta, J. Adamy, P. Antoszkiewicz. Input-Output Linearization andIntegral Sliding Mode Disturbance Compensation for Electro-Hydraulic Drives
    [C].11th International Workshop on Variable Structure Systems Mexico City,Mexico,(2010).
    [18] Zulfatman, M. F. Rahmat, etc. Smooth Control Action of Sliding Mode for aClass of Electro-Hydraulic Actuator [C].4th International Conference onMechatronics, Kuala Lumpur, Malaysia,(2011).
    [19] Rui Tang, QiZhang. Dynamic Sliding Mode Control Scheme forElectro-Hydraulic Position Servo System [J]. Procedia Engineering,2011,24:28–32.
    [20] Youping Zhang, Bar s Fidan, Petros A. Ioannou. Backstepping Control ofLinear Time-Varying Systems With Known and Unknown Parameters [J]. IEEETransactions on automatic control,2003,48(11):1908–1925.
    [21] Ying Zhang, Changyun Wen, Yeng Chai Soh. Adaptive Backstepping ControlDesign for Systems with Unknown High-Frequency Gain [J]. IEEETransactions on automatic control,2000,45(12):2350–2354.
    [22] Changchun Hua, Xinping Guan, Peng Shi. Robust Backstepping Control for aClass of Time Delayed Systems [J]. IEEE Transactions on automatic control,2005,50(6):894–899.
    [23] N. Yagiz, Y. Hacioglu. Backstepping control of a vehicle with activesuspensions. Control Engineering Practice,2008,16:1457~1467.
    [24] I. Ursu, F. Ursu, F. Popescu. Backstepping design for controllingelectrohydraulic servos. Journal of the Franklin Institute,2006,343:94~110.
    [25] P. Nakkarat, S. Kuntanapreeda. Observer-based backstepping force control ofan electrohydraulic actuator. Control Engineering Practice,2009,17:895~902.
    [26]郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制[J].液压与气动,2004,(10):38~40.
    [27]吴忠强,夏青,彭艳.高阶非线性液压辊缝系统的Backstepping动态面控制[J].仪器仪表学报,2012,33(4):949~954.
    [28]李壮举,石馨,刘贺平.热连轧液压活套系统非线性多变量建模及控制[J].北京科技大学学报,2010,32(10):1353~1359.
    [29] A. Kojic and A. M. Annaswamy,“Adaptive control of nonlinearlyparameterized systems with a triangular structure”,IEEE Conf. Decision andControl,,Phoenix,(1999).
    [30]管成,潘双夏.电液伺服系统的非线性鲁棒自适应控制[J].中国电机工程学报,2007,27(24):107~112.
    [31]黄永清,李天石,曹秉刚.电液伺服系统的非线性自适应控制[J].机床与液压,1998,(3):7~8.
    [32]刘白雁,陈奎生.电液仿射非线性系统的离散模型跟随自适应控制[J].中国机械工程,2003,14(14):1197~1199.
    [33]张剑丰,刘白雁.电液非线性系统模型跟随自适应控制的离散非线性参考模型方法[J].机床与液压,2005,(9):98~100.
    [34]刘白雁,陈奎生.电液非线性系统自适应控制的非线性参考模型方法[J].机床与液压,2004,(2):21~23.
    [35]刘白雁,丁崇生.电液伺服非线性系统模型跟随自适应控制[J].机床与液压,2002,(5):78~79.
    [36]姚建均,吴振顺,岳东海等.基于Popov超稳定理论的非线性电液伺服系统自适应控制研究[J].机床与液压,2006,(4):167~169.
    [37] T. Zhao, T.Virvalo. Development of fuzzy state controller and its application toa hydraulic position servo. Fuzzy Sets and Systems,1995,70:213~221.
    [38] S. Y. Lee, H. S.Chob. A fuzzy controller for an electro-hydraulic fin actuatorusing phase plane method. Control Engineering Practice,2003,11:697~708.
    [39]杨进波,张永杲,郭呈贺.非线性多变量液压系统的智能控制[J].上海交通大学学报,1997,31(9):72~76.
    [40] Faa-Jeng Lin, Rong-Jong Wai. Sliding-Mode-Controlled Slider–CrankMechanism with Fuzzy Neural Network [J]. IEEE Transactions on industrialelectronics,2001,48(1):60–70.
    [41] C. W. Tao, Mei-Lang Chan, Tsu-Tian Lee. Adaptive Fuzzy Sliding ModeController for Linear Systems With Mismatched Time-Varying Uncertainties[J]. IEEE Transactions on systems,man,and cybernetics-part B:cybernetics,2003,33(2):283–294.
    [42] Li-Ying Sun, Shaocheng Tong, Yi Liu. Adaptive Backstepping Sliding ModeH∞Control of Static Var Compensator [J]. IEEE Transactions on controlsystems technology,2011,19(5):1178–1185.
    [43] Mohamed Smaoui, Xavier Brun, Daniel Thomasset. Systematic Control of anElectropneumatic System:Integrator Backstepping and Sliding Mode Control [J].IEEE Transactions on control systems technology,2006,14(5):905–913.
    [44]Cheng Guan,Shanan Zhu. Adaptive Time-Varying Sliding Mode Control forHydraulic Servo System.20048th lntemational Conference on Control,Automation, Robotics and Vision Kunming, China,(2004).
    [45] Yitong Bai, Ping Li. Adaptive Fuzzy Sliding Mode Control forElectro-hydraulic Position Servo System.2010Chinese Control and DecisionConference,(2010).
    [46] Ning Chen,Hongzhao Dong. Multiple Sliding Mode Adaptive Control of TheClosed Electro-hydraulic Proportional System. Proceedings of the7thWorldCongress on Intelligent Control and Automation, Chongqing, China (2008).
    [47] WANG Hongyan, QIAO Jihong, WANG Qinglin. A Hybrid Adaptive WaveletNeural Network Control and Sliding Mode Control for Electro-hydraulic ServoSystem. Proceedings of the29th Chinese Control Conference, Beijing, China,(2010).
    [48] Otto Cerman, Petr Hu ek. Adaptive Fuzzy Sliding Mode Control forElectro-hydraulic Servo Mechanism [J]. Expert Systems with Applications,2012,39:10269~10277.
    [49] Carlos Lizalde, Alexander Loukianov, Edgar Sanchez. Force Tracking NeuralControl for an Electro-hydraulic Actuator via Second Order Sliding Mode [C].Proceedings of the2005IEEE International Symposium on Intelligent ControlLimassol, Cyprus,(2005).
    [50] Claude Kaddissi, Jean-Pierre Kenne, Maarouf Saad. Indirect Adaptive Controlof an Electro-Hydraulic Servo System Based on Nonlinear Backstepping [C].IEEE ISIE Montreal, Quebec, Canada,(2006).
    [51] CHEN Yan. Backstepping Controller Design for Electro-hydraulic ServoSystem with Sliding Observer[C]. Proceedings of the29th Chinese ControlConference,Beijing, China,(2010).
    [52]韩崇伟,贾志勇,林廷圻.基于系统逆的非线性液压伺服系统H控制器设计[J].工业仪表与自动化装置,2001,(2):14~17.
    [53]丁雪峰,许贤良.液压伺服系统的非线性最优控制[J].液压与气动,2004,(2):32~35.
    [54]管成,朱善安.液压主动悬架的非线性自适应控制[J].汽车工程,2004,26(6):691~695.
    [55]管成,朱善安.基于Backstepping的电液伺服系统多级自适应滑模控制[J].仪器仪表学报,2005.26(6):569-573.
    [56]杜春燕.基于迭代逼近的非线性系统滑模控制[D].天津:天津大学,2008.
    [57]Chao Jia, Ai-Guo Wu, Chun-Yan Du,etc. Variable Structure Control with SlidingMode for A Class of Hydraulic Nonlinear System. Proceedings of the8th WorldCongress on Intelligent Control and Automation, Jinan, China (2010).
    [58] Du Chunyan, Wu Aiguo, Jia Chao,etc. Speed Control of Hydraulic Press basedon Backstepping Method. Proceedings of the29th Chinese Control Conference,Beijing, China (2010).
    [59]Chao Jia, Aiguo Wu. Backstepping Adaptive Control for A Class of HydraulicForging System.3rd International Conference on Advanced Computer Control,China (2011).
    [60]Du Heng, Wei Jianhua. Motion Synchronization Control of Four Multi-stageCylinders Electro-hydraulic Elevating System. International Conference onMechanic Automation and Control Engineering (2010).
    [61]周育才,刘少军,黄明辉等.3.15MN实验液压机控制系统设计[J].机械科学与技术,2010,29(7):967~971.
    [62]段俊,黄明辉,湛利华等.运用PLC和PID的液压机同步平衡系统的研究[J].锻压技术,2010,35(1):77~80.
    [63]周育才,刘少军,黄明辉等.巨型锻模液压机主动同步系统的鲁棒控制研究[J].机械科学与技术,2011,30(3):501~506.
    [64]刘新良,黄明辉,湛利华等.液压机多缸同步系统的建模与解耦控制[J].机械设计与制造,2010,(11):8~10.
    [65]黄明辉,熊欢欢,赵啸林等.模糊PID在液压机位置控制系统中的应用[J].控制工程,2011,18(1):14~21.
    [66]常远.液压系统非线性模型控制方法的研究[D].天津:天津大学,2008.
    [67] Aihong Zheng, Aiguo Wu, Laihua Fang. Dynamic Modeling of the Slide of80MN Titanium-alloy Forging Hydraulic Press. International Conference onElectrical and Control Engineering(2011).
    [68] Aihong Zheng, Aiguo Wu, Zhao Zhang. Master-slave Leveling Control Basedon the Feedback Linearization Decoupling of80MN Titanium-alloy ForgingHydraulic Press. International Conference on Electrical and ControlEngineering (2011).
    [69]Hong Sun,George T.-C.Chiu.Motion Synchronization for Multi-CylinderElectro-Hydraulic System.Proceedings of2001ASME International MechanicalEngineering Congress and Exposition,2001
    [70]倪敬,向占琴,潘晓弘,等.多缸同步提升电液系统建模和控制[J].机械工程学报,2006,42(11):81-87
    [71]XinJiang Lu,MingHui Huang.System-Decomposition-Based Multilevel Controlfor Hydraulic Press Machine. IEEE Transactions on Industrial Electronics,2012,59(4):1980-1987.
    [72]Guan cheng,Pan Shuangxia.Adaptive sliding mode control of electro-hydraulicsystem with nonlinear unknown parameters[J].Control Engineering Practice,2008,16(11):1275-1284.
    [73] Jia Chao,Wu Ai-Guo,Du Chun-Yan,etc.Sliding mode controller design for aclass of forging system[C].29thChinese Control Conference,2010:492-495.
    [74]Vadim Utkin, Hoon Lee. Chattering problem in sliding mode controlsystems[C]. Proceedings of the2006International Workshop on VariableStructure Systems,2006:346-350.
    [75] Mohammad R.Sirouspour,S.E.Salcudean.On the nonlinear control of hydraulicservo-systems [C].Proceedings of the2000IEEE International Conference onRobotics&Automation,2000:1276-1282.
    [76] Komurcugil H,Kukrer O.Lyapunov-based control for three-phase PWM AC/DCvoltage-source converters[J].IEEE Trans on Power Electronics,1998,13(5):801-813.
    [77]张涌萍,张波,邱东元.DC-DC变换器双线性系统建模及基于李雅普诺夫直接法的控制方法[J].中国电机工程学报,2008.28(9):7-11.
    [78]孟永庆,苏彦民,刘正.三电平中点箝位整流器系统建模及基于李雅普诺夫直接法的控制方法研究[J].中国电机工程学报,2005,25(24):79-84.
    [79] Yelena Smagina,Moshe Sheintuch.Using Lyapunov’s direct method for wavesuppression in reactive systems[J].Systems&ControlLetters,2006,55(7):566-572.
    [80] Jiang Zhongping.Global tracking control of underactuated ships by Lyapunov’sdirect method [J]. Automatica,2002,38(2):301-309.
    [81]郑爱红.80MN钛合金锻造液压机的建模与控制[D].天津:天津大学,2008.
    [82]Xiong Y F,Lequoc S,Cheng R M.Adaptive control of a synchronizing servosystem[G].SAE Technical Paper Series,1992:1-5.
    [83]贾超,吴爱国,郑爱红.一类多缸液压机的分散滑模控制[J].仪器仪表学报,2012.33(7):1513-1520.
    [84]马建军.过驱动系统控制分配理论及其应用[D].湖南:国防科学技术大学,2009.
    [85]杨凌宇,范彦铭等.基于基排序法的冗余操纵面控制分配与管理[J].中国科学:技术科学,2010,40(4):399-406.
    [86]Halim Alwi,Christopher Edwards. Fault tolerant control using sliding modeswith on-line control allocation [J]. Automatica,2008,44:1859-1866.
    [87]俞建成,张艾群,王晓辉.7000米载人潜水器推进器故障容错控制分配研究[J].机器人,2006,28(5):519-524.
    [88]Tor A. Johansen, Thomas P. Fuglseth,etc. Optimal constrained controlallocation in marine surface vessels with rudders[J]. Control EngineeringPractice,2008,16:457-464.
    [89]Johannes Tjonnas,Tor A.Johansen.Adaptive controlallocation[J].Automatica,2008,44:2754-2765.
    [90]Marc Bodson. Evaluation of optimization mothods for control allocation[J].Journal of Guidance,Control and Dynamics,2002,25(4):703-711.
    [91] Ola Harkegard.Backstepping and Control Allocation with Application intoFlight Control [D]. Sweden,Link Ping University,2003.
    [92]曹宗涛,马瑞平,张明廉.一种飞行控制中控制分配的解决方案[J].飞行力学,2006,24(1):17-21.
    [93]杨凌宇,高金源,申功璋.飞行控制中的一种新型最优控制分配方法[J].北京航空航天大学学报,2007,33(5):572~576.
    [94] Huidong Wang,Jianqiang Yi,Guoling Fan. Autonomous reconfigurable flightcontrol system design using control allocation.2nd International Symposium onSystems and Control in Aerospace and Astronautics,(2008).
    [95]史静平,章卫国,李广文.再分配伪逆算法分配效率研究[J].中国科学,2010,40(4):519~525.
    [96]Ola Harkegard,S.Torkel Glad. Rosolving actuator redundancy-optimal controlvs.control allocation[J]. Automatica,2005,41:137-144.
    [97]Halim Alwi,Christoher Edwards. Fault tolerant control using sliding modes withon-line control allocation[J]. Automatica,2008,44:1859-1866.
    [98]M.T.Hamayun, C.Edwards,H.Alwi. An integral sliding mode augmentationscheme for Fault tolerant control. American Control Conference, SanFrancisco,CA,USA (2011).
    [99]M.T.Hamayun, C.Edwards,H.Alwi. Application of an integral sliding mode FTCfor a large transport aircraft. Conference on Control and Fault Tolerant Systems,Nice,France (2011).
    [100]陈勇,董新民,薛建平等.过驱动执行器故障自适应重构控制分配策略[J].应用科学学报,2011,29(5):537~544.
    [101]M.Oppenheimer,D.Doman.A Method for Compensation of InteractionsBetween Second-Order Actuators and Control Allocators.Proceedings of theIEEE Aerospace Conference,Big Sky,MT,2005:1~8.
    [102]O.Harkegard.Dynamic control allocation using constrained quadraticprogramming[J]. Journal of Guidance,Control and Dynamics,2004,27(6):1028-1034.
    [103]O.Harkegard.Efficient active set algorithms for solving constrained leastsquares problems in aircraft control allocation.Proceedings of the41st IEEEConference on Decision and Control,Las Vegas,NV,2002:1295~1300.
    [104]T.A.Johansen,T.I.Fossen,P.Tondel. Efficient optimal constrained controlallocation via multiparametric programming[J]. Journal of Guidance,Controland Dynamics,2005,28(3):506-515.
    [105]Johannes Tjonnas,Tor Arne Johansen.Optimizing adaptive conrol allocationwith actuator dynamics.Proceedings of the46st IEEE Conference on Decisionand Control,New Orleans,LA,USA(2007).
    [106]W.Gierusz,M.Tomera.Logic thrust allocation applied to multivariable controlof the training ship[J].Control Engineering Practice,2006,14(11):511-524.
    [107] Brad Schofield, Tore Hagglund. Optimal Control Allocation in VehicleDynamics Control for Rollover Mitigation [C].American ControlConference,Westin Seattle Hotel, Seattle, Washington, USA,(2008).
    [108] Li Feiqiang, Wang Jun,etc.On the Vehicle Stability Control for Electric VehicleBased on Control Allocation [C]. IEEE Vehicle Power and PropulsionConference (VPPC), Harbin, China,(2008).
    [109]程巨强,刘志学.金属锻造加工基础.北京:化学工业出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700