用户名: 密码: 验证码:
基于PDE和全变分滤波方法的研究及在多种噪声中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于偏微分方程(PDE)和全变分的图像滤波方法是图像处理领域的重要研究内容,其研究成果广泛地应用在天文,生物,医学,遥感,材料科学等领域。在众多图像滤波算法中,偏微分方程滤波方法以其独特的优势,引人入胜的属性和广阔的应用前景激发了许多研究者的兴趣,至今仍然是较活跃的研究对象。全变分滤波方法由于其与PDE滤波模型的特殊关联性而也吸引许多研究者的注意,不少PDE滤波模型都能通过全变分滤波模型的优化方法而获得快速的求解方法。本文首先研究了偏微分方程图像滤波方法,分别对随机值脉冲噪声,椒盐噪声,大尺寸和高噪声水平的脉冲噪声以及散斑噪声,提出了相应的偏微分滤波方法,然后将PDE滤波模型的思想拓展到全变分模型中,通过全变分的迭代重加权范数法获得了一些PDE滤波模型的快速数值求解方法。主要研究内容如下:
     首先,针对传统的均值滤波方法对脉冲噪声和混合噪声滤除的缺陷,介绍了一种改进的非局部加权平均算法,对其引入一个能反映像素点信息损坏程度的统计量来校正权值赋予的过程,实验结果表明这种改进效果非常明显,能获得满意的滤波结果。
     其次,针对随机值脉冲噪声,本文引入了一种统计量来区分图像脉冲像素点,内部像素点和边缘像素点,并将该统计量引入到偏微分方程模型的控制函数中去,得到两种新的控制函数用来实现选择性扩散和选择性保真。基于这两种新控制函数提出一类二阶保边的偏微分滤波模型来去除随机值脉冲噪声,实验结果表明不但这两种新的控制函数能将原有偏微分方程模型的去噪能力大为提升,而且图像细节和边缘能得到很好的保持。这两种新控制函数也能扩展到其它PDE滤波模型中。
     再次,针对椒盐噪声和尺寸较大的“脉冲”噪声,本文研究了基于噪声检测的偏微分滤波方法。文中针对尺寸较大的噪声提出了一种基于全局信息的检测方法,该方法不仅能探测脉冲噪声,包括随机值脉冲噪声和椒盐噪声,而且也能用于尺寸较大脉冲的检测,如人为污损和斑点等;针对椒盐噪声,通过组合现有的探测方法和全变分修复模型,获得了一个保边效果非常优秀的滤波器。
     另外,针对散斑噪声本文介绍了一种自适应的偏微分方程滤波模型。该模型介绍了一种对图像按边缘和纹理特征分块的方法,根据每一块的特征使用相应功能的偏微分方程平滑项,能把不同功能的偏微分方程平滑项进行整合,发挥各自的优势作用,扬长避短。对合成孔径雷达图像的滤波实验表明该自适应滤波模型能有效地去除散斑噪声,同时还能保持和增强合成孔径雷达图像的纹理细节。
     最后,将介绍一种拓展了的全变分滤波模型,并用一种形式统一的全变分模型涵盖一些现有偏微分滤除模型,然后针对该统一形式的全变分模型介绍了迭代重加权范数数值求解方法。加速实验表明,在没有降低滤波效果的前提下,该数值算法能有效地缩减原来偏微分方程滤波模型的处理时间。
Partial differential equation (PDE) based and total variation (TV) based imagedenoising techniques are very useful and powerful tool in the field of imageprocessing. Various PDE models are widely applied nowadays in medicine, remotesensing, astronomy, biology, material science and so on. PDE-based denoisingtechniques play a very important role and attract many interests from researchers withtheir unique advantage and prosperous application. As TV-based methods are muchrelated to PDE, they also attract a lot of interested people. Many PDE modelsconcentrate on the removal of non-impulse noise, such as Gaussian noise, and there isvery little work on the suppression of impulse noise with PDE-based methods. In thisdissertation, we focus mainly on the PDE-based methods for image denoising,including the removal of random-value impulse noise, pepper-and-salt noise,superimposed noise and speckle noise, with their fast numerical solution. Thecontents include the following:
     1. We propose a fuzzy weighted non-local means filter for improving thenon-local means algorithm, a classical mean-type filter, for the removal of the impulsenoise and the mixed Gaussian and random-valued impulse noise. We introduce a newfuzzy weighting function, which can shut off the impulsive weight effectively, to thenon-local means. According to the new weighting function, the more a pixel iscorrupted, the less it is exploited to reconstruct image information. Experiments showthat the performances of the new filter are surprisingly satisfactory in terms of bothvisual quality and quantitative measurement.
     2. We derive the general way to reduce impulse noise for the PDE diffusion. Thebasic idea is that we attenuate impulses and simultaneously preserve image featuressuch as edges and details by selective diffusion and selective fidelity. Especially forthe random-valued impulse noise we introduce a new notion of ENI that issignificantly different for edge pixels, noisy pixels, and interior pixels. We redefinethe controlling speed function and the controlling fidelity function to depend on ENI.According to the new controlling functions, the diffusion and fidelity process at edgepixels, noisy pixels, and interior pixels can be selectively carried out. Furthermore, aclass of second-order improved and edge-preserving PDE denoising models based onthe two new controlling functions testifies that the proposed method can deal with random-valued impulse noise reliably.
     3. We also introduce the noise detection process for the PDE methods to removeimpulses. To reduce random-valued impulse and other superimposed artifacts whichhave a large or long size, we derive a homogeneous amount based filter. The filteridentifies impulses without local window restriction which is very different fromother detection methods, and can recognize and remove impulses and othersuperimposed artifacts efficiently. Combining a more efficient salt-and-pepperdetector with TV inpainting method, we demonstrate the hybrid method is verysatisfactory in noise reduction and edge preservation.
     4. For the removal of speckle noise, we also propose an adaptive PDE model. Anew statistic is introduced to partition the noisy image into blocks based on imageedges, and then the oriented regularization is applied within the blocks which containimage details and edges, while non-oriented regularization within the blocks whichonly has smooth regions. The experiments on the synthetic aperture radar imagesshow the hybrid PDE model can smooth noise, meanwhile, preserve and enhanceimage textures and edges satisfactorily.
     5. We extend the model of TV regularization to accelerate the proposedPDE-based filters, and also form a unified TV-based model with its fast numericalalgorithm is proposed. The iterative reweighted norm approach can solve the extendedmodel fast. Experiments show that the extended model is feasible and the numericalsolution is faster than that of the time matching method.
引文
[1]R. Li, Y.-J. Zhang. A Hybrid Filter for the Cancellation of Mixed GaussianNoise and Impulse Noise, The Fourth IEEE International Conference on Information,Communications and Signal Processing, and the fourth IEEE Pacific-Rim Conferenceon Multimedia, Singapore,2003.
    [2]R. C. Gonzalez, R. E. Woods. Digital Image Processing, second edition,Prentice-Hall, Englewood Cliffs, New Jersey,2001.
    [3]T.-C. Lin, P.-T. Yu. Partition fuzzy median filter based on fuzzy rules forimage restoration. Fuzzy Sets and Systems,2004,147, pp.75-97.
    [4]I. Frosio, N. A. Borghese. Statistical based impulsive noise removal in digitalradiography. IEEE Transactions on Medical Imaging,2009,28(1).
    [5]C.-S. Lee, Y.-H. Kuo and P.-T. Yu, Weighted fuzzy mean filters for imageprocessing, Fuzzy Set and System,1997,89, pp.157-180.
    [6]P. Chatterjee and P. Milanfar. Is denoising dead? IEEE Transactions on ImageProcessing.2010,19(4), pp.895-911.
    [7] J. Portilla, V. Strela, M. J. Wainwright and E. P. Simoncelli. Image denoisingusing scale mixtures of gaussians in the wavelet domain. IEEE Transactions on ImageProcessing,2003,12(11), pp.1338-1351.
    [8] S. G. Chang, B. Yu, M. Vetterli. Adaptive wavelet thresholding for imagedenoising and compression. IEEE Transactions on Image Processing,2000,9(9), pp.1532-1546.
    [9]K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. Image denoising by sparse3Dtransform-domain collaborative filtering. IEEE Transactions on Image Processing,2007,16(8), pp.2080–2095.
    [10]C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. InProceedings of IEEE International Conference on Computer Vision,1998, pp.839-846.
    [11]R. Garnett, T. Huegerich, C. Chui, W. He. A universal noise removalalgorithm with an impulse detector. IEEE Transactions on Image Processing,2005,14(11), pp.1747–1754.
    [12] A. Buades, B. Coll, J.-M. Morel. A non-local algorithm for image denoising.In Proceedings of IEEE Computer Society Conference on Computer Vision andPattern Recognition,2005, San Diego, pp.60–65.
    [13]A. Buades, B. Coll, and J.M. Morel. A review of image denoising algorithms,with a new one. SIAM Journal on Multiscale Modeling and Simulation,2005,4(2),pp.490-530.
    [14]Y. F. Lou, X. Q. Zhang, S. Osher and A. Bertozzi. Image recovery vianonlocal operators. Journal of Scientific Computing,2010,42, pp.185-197.
    [15]L. Xu, X. L. Zhang, K.-M. Lam and J. Xie. Image restoration based on PDEsand a non-local algorithm. In Proceedings of the Advances in Multimedia InformationProcessing: Part II,2010, pp.362-371.
    [16]H. X. Feng, B. Hou, M. G. Gong. SAR image despeckling based on localhomogeneous-region segmentation by using pixel-relativity measurement. IEEETransactions on Geoscience and Remote Sensing,2011,49(7), pp.2724-2737.
    [17]S. J. Ko and Y. H. Lee. Center weighted median filters and their applicationsto image enhancement. IEEE Transactions Circuits and Systems,1991,38, pp.984-993.
    [18]T. Chen, K. K. Ma and L. H. Chen. Tri-state median-based filters in imagedenoising. IEEE Transactions on image processing,1999,8, pp.1834-1838.
    [19]T. Chen and H. Wu. Adaptive impulse detection using center-weightedmedian filters. IEEE Signal Processing Letters,2001,8, pp.1-3.
    [20]I. Aizenberg and C. Butakoff. Effective impulse detector based on rank-ordercriteria. IEEE Signal Processing Letters,2004,11(3), pp.363–366.
    [21]N. I. Petrovic and V. Crnojevic. Universal impulse noise filter based ongenetic programming. IEEE Transactions on Image Processing,2008,17(7), pp.1109-1120.
    [22]G. Pok, J-C Liu and A. S. Nair Selective removal of impulse noise based onhomogeneity level information. IEEE Transactions on Image Processing,2003,12(1),pp.85-92.
    [23]P.-Y. Chen, C.-Y. Lien. An efficient edge-preserving algorithm for removalof salt-and-pepper noise. IEEE Signal Processing Letters,2008,15,833–836.
    [24]R. H. Chan, C.-W. Ho and M. Nikolova. Salt-and-pepper noise removal bymedian-Type noise detectors and detail-preserving regularization. IEEE Transactionson Image Processing,2005,14(10), pp.1479-1485.
    [25]W. Luo. An efficient detail-preserving approach for removing impulse noisein images. IEEE Signal Processing Letters,2006,13(7), pp.413-416.
    [26]H.-L. Eng and K. K. Ma. Noise adaptive soft-switching median filter. IEEETransactions on Image Processing,2001,10(2), pp.242-251.
    [27]S. Zhang and M. A. Karim. A new impulse detector for switching medianfilters. IEEE signal processing letters,2002,9(11), pp.360-363.
    [28]I. Aizenberg and C. Butakoff. Impulsive noise removal using thresholdboolean filtering based on the impulse detecting functions. IEEE Signal ProcessingLetters,2005,12(1), pp.63-66.
    [29]H. C. Yu, L. Zhao, and H. X. Wang. An efficient procedure for removingrandom-valued impulse noise in images. IEEE Signal Processing Letters,2008,15, pp.922-925.
    [30]P. Civicioglu. Using uncorrupted neighborhoods of the pixels for impulsivenoise suppression with ANFIS. IEEE Transactions on Image Processing,2007,16(3),pp.759-773.
    [31]Z. Wang and D. Zhang. Progressive switching median filter for the removalof impulse noise from highly corrupted images. IEEE Transactions on Circuits andSystems—II: Analog and Digital Signal Processing,1999,46(1), pp.78-80.
    [32]J. F. Cai, R. H. Chan and M. Nikolova. Fast two-phase image deblurringunder impulse noise. Journal of Mathematical Imaging and Vision,2010,36, pp.46-53.
    [33]Z. Wang and D. Zhang. Restoration of impulse noise corrupted images usinglong-range correlation. IEEE Signal Processing Letters,1998,5(1), pp.4-7.
    [34]R. H. Chan, C. Hu, and M. Nikolova. An iterative procedure for removingrandom-valued impulse noise. IEEE Signal Processing Letters,2004,11(12), pp.921-924.
    [35]P. E. Ng and K. K. Ma. A switching median filter with boundarydiscriminative noise detection for extremely corrupted images. IEEE Transactions onimage processing,2006,15(6),1506–1516.
    [36]M. S. Nair, K. Revathy. An improved decision based algorithm forsalt-and-pepper noise removal. CISP,2008, pp.426–431.
    [37]S. Schulte, M. Nachtegael, Valerie De Witte, Dietrich Van der Weken andEtienne E. Kerre. A fuzzy impulse noise detection and reduction method. IEEETransactions on image processing,2006,15(5), pp.1153-1162.
    [38]K. S. Srinivasan, D. Ebenezer. A new fast and efficient decision basedalgorithm for impulse noise removal. IEEE signal processing letters,2007,14(3), pp.189-192.
    [39]W. Luo. An efficient algorithm for the removal of impulse noise fromcorrupted images. AEU-International Journal of Electronics and Communications,2007,61(8), pp.551-555.
    [40]Y. Dong, S. Xu. A new directional weighted median filter for removal ofrandom-valued impulse noise. IEEE Signal Processing Letters,2007,14(3), pp.193-196.
    [41]U. hanekar, A.K. Singh, R. Pandey. A contrast enhancement-based filter forremoval of random valued impulse noise. IEEE signal Processing Letters,2010,17(1), pp.47-50.
    [42]C.-C. Kang and W.-J. Wang. Fuzzy reasoning-based directional median filterdesign. Signal Processing,2009,89, pp.344-351.
    [43]D. Zhang and Z. Wang. Impulse noise detection and removal using fuzzytechniques. Electronics Letters,1997,33(5), pp.378-379.
    [44]D. Van De Ville, M. Nachtegael, D. Van derWeken, E. E. Kerre, and W.Philips. Noise reduction by fuzzy image filtering. IEEE Transaction on FuzzySystems,2003,11(4), pp.429–436.
    [45]A. Bigand and O. Colot. Fuzzy filter based on interval-valued fuzzy sets forimage filtering. Fuzzy Sets and Systems,2010,161, pp.96-117.
    [46]T.-C. Lin and P.-T. Yu. Partition fuzzy median filter based on fuzzy rules forimage restoration. Fuzzy Sets and Systems,2004,147, pp.75-97.
    [47]M. Nachtegael, D. Van der Weken, and E. E. Kerre. Fuzzy techniques inimage processing: three case studies. International Journal of Computing AnticipatorySystems,2002,12,89–104.
    [48]D. Gabor. Information theory in electron microscopy. LaboratoryInvestigation,1965,14, pp.801–807.
    [49]A. Jain. Partial differential equations and finite-difference methods in imageprocessing, part1. Journal of Optimization Theory and Applications,1977,23, pp.65–91.
    [50]A. P. Witkin. Scale-space filtering. In Proceedings of International JointConference on Artificial Intelligence, Karlsruhe,1983, pp.1019-1021.
    [51]J. J. Koenderink. The structure of images. Biological Cybernetics,1984,50,363-370.
    [52]A. Hummel. Representations based on zero-crossings in scale-space. InProceedings of IEEE International Conference on Computer Vision and PatternRecognition,1986, pp.204-209.
    [53]唐晨,任宏伟,陈霞,蔡元学,韩林,张芳,卢文静,王文平,王志芳,高涛.电子散斑干涉条纹处理偏微分方程方法的回顾与展望.激光与光电子学进展,2010,47, pp.021201-1-021201-12.
    [54]C. Tang, L. L. Wang and H. Q. Yan. Overview of anisotropic filteringmethods based on partial differential equations for electronic speckle patterninterferometry. Applied Optics,2012,51(20), pp.4916-4926.
    [55]P. Perona and J. Malik, Scale space and edge detection using anisotropicdiffusion, In Proceedings of IEEE Computer Society Workshop on Computer Vision,1987, Miami Beach, pp.16-22.
    [56]L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noiseremoval algorithms. Physica D, vol.60, pp.259–268,1992.
    [57]L. Alvarez, F. Guichard, P.-L. Lions y J.-M. Morel. Axioms and fundamentalequations of image processing. Archive for Rational Mechanics and Analysis,1993,123(3), pp.199-257.
    [58]A. P. Witkin. Scale-space filtering: a new approach to multi-scale description.In Proceedings of IEEE International Conference on Acoustics, Speech, and SignalProcessing,1984, pp.150-153.
    [59]J. Weickert. Anisotropic diffusion in image processing. PH.D Dissertation,Vollzug der Promotion,1996.
    [60]B. M. ter Haar Romeny. Introduction to scale-space theory: multiscalegeometric image analysis. PhD thesis, Utrecht University,1996.
    [61]S. Kichenassamy. The Perona-Malik paradox. SIAM Journal on AppliedMathematics,1997,57(5), pp.1328–1342.
    [62]Y.-L You and M. Kaveh. Fourth-order partial differential equation for noiseremoval. IEEE Transactions on Image Processing,2000,9,(10), pp.1723–1730.
    [63]P. Guidoti. A backward–forward regularization of the Perona–Malik equation.Journal of Differential Equations,2012,252, pp.3226-3244.
    [64]L. Alvarez, P.-L. Lions, and J.-M. Morel. Image selective smoothing andedge detection by nonlinear diffusion (II). SIAM Journal on Numerical Analysis,1992,29,845-866.
    [65]F. Catté, P. L. Lions, J. M. Morel, T. Coll. Image selective smoothing andedge-detection by non-linear diffusion. SIAM Journal on Numerical Analysis,1992,29(1), pp.182–193.
    [66]R. T. Whitaker and S. M. Pizer. A multi-scale approach to nonuniformdiffusion. CVGIP: Image Understanding,1993,57(1), pp.99-110.
    [67]Z. C. Lin and Q. Y. Shi. An anisotropic diffusion PDE for noise reductionand thin edge preservation. In Proceedings of IEEE International Conference onImage Analysis and Processing,1999, pp.102-107.
    [68]P. Guidoti and J. V. Lambers. Two new nonlinear nonlocal diffusions fornoise reduction. Journal of Mathematical Imaging and Vision,2009,33, pp.25-37.
    [69]P. Guidoti and K. Longo. Two enhanced fourth order diffusion models forimage denoising. Journal of Mathematical Imaging and Vision,2011,40(2), pp.188-198.
    [70]C. A. Z. Barcelos, M. B. and E. C. S. Jr. A well-balanced flow equation fornoise removal and edge detection. IEEE Transactions on Image Processing,2003,12(7), pp.751-763.
    [71]A. Kuijper. Geometrical PDEs based on second-order derivatives of gaugecoordinates in image processing. Image and Vision Computing,2009,27(2), pp.1023-1034.
    [72]C. Tang, L. Han, H. W. Ren, D. J. Zhou, Y. M. Chang, X. H. Wang and X. L.Cui. Second-order oriented partial-differential equations for denoising inelectronic-speckle-pattern interferometry fringes. Optics Letters,2008,33(19), pp.2179-2181.
    [73]Z. Wang, Y. Tang and Y. Du, Noise removal based on fourth order partialdifferential equation. In Proceedings of the Third International Conference onInnovative Computing, Information and Control,2008, Dalian, China.
    [74]D. Jia, F. Huang and X. Wen, Fourth-order anisotropic diffusion equationsfor noise removal. In Proceedings of International Conference on Signal Processing,2004, Istanbul, Turkey, pp.994-997.
    [75]S.-H. Lee and M. G. Kang. Total variation-based image noise reduction withgeneralized fidelity function. IEEE Signal Processing Letters,2007,14(11), pp.832–835.
    [76]Y. Chen, C. A. Z. Barcelos and B. A. Mair. Smoothing and edge detection bytime-varying coupled nonlinear diffusion equations. Computer Vision and ImageUnderstanding,2001,82, pp.85-100.
    [77]C. Tang, L. Han, H. W. Ren, T. Gao, Z. F. Wang and K. Tang. Theoriented-couple partial differential equations for filtering in wrapped phase patterns.Optics Express,2009,17(7), pp.5606-5617.
    [78]V. B. S. Prasath and D. Vorotnikov. On a coupled PDE model for imagerestoration. arXiv:1112.2904v1[math.AP].
    [79]S. Teboul, L. Blanc-Feraud, G. Aubert and M. Barlaud. Variational approachfor edge-preserving regularization using coupled PDE’s. IEEE Transactions on ImageProcessing,1998,7(3), pp.387-397.
    [80]H. G. Luo, L. M. Zhu and H. Ding. Coupled anisotropic diffusion for imageselective smoothing. Signal Processing,2006,86, pp.1728-1736.
    [81]B. C. Vemuri, L. Wang and Y. Chen. A coupled PDE model of nonlineardiffusion for image smoothing and segmentation. In Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition,1998, Santa Barbara, CA, USA, pp.132-137.
    [82]C. Tang, W. Lu, S. Chen, Z. Zhang, B. Li, W. Wang and L. Han. Denoisingby coupled partial differential equations and extracting phase by backpropagationneural networks for electronic speckle pattern interferometry. Applied Optics,2007,46(30), pp.7475-7484.
    [83]S. Bettahar and A. B. Stambouli. Shock filter coupled to curvature diffusionfor image denoising and sharpening. Image and Vision Computing,2008,26, pp.1481-1489.
    [84]N. Dowson, O. Salvado. Hashed non-local means for rapid image filtering.IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(3), pp.485–499.
    [85]J. Salmon. On two parameters for denoising with non-local means. IEEESignal Processing Letters,2010,17(3), pp.269-272.
    [86]D. Van De Ville and M. Kocher. SURE-based non-local means. IEEE SignalProcessing Letters,2009,16(11), pp.973-976.
    [87]W. L. Zeng and X. B. Lu. Region-based non-local means algorithm for noiseremoval. Electronics Letters,2011,47(20), pp.1125–1127.
    [88]S. W. Park, and M. G. Kang. NLM algorithm with weight update. ElectronicsLetters,2010,46(15), pp.1061–1063.
    [89]W. F. Sun, Y. H. Peng and W.L. Hwang. Modified similarity metric fornon-local means algorithm. Electronics Letters,2009,45(25), pp.1307–1309.
    [90]N. A. Thacker, J. V. Manjon, and P. A. Bromiley. Statistical interpretation ofnon-local means. IET Computer Vision,2010,4(3) pp.162-172.
    [91]F. Chen, X. J. Huang and W. F. Chen. Texture-preserving image deblurring.IEEE Signal Processing Letters,2010,17(12), pp.1018-1021.
    [92]P. Coupe, P. Hellier, C. Kervrann and C. Barillot. Bayesian non localmeans-based speckle filtering. ISBI,2008, pp.1291-1294.
    [93]L. Likforman-Sulem, J. Darbon, E. H. Barney Smith. Pre-processing ofdegraded printed documents by non-local means and total variation.10th InternationalConference on Document Analysis and Recognition,2009, pp.758-762.
    [94]B. A. Abrahim, Z. A. Mustafa and Y. M. Kadah. Modified non-local meansfilter for effective speckle reduction in ultrasound images. The28th National RadioScience Conference, Egypt,2011.
    [95]Q. Xu, H. L. Jiang, R. Scopigno and M. Sbert. A new approach for very darkvideo denoising and enhancement. Proceedings of2010IEEE17th InternationalConference on Image Processing,2010, pp.1185-1188.
    [96]H. Liu, C. H. Yang, N. Pana, E. Song and R. Green. Denoising3D MRimages by the enhanced non-local means filter for Rician noise. Magnetic ResonanceImaging,2010,28, pp.1485-1496.
    [97]A. Choudhury and G. Medioni. Perceptually motivated automatic sharpnessenhancementusing hierarchy of non-local means, ICCV,2011, pp.730-737.
    [98]G. Adluru, T. Tasdizen, R. Whitaker and E. DiBella. Improvingundersampled MRI reconstruction using non-local means. International Conferenceon Pattern Recognition,2010, pp.4000-4003.
    [99]I. Rodrigues, J. Sanches and J. Bioucas-Dias. Denoising of medical imagescorrupted by poisson noise. ICIP,2008,1756-1759.
    [100]R. Vignesh, B. Tae Oh and C.-C. Jay Kuo. Fast non-local means (NLM)computation with probabilistic early termination. IEEE Signal Processing Letters,2010,17(3), pp.277-280.
    [101]R. Lai and Y. T. Yang. Accelerating non-local means algorithm with randomprojection. Electronics Letters,2011,47(3), pp.182–183.
    [102]V. Karnati, M. Uliyar, S. Dey. Fast non-local algorithm for image denoising.In: Proceedings of IEEE International Conference on Image Processing,2009, Cairo,pp.3873–3876.
    [103]P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot. Anoptimized blockwise nonlocal means denoising filter for3-D magnetic resonanceimages. IEEE Transactions on Medical Imaging,2008,27(4), pp.425–441.
    [104]M. Mahmoudi, G. Sapiro. Fast image and video denoising via non-localmeans of similar neighborhoods. IEEE Signal Processing Letters,2005,12(12), pp.839–842.
    [105]J. Orchard, M. Ebrahimi, A. Wong. Efficient nonlocal-means denoisingusing the SVD. In: Proceedings of IEEE International Conference on ImageProcessing,2008, San Diego, pp.1732–1735.
    [106]J. Wang, Y. Guo, Y. Ying, Y. Liu, Q. Peng. Fast non-local algorithm forimage denoising. In: Proceedings of IEEE International Conference on ImageProcessing,2006, Atlanta, pp.1429–1432.
    [107]H. Takeda, S. Farsiu, P. Milanfar. Kernel regression for image processingand reconstruction. IEEE Transactions on Image Processing,2007,16(2), pp.349–366.
    [108]T. Sun and Y. Neuvo. Detail-preserving median based filters in imageprocessing. Pattern Recognition Letters,1994,15, pp.341-347.
    [109]P. Perona, J. Malik. Scale space and edge detection using anisotropicdiffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7), pp.629-639.
    [110]M. J. Black, G. Sapiro, D. H. Marimont and D. Heeger. Robust anisotropicdiffusion. IEEE Transactions on Image Processing,1998,7(3), pp.421-432.
    [111]J. Weickert. Coherence-enhancing diffusion filtering. International Journalof Computer Vision,1999,31(2), pp.111-127.
    [112]G. Sapiro and D. Ringach. Anisotropic diffusion of multivalued images withapplications to color filtering. IEEE Transactions on Image Processing,1996,5(11),pp.1582-1586.
    [113]梅向明,黄敬之.微分几何,(第二版),高等教育出版社.
    [114]D. Tschumperléand R. Deriche. Vector-valued image regularization withPDEs: a common framework for different application. IEEE Transactions on PatternAnalysis and Machine Intelligence,2005,27(4), pp.506-517.
    [115]S. Geman, D. E. McClure and D. Geman. A nonlinear filter for filmrestoration and other problems in image processing. CVGIP: Graphical Models ImageProcessing,1992,54(4), pp.281-289.
    [116]D. Geman and C. Yang. Nonlinear image recovery with half-quadraticregularization. IEEE Transactions on Image Processing,1995,4(7), pp.932-946.
    [117]D. Geman and G. Reynolds. Constrained restoration and the recovery ofdiscontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(3), pp.367-383.
    [118]M. Nikolova. Minimizers of cost-functions involving nonsmoothdata-fidelity terms. Application to the processing of outliers. SIAM Journal onNumerical Analysis,2002,40(3), pp.965-994.
    [119]M. Nicolova. A variational approach to remove outliers and impulse noise.Journal of Mathematical Imaging and Vision,2004,20(1-2), pp.99-120.
    [120]T. F. Chan and J. Shen. Nontexture inpainting by curvature-drivendiffusions. Journal of Visual Communication and Image Representation,2001,12, pp.436-449.
    [121]D. Zhang, Z. Wang. Impulse noise removal using polynomialapproximation. Optical Engineering,1998,37, pp.1275–1282.
    [122]M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester. Image inpainting. In:SIGGRAPH2000: Proc.27th Conf. on Computer Graphics and InteractiveTechniques, New Orleans, ACM Press/Addison-Wesley, New York, pp.417–424.
    [123]T. F. Chan and J. Shen. Mathematical models for local nontextureinpaintings. SIAM Journal on Applied Mathematics,2002,62, pp.1019-1043.
    [124]A. Telea. An image inpainting technique based on the fast marching method.Journal of Graphics Tools,2003,9(1), pp.25-36.
    [125]王超,基于变分问题和偏微分方程的图像处理技术研究:[博士学位论文],合肥;中国科学技术大学,2007。
    [126]H. Hwang, R. A. Haddad. Adaptive median filters: New Algorithms andResults. IEEE Transactions on Image Processing,1995,4(4), pp.499-502.
    [127]Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image qualityassessment: From error visibility to structural similarity. IEEE Transactions on ImageProcessing,2004,13(4), pp.600–612.
    [128]A. N. Tikhonov. Regularization of incorrectly posed problems. SovietMathematics-Doklady,1963,4, pp.1624-1627.
    [129]A. Kuijper. p-Laplacian driven image processing. In Proceeding of IEEEInternational Conference on Image Processing,2007, pp.257-260.
    [130]M. Lysaker, A. Lundervold and X.-C. Tai. Noise removal using fourth-orderpartial differential equation with applications to medical magnetic resonance imagesin space and time. IEEE Transactions on Image Processing,2003,12(12), pp.1579-1590.
    [131]F. Alter, S. Durand, J. Froment. Adapted total variation for artifact freedecompression of JPEG images. Journal of Mathematical Imaging and Vision,2005,23(2), pp.199–211.
    [132]K. Djemal. Speckle reduction in ultrasound images by minimization of totalvariation. In Proceeding of IEEE International Conference on Image Processing,2005,pp.357-360.
    [133]张九星,黑保琴,李盛阳,李绪志.基于变分方法的遥感图像去噪研究.遥感技术与应用,2010,25(4), pp.560-566.
    [134]T. F. Chan and H. M. Zhou. Total variation improved wavelet thresholdingin image compression. In Proceeding of IEEE International Conference on ImageProcessing,2000, pp.391-394.
    [135]Y. Chen, S. S. Li and H. Yao. Adaptive image colorization with totalvariation and partial differential equation. International Journal of Digital ContentTechnology and its Applications,2011,5(12), pp.316-324.
    [136]张红英,彭启琮.全变分自适应图像去噪模型.光电工程,2006,33(3),pp.50-53.
    [137]A. P. Witkin. Scale space filtering. In Proceedings of International JointConferences on Artificial Intelligence,1983, pp.1019-1023.
    [138]L. Cheng, C. Tang, S. Yan, X. Chen, L. Wang, B. Wang. New fourth-orderpartial differential equations for filtering in electronic speckle pattern interferometryfringes. Optics Communications,2011,284, pp.5549-5555.
    [139]J. Weickert, Anisotropic diffusion in image processing, ECMI, TeubnerVerlag,1998.
    [140]A. R. Rao and B. G. Schunck. Computing oriented texture fields. InProceeding of IEEE Computer Society Conference on Computer Vision and PatternRecognition,1989, pp.61-68.
    [141]X. Yang, Q. Yu, and S. Fu. An algorithm for estimating both fringeorientation and fringe density. Optics Communications,2007,274,286–292.
    [142]C. Tang, Z. F. Wang, L. L. Wang, J. Wu, T. Gao and S. Yan. Estimation offringe orientation for optical fringe patterns with poor quality based on Fouriertransform. Applied Optics,2010,49(4), pp.554-561.
    [143]王志芳.基于傅立叶变换的电子散斑干涉信息提取方法研究及应用.[硕士学位论文],2010,天津大学.
    [144]J. Weickert and H. Scharr. A scheme for coherence-enhancing diffusionfiltering with optimized rotation invariance. Journal of Visual Communication andImage Representation,2002,13, pp.103-118.
    [145]Y. J. Yu and S. T. Acton. Speckle reducing anisotropic diffusion. IEEETransactions on Image Processing,2002,11(11), pp.1260-1270.
    [146]http://read.pudn.com/downloads84/sourcecode/graph/texture_mapping/322349/WDT-CWT去噪程序/sar1__.jpg
    [147]http://www.mentallandscape.com/V_RadarMapping.htm
    [148]http://satftp.soest.hawaii.edu/space/hawaii/navnew/images/images.maui.html
    [149]http://eo.belspo.be/Directory/SensorDetail.aspx?senID=152
    [150]F. H. Y. Chan, F. K. Lam and H. Zhu. Adaptive thresholding by variationalmethod. IEEE Transactions on Image Processing,1998,7(3), pp.468-475.
    [151]张芳.电子散斑干涉条纹图的偏微分方程处理方法及相位提取.[硕士学位论文],2006,天津大学.
    [152]李灿灿.电子散斑干涉图像滤波方法研究及在动态热变形中的应用.
    [硕士学位论文],2012,天津大学.
    [153]C. R. Vogel and M. E. Oman. Iterative methods for total variation denoising,SIAM Journal on Scientific Computing,17(1),1996, pp.227-238.
    [154]T. F. Chan, G. H. Golub and P. Mulet. A nonlinear primal-dual method fortotal variation-based image restoration. SIAM Journal on Scientific Computing,1999,20, pp.1964-1977.
    [155]R. H. Chan, T. F. Chan, W. L. Wan. Multigrid for differential-convolutionproblems arising from image processing, Proceedings of the Workshop on ScientificComputing97, Springer-Verlag,1997.
    [156]J. Savage and K. Chen. An improved and accelerated nonlinear multigridmethod for total-variation denoising. IJCM,82(8), pp.10001-1015,2005.
    [157]K. Chen and X.-C. Tai. A nonlinear multigrid method for total variationminimization from image restoration, Journal of Scientific Computing,33(2),2007,pp.115-138.
    [158]A. Chambolle. An algorithm for total variation minimization andapplications. Journal of Mathematical Imaging and Vision,200420(1-2), pp.89-97.
    [159]D. Goldfarb and W. Yin. Second-order cone programming methods for totalvariation-based image restoration. SIAM Journal on Scientific Computing,2005,27,pp.622-645.
    [160]A. Beck and M. Teboulle. Fast gradient-based algorithms for constrainedtotal variation image denoising and deblurring problems. IEEE Transactions on ImageProcessing,2009,18(11), pp.2419-2434.
    [161]P. Rodriguez and B. Wohlberg, Efficient minimization method for ageneralized total variation functional, IEEE Transactions on Image Processing,18(2),2009.
    [162]M. S. Berger. Nonlinearity and functional analysis, Acad. Press,1977.
    [163]A. Chambolle, V. Caselles,M. Novaga, D. Cremers and T. Pock. Anintroduction to total variation for image analysis.2009. http://hal.archives-ouvertes.fr/docs/00/43/75/81/PDF/preprint. pdf
    [164]http://www.ipol.im/pub/algo/g_tv_denoising/
    [165]J. Yang, W. Yin, Y. Zhang and Y. Wang. A fast algorithm foredge-preserving variational multichannel image restoration. SIAM Journal onImaging Sciences,2009,2(2), pp.569-592.
    [166]http://en.wikipedia.org/wiki/Euler-Lagrange_equation
    [167]http://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares
    [168]I. Daubechies, R. Devore, M. Fornasier, C. S. Güntürk. Iterativelyreweighted least squares minimization for sparse recovery. Communications on Pureand Applied Mathematics,2009, LXIII
    [169]M. Fornasier, H. Rauhut and R. Ward. Low-rank matrix recovery viaiteratively reweighted least squares minimization. SIAM Journal on Optimization,2011,21,1614-1640.
    [170]R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressivesensing. International Conference on Acoustics, Speech, and Signal Processing,2008,3869-3872.
    [171]J.F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture imagedecomposition---modeling, algorithms, and parameter selection, International Journalof Computer Vision,67(1),2006, pp.111-136.
    [172]L. Bar, N. Kiryati and N. Sochen. Image deblurring in the presence ofimpulsive noise, International Journal of Computer Vision,70(3),2006, pp.279-298.
    [173]P. Rodriguez and B. Wohlberg. An iteratively reweighted norm algorithmfor total variation regularization, Fortieth Asilomar Conference on Signals, Systemsand Computers,2006. ACSSC '06.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700