用户名: 密码: 验证码:
OFDM无线网络资源分配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信网络的迅速发展和多媒体业务需求的日益增长,有限的频谱资源和业务服务质量(Quality of Service, QoS)要求不断增长之间的矛盾日益尖锐。为了缓解这一矛盾,无线网络资源分配技术成为当前无线通信领域研究的热点,并且正交频分复用(Orthogonal FrequencyDivision Multiplexing, OFDM)技术的独特优势为资源分配提供了灵活的自由度。因此,OFDM无线网络中的资源分配问题在近几年得到了广泛的关注。本文研究了OFDM无线网络中的资源分配算法,重点研究了蜂窝网络、无线局域网和无线Mesh网络的资源分配问题。本文在前人工作的基础上,对前人工作进行了改进,主要工作如下:
     针对上行多用户多输入多输出正交频分复用(Multi-Input Multi-Output Orthogonal FrequencyDivision Multiplexing, MIMO-OFDM)蜂窝网络的资源分配问题,在考虑各用户最小传输速率需求和TCM编码的情况下,以最小化蜂窝网络平均消耗总功率为目标提出了一个基于有限反馈的资源分配算法。该算法首先根据拉格朗日乘子法和凸优化理论中Karush-Kuhn-Tucher条件设计发射速率码本、发射功率码本和等效信道量化门限码本,然后基站根据各用户当前的信道状态信息分配子载波并对等效信道增益量化,最后基站广播资源分配结果。该算法不仅有效降低蜂窝网络平均消耗总功率,而且具有有限反馈的特点。
     针对上行多用户MIMO-OFDM蜂窝网络的资源分配问题,在考虑尽力而为业务和TCM编码的情况下,以最大化网络吞吐量为目标提出了一个基于有限反馈的资源分配算法。该算法首先根据发射模式码本和用户的误比特率需求定义各用户当前时刻的有效发射模式集合,其次根据拉格朗日对偶法和凸优化理论中的Karush-Kuhn-Tucher条件推导了各用户链路质量指示函数;最后,根据次梯度迭代的方法更新拉格朗日乘子。该算法在不仅能提高蜂窝网络的吞吐量,而且具有有限反馈的特点。
     针对单用户MIMO-OFDM蜂窝网络的资源分配问题,在考虑延时信道状态信息和信道编码情况下,以最大化吞吐量为目标提出了一个低复杂度的资源分配算法。该算法首先利用延时信道状态信息推导了考虑编码增益的保证用户误比特率需求的星座距离表达式;然后证明了该优化问题是凸优化问题,并根据拉格朗日乘子法和凸优化理论中Karush-Kuhn-Tucher条件推导了最优比特和功率加载的封闭形式解;最后通过加载的比特取整和功率调整得到最终的资源分配解。该算法不仅能有效逼近单用户整数比特加载时的最优吞吐量,而且具有计算复杂度低的特点。
     针对下行多用户MIMO-OFDM蜂窝网络的比例公平资源分配问题,在考虑延时信道状态信息和用户比例速率权重的情况下,以最大化应用时间窗内的网络吞吐量为目标提出了一个基于应用时间窗的比例公平算法。该算法首先把基站总功率在各子载波上等功率分配,并且把网络中的每个用户按照其比例速率权重映射为相应数目的虚拟用户;然后根据运筹学中影子价格(Shadow Price)的概念定义虚拟用户在子载波上接入时间分配准则;最后根据子载波接入时间分配准则和分类的影子价格得到最终的子载波接入时间百分比。该算法不仅能保证用户的公平性,而且能有效提高网络吞吐量。
     针对上行多用户MIMO-OFDM无线局域网的跨层资源分配问题,在考虑多包接收和用户数据包长度的情况下,以最小化传输时间为目标提出了低复杂度的基于多包接收跨层资源分配算法和改进的基于多包接收跨层资源分配算法。首先,研究了在物理层采用基于波束形成的MIMO-OFDM传输技术和在媒体接入控制(Media Access Control, MAC)层采用基于多包接收的分布式协调功能(Distributed Coordination Function, DCF)协议;然后,根据Huang文献的无线局域网基于多包接收的数学优化模型提出了一个低复杂度的跨层资源分配算法,该算法在网络性能和计算复杂度之间取得良好的折中;最后,针对Huang文献的数学优化模型不足进行了修改,即把网络的总功率限制用各个用户的最大功率限制替代,并在此基础上提出了一个改进的基于多包接收跨层资源分配算法,该算法不仅能有效提高网络吞吐量,而且能降低平均包延时。
     针对基于OFDM技术的多跳无线Mesh网络资源分配问题,在各链路最大发射功率限制和满足各链路实时业务传输速率需求的情况下,以最大化网络效用函数为目标提出了一个联合考虑功率、时隙和子载波的资源分配算法。该算法首先根据语音业务和视频业务的特点为各链路的实时业务分配时隙-子载波对,并且为各链路语音业务和视频业务设计服务区分机制;然后把一帧中剩余的时隙-子载波对分配给边际效应最大的链路来增加网络的数据业务吞吐量;最后根据注水原理进行功率分配。该算法不仅能保证网络语音业务和视频业务的QoS要求,而且能有效提高数据业务吞吐量。
The rapid development of the wireless networks and the explosive growth of multimediaapplications inevitably aggravate the contradiction between the limited spectrum resource and theincreasing quality of service (QoS) requirement of multimedia services. To alleviate the contradiction,the wireless network resource allocation technology becomes the hot research field recently. Due tothe distinct advantages of orthogonal frequency division multiplexing (OFDM), it provides flexiblefreedoms for resource allocation. Thus, resource allocation in OFDM system has attracted greatinterests in recent years. In this thesis, the resource allocation algorithms in OFDM wireless networksincluding cellular network, wireless local area network and wireless Mesh network are intensivelystudied. In this thesis, we make some improvements on the basis of previous work. The main work ofthis thesis are listed as follows:
     For the cellular network resource allocation problem of the uplink multiuser multi-inputmulti-output orthogonal frequency division multiplexing (MIMO-OFDM), a minimizing powerresource allocation algorithm based on limited feedback which considers the minimum transmissionrate requirement of each user and TCM is proposed. Firstly, the algorithm designs the codebook ofrate, power and equivalent channel quantization threshold utilizing the Lagrange multiplier methodand the Karush-Kuhn-Tucher condition of convex optimization theory. Secondly, the subcarriers areallocated according to current channel state information and the equivalent channel gain is quantized.Finally, the base station broadcasts the resource allocation solution to users. Proposed algorithm notonly saves efficiently the energy of cellular network, but also has advantage of limited feedback.
     For the cellular network resource allocation problem of the uplink multiuser MIMO-OFDM, amaximizing throughput resource allocation algorithm based on limited feedback which considers thebest effort service and TCM is proposed. Firstly, the algorithm defines the effective set oftransmission mode per user according to the code of transmission mode and the requirement of BER.Secondly, the function of link quality indicator is derived according to the Lagrange dual method andthe Karush-Kuhn-Tucher condition in convex optimization theory. Finally, updates the Lagrangemultipliers utilizing sub-gradient iterative method. Proposed algorithm not only improves the networkthroughput, but also has advantage of limited feedback.
     For the cellular network resource allocation problem of single user MIMO-OFDM, a maximizingthroughput resource allocation algorithm which considers the delay channel state information and channel coding is proposed. Firstly, the algorithm derives the constellation distance which guaranteesthe requirement of the user’s BER utilizing the delay channel state information from the perspectiveof coding gain. Secondly, it proves that the optimization problem is convex and the closed formsolution for optimal power and bit loading is derived according to the Lagrange multiplier method andthe Karush-Kuhn-Tucher condition of convex optimization theory. Finally, the resource allocationsolution is obtained through rounding bit and power adjustment. Proposed algorithm is close to theoptimal integer bit loading solution of single user and has advantage of low computationalcomplexity.
     For the cellular network resource allocation problem of the downlink multiuser MIMO-OFDM, aproportional fairness resource allocation algorithm which considers the delay channel stateinformation and users’ proportional rate weight is proposed. Firstly, the algorithm allocates the totalpower of base station equally across the subcarrier and maps each user into the corresponding virtualusers according to the users’ proportional rate weight. Secondly, it defines the subcarrier allocationcriteria of virtual users accessing time according to the concept of shadow price in operation research.Finally, it obtains the percentage of subcarrier accessing time in accordance with the subcarrierallocation criteria and shadow price classification. Proposed algorithm can improve the networkthroughput efficiently under the condition of guaranteeing the proportional fairness of users.
     For the wireless local area network resource allocation problem of the uplink multiuserMIMO-OFDM, cross-layer resource allocation algorithm with low complexity and improvedcross-layer resource allocation algorithm which consider multi-packet reception and the data packet’slength are proposed. Firstly, we study MIMO-OFDM transmission technology based on beamformingat the physical layer and the distributed coordination function (DCF) protocol based on multi-packetreception at the media access control (MAC) layer. Secondly, we propose a low complexity crosslayer resource allocation algorithm based on multi-packet reception according to the mathematicaloptimization model of Huang’s literature. This algorithm has a good compromise between networkperformance and computational complexity. Finally, in order to overcome the mathematicaloptimization model deficiency of Huang’s literature we substitute the total power of the network withthe maximum power of each user and propose an improved cross-layer resource allocation algorithmbased on multi-packet reception. This algorithm not only effectively improves the network throughput,but also reduces the average packet delay.
     For the resource allocation problem of the multi-hop wireless Mesh network based on OFDMtechnology, a joint power-timeslot-subcarrier resource allocation algorithm which considers the maximum transmission power constraint of each link and the real-time traffic transmission raterequirement of each link is proposed. Firstly, according to the characteristics of voice traffic and videotraffic the algorithm allocates the pair of timeslot-subcarrier for the real-time traffic of each link anddesigns the service differentiation mechanism for the voice traffic and video traffic of each link.Secondly, it allocates the remaining pairs of timeslot-subcarrier in the frame to the largest marginaleffect link in order to increase the network throughput of data traffic. Finally, water filling algorithmis performed in the power allocation stage. Proposed algorithm not only guarantees the QoSrequirement of voice traffic and video traffic, but also improves the throughput of data trafficeffectively.
引文
[1]许威. OFDM及MIMO系统中的资源分配和调度技术研究[博士学位论文].中国南京:东南大学,2009.
    [2]仲崇显.多用户MIMO-OFDM系统中的资源分配和多小区协作研究[博士学位论文].中国南京:东南大学,2009.
    [3]刘明珠. OFDM系统峰值功率控制及优化算法研究[博士学位论文].中国哈尔滨:哈尔滨工程大学,2009.
    [4]尹长川,罗涛,乐光新.多载波宽带无线通信系统.中国北京:北京邮电大学出版社,2004:16-18.
    [5]孙山林.全相位OFDM系统关键技术研究[博士学位论文].中国天津:天津大学,2009.
    [6]刘敏.延时反馈MIMO-OFDM系统中一种快速比特加载算法.重庆大学学报,2007,30(12):33-37.
    [7]Lei Wei, Christian Schlegel. Synchronization Requirements for Multi-user OFDM on SatelliteMobile and Two-path Rayleigh Fading Channels. IEEE Transanctions on Communications,1995,43(2):887-895.
    [8]才华. MIMO-OFDM系统信道估计理论的研究[博士学位论文].中国长春:吉林大学,2010.
    [9]Jack H. Winters. On The Capacity of Radio Communication Systems with Diversity in A RayleighFading Enviroment. IEEE Journal on Selected Areas Communications,1987,5(5):871-878.
    [10]邓凯.无线通信MIMO中的频率同步技术研究[博士学位论文].中国成都:电子科技大学,2009.
    [11]Gerard J. Foschini. Layered Space-Time Architecture for Wireless Communication in A FadingEnvironment When Using Multielement Antennas. Bell Labs Technical Journal,1996,1(2):41-59.
    [12]Gerard J. Foschini.On Limits of Wireless Communications in A Fading Enviroment When UsingMultiple Antennas.Wireless Personal Communications,1998,6(3):311-335.
    [13]Moe Z. Win, Jack H. Winters. Virtual Branch Analysis of Symbol Error Probability for HybridSelection/Maximal-Ratio Combining in Rayleigh Fading. IEEE Transactions onCommunications,2001,49(11):1926-1934.
    [14]Hemanth Sampath, Petre Stoica and Arogyaswami Paulraj.Generalized Linear Precoder andDecoder Design for MIMO Channels Using the Weighted MMSE Criterion. IEEE Transactionson Communications,2001,49(12):2198-2206.
    [15]Alex Grant. Performance Analysis of Transmit Beamforming. IEEE Transactions onCommunications,2005,53(4):738-744.
    [16]钱颖.无线网络资源管理的跨层研究[博士学位论文].中国浙江:浙江大学,2007.
    [17]程鹏.基于凸优化理论的无线网络跨层资源分配研究[博士学位论文].中国杭州:浙江大学,2008.
    [18]李鹏.多跳蜂窝混合网络基站设置和性能研究[博士学位论文].中国哈尔滨:哈尔滨工业大学,2009.
    [19]寇明延.蜂窝网协作通信及相关技术研究[博士学位论文].中国北京:北京邮电大学,2010.
    [20]Joseph Mitola III, Gerald Q. Maguire. Cognitive Radio: Making Software Radios More Personal.IEEE Personal Communications,1999,6(4):13-18.
    [21]Ho Ting Cheng, Weihua Zhuang. Joint Power-Frequency-Time Resource Allocation in ClusteredWireless Mesh Networks. IEEE Network,2008,22(1):45-51.
    [22] IEEE802.16Broadband Wireless Access Group, IEEE802.16.3c, Channel Models for FixedWireless Applications. USA: the IEEE Computer Society,2001-1-19.
    [23]Daniel P. Heyman. The GBAR Source Model for VBR Videoconferences. IEEE/ACMTransactions on Networking,1997,5(4):554-560.
    [24]Juncai Shi, Aiqun Hu. Maximum Utility-based Resource Allocation Algorithm in the IEEE802.16OFDMA System. In Proceeding of IEEE ICC, Beijing, China, IEEE,2008:311-316.
    [25]Masoud Ardakani, Tooraj Esmailian and Frank R. Kschischang. Near-Capacity Coding inMulticarrier Modulation Systems. IEEE Transactions on Communications,2004,52(11):1880-1889.
    [26]Ying Jun Zhang, Peng Xuan Zheng and Soung Chang Liew. How does Multiple-Packet ReceptionCapability Scale the Performance of the Wireless Local Area Networks? IEEE Transactions onMobile Computing,2009,8(7):923-935.
    [27]汪广洪. IEEE802.11无线局域网MAC层性能及服务质量研究[博士学位论文].中国天津:天津大学,2004.
    [28]杨卫东,马建峰,婓庆祺.有限负载下802.11DCF的性能分析及优化.电子学报,2008,36(5):948-652.
    [29]陈明欣,刘干,朱光喜. WLAN中基于效用的呼叫接纳控制策略.电子学报,2008,36(7):1429-1434.
    [30]Ali Al-Hemyari, Chee Kyun Ng and Nor Kamariah Noordin, et al. Cross-Layer Design UsingMulti-Channel Systems in Wimax Mesh Networks. In Proceeding of IEEE TENCON, Hyderabad,India, IEEE,2008:1-6.
    [31]Ankit Kapoor, Vinay J. Ribeiro. An End-to-End QoS Aware Greedy Distributed SchedulingFramework for Wimax Mesh Networks. In Proceeding of IEEE COMSNETS, Bangalore, India,IEEE,2010:1-8.
    [32]Wen-Hwa Liao, Sital Prasad Kedia and Avinash Kumar Dubey. A Centralized SchedulingAlgorithm for Wimax Mesh Network. In Proceeding of IEEE NOMS, Osaka, Japan, IEEE,2010:858-861.
    [33]Tibor Gyires, Yongning Tang. Multipath Forwarding in Wimax Mesh Networks with DynamicMetrics. In Proceeding of IEEE ICN, French Alps, France, IEEE,2010:115-120.
    [34]刘铮. STDMA无线Mesh网络链路调度研究[博士学位论文].中国天津:天津大学,2009.
    [35]Philip Whitehead. Mesh Networks: A New Architecture for Broadband Wireless Access Systems.In Proceeding of IEEE RAWCON, Denver, Colorado USA, IEEE,2000:43-46.
    [36]Ian F. Akyildiz, Xudong Wang and Welin Wang. Wireless Mesh Networks: A Survey. ComputerNetworks,2005,47(4):445-487.
    [37]漆华妹.基于网络演算的无线Mesh网络QoS性能研究[博士学位论文].中国长沙:中南大学,2010.
    [38]任娟.无线Mesh网络的资源分配及拥塞控制算法研究[博士学位论文].中国北京:北京交通大学,2010.
    [39]Ma Li, Guang Xi Zhu and Bo Yun Yin. Optimization Models of Multi-channel Assignment inMulti-radio Wireless Mesh Networks. In Proceeding of IEEE WICOM, Dalian, China, IEEE,2008:1-5.
    [40]黄昭文.无线Mesh网络资源调度算法与QoS保障机制研究[博士学位论文].中国广州:华南理工大学,2010.
    [41]Jeremiah F. Hayes. Adaptive Feedback Communication. IEEE Transactions on CommunicationTechnology,1968,16(1):29-34.
    [42]郭磊. MIMO-OFDM系统中的多用户自适应资源分配技术研究[博士学位论文].中国武汉:华中科技大学,2008.
    [43]Antonio Fasano. On the Optimal Discrete Bit Loading for Multicarrier Systems with Constraints.In Proceeding of IEEE VTC, Orlando, Florida USA, IEEE,2003:915-919.
    [44]Achankeng Leke, John M. Cioffi. A Maximum Rate Loading Algorithm for Discrete MultitoneModulation Systems. In Proceeding of IEEE GLOBECOM, Phoenix, Arizona USA, IEEE,1997:1514-1518.
    [45]Ming Lei, Ping Zhang and Hiroshi Harada, et al. An Adaptive Power Distribution Algorithm forImproving Spectral Efficiency in OFDM. IEEE Transactions on Broadcasting,2004,50(3):347-351.
    [46]Brian S. Krongold, Kannan Ramchandran and Douglas L. Jones. Computationally EfficientOptimal Power Allocation Algorithms for Multicarrier Communication Systems. IEEETransactions on Communications,2000,48(1):23-27.
    [47]Alexander M. Wyglinski, Fabrice Labeau and Peter Kabal. Bit Loading with BER-Constraint forMulticarrier Systems. IEEE Transactions on Wireless Communications,2005,4(4):1383-1387.
    [48]张然然.下一代无线通信系统的自适应传输技术研究[博士学位论文].中国北京:北京邮电大学,2009.
    [49]Marie-Helene Bourles-Hamon, Hesham El Gamal. On the Design of Adaptive Space-Time Codes.IEEE Transactions on Communications,2004,52(10):1670-1674.
    [50]Peilu Ding, David J Love and Jianqi Wang, et al. Low Complexity Adaptive Design forFull-Diversity Full-Rate Space-Time Codes. IEEE Transactions on Signal Processing,2006,54(8):3180-3189.
    [51]Jinhong Yuan. Adaptive Transmit Antenna Selection with Pragmatic Space-Time Trellis Codes.IEEE Transactions on Wireless Communications,2006,5(7):1706-1715.
    [52]Sangheon Kim, Myeongcheol Shin and Chungyong Lee. Transmit Antenna Selection Scheme forIterative Receivers in MIMO Systems. IEEE Signal Processing Letters,2007,14(12):916-919.
    [53]Francesc Rey, Meritxell Lamarca and Gregori Vazquez. Robust Power Allocation Algorithms forMIMO OFDM Systems with Imperfect CSI. IEEE Transactions on Signal Processing,2005,53(3):1070-1085.
    [54]Ka-Wai Ng, Roger S Cheng and Ross D Murch. Iterative Bit and Power Allocation for V-BLASTbased OFDM MIMO System in Frequency Selective Fading Channel. In Proceeding of IEEEWCNC, Orlando, Florida USA, IEEE,2002:271-275.
    [55]Antonio G. Marques, Georgios B. Giannakis and Fadel F. Digham, et al. Power-Efficient WirelessOFDMA Using Limited-Rate Feedback. IEEE Transactions on Wireless Communications,2008,7(2):685-696.
    [56]Yang-wen Liang, Robert Schober and Wolfgang Gerstacker. Minimum BER TransmitBeamforming for MIMO-OFDM Systems with Finite Rate Feedback. In Proceeding of IEEEICC, Beijing, China, IEEE,2008:4353-4358.
    [57]Thomas G. Robertazzi. Computer Networks and Systems. New York: Springer,1995.
    [58]Jiho Jang, Kwang Bok Lee. Transmit Power Adaptation for Multiuser OFDM Systems. IEEEJournal on Selected Areas in Communications,2003,21(2):171-178.
    [59]Wonjong Rhee, John M. Cioffi. Increase in Capacity of Multiuser OFDM System Using DynamicSubchannel Allocation. In Proceeding of IEEE VTC, Tokyo, Japan, IEEE,2000:1085-1089.
    [60]Zukang Shen, Jeffrey G. Andrews and Brain L. Evans. Adaptive Resource Allocation in MultiuserOFDM Systems with Proportional Rate Constraints. IEEE Transactions on WirelessCommunications,2005,4(6):2726-2737.
    [61]Guanding Yu, Zhaoyang Zhang and Yan Chen, et al. Subcarrier and Bit Allocation for OFDMASystems with Proportional Fairness. In Proceeding of IEEE WCNC, Las Vegas, Nenada USA,IEEE,2006:1717-1722.
    [62]Ian C. Wong, Zukang Shen and Brian L. Evans, et al. A Low Complexity Algorithm forProportional Resource Allocation in OFDMA Systems. In Proceeding of IEEE SIPS, Austin,Texas USA, IEEE,2004:1-6.
    [63]Shahab Sanayei, Aria Nosratinia and Naofal Aldhahir. Opportunistic Dynamic SubchannelAllocation in Multiuser OFDM Networks with Limited Feedback. In Proceeding of IEEE ITW,San Antonio, Texas USA, IEEE,2004:182-186.
    [64]Yue Rong, Sergiy A. Vorobyov and Alex B. Gershman. On Average One Bit Per SubcarrierChannel State Information Feedback in OFDM Wireless Communication Systems. In Proceedingof IEEE GLOBECOM, Dallas, Texas USA, IEEE,2004:4011-4015.
    [65]Antonio G. Marques, Ana Gonzalez and Jose Rojo-Alvarez, et al. Optimizing AveragePerformance of OFDM Systems Using Limited-Rate Feedback. IEEE Transactions on WirelessCommunications,2010,9(10):3130-3143.
    [66]Antonio G. Marques, Fadel F. Digham and Georgios B. Giannakis. Optimizing Power Efficient ofOFDM Using Quantized Channel State Information. IEEE Journal on Selected Areas inCommunications,2006,24(8):1581-1592.
    [67]Jouko Leinonen, Jyri Hamalainen and Markku Juntti. Performance Analysis of DownlinkOFDMA Resource Allocation with Limited Feedback. IEEE Transactions on WirelessCommunications,2009,8(6):2927-2937.
    [68]Gwen Barriac, Upamanyu Madhow. Space-Time Precoding for Mean and Covariance Feedback:Application to Wideband OFDM. IEEE Transactions on Communications,2006,54(1):96-107.
    [69]Yu Fu, Witold A. Krzymien and Chintha Tellambura. Precoding for Multiuser OrthogonalSpace-Time Block-Coded OFDM: Mean or Covariance Feedback? In Proceeding of IEEE ICC,Glasgow, Scotland, IEEE,2007:4269-4274.
    [70]Pengfei Xia, Shengli Zhou and Georgios B. Giannakis. Adaptive MIMO-OFDM Based on PartialChannel State Information. IEEE Transactions on Signal Processing,2004,52(1):202-213.
    [71]胡亚辉.基于MIMO-OFDM无线资源管理技术的研究[博士学位论文].中国北京:北京邮电大学,2009.
    [72]刘健.下一代无线网络的跨层优化MAC协议研究[博士学位论文].中国济南:山东大学,2008.
    [73]Weilan Huang, K. B. Letaief. A Cross-layer Resource Allocation and Scheduling for MultiuserSpace-Time Block Coded MIMO/OFDM Systems. In Proceeding of IEEE ICC, Seoul, Korea,IEEE,2005:2655-2659.
    [74]Jiang Yu, Yueming Cai and Yuehuai Ma, et al. A Cross-layer Design of Packet Scheduling andResource Allocation for Multiuser MIMO-OFDM Systems. In Proceeding of IEEE ICICS,Zhengzhou, China, IEEE,2007:1-5.
    [75]Guangsong Yang, Mingbo Xiao and Huihuang Chen, et al. A Novel Cross-layer Routing Schemeof Ad hoc Networks with Multi-Rate Mechanism. In Proceeding of IEEE WCNM, Wuhan, China,IEEE,2005:701-704.
    [76]Guocong Song, Ye Li and Leonard J. Cimini, et al. Joint Channel-Aware and Queue-Aware DataScheduling in Multiple Shared Wireless Channels. In Proceeding of IEEE WCNC, Atlanta, USA,IEEE,2004:1939-1944.
    [77]Wei Lan Huang, Khaled Ben Letaief and Ying Jun Zhang. Cross-Layer Multi-Packet ReceptionBased Medium Access Control and Resource Allocation for Space-Time Coded MIMO/OFDM.IEEE Transactions on Wireless Communications,2008,7(9):3372-3384.
    [78]Bruno Bougard, Sofie Pollin and Antoine Dejonghe, et al. Cross-Layer Power Management inWireless Networks and Consequences on System-Level Architecture. Signal Processing,86(8):1792-1803.
    [79]Rex Min, Anantha Chandrakasan. A Framework for Energy-Scalable Communication inHigh-Density Wireless Networks. In Proceeding of IEEE ISLPED, Monterey, California USA,IEEE,2002:36-41.
    [80]Randall A. Berry, Rober G. Gallager. Communication Over Fading Channels with DelayConstraints. IEEE Transactions on Information Theory,2002,48(5):1135-1149.
    [81]唐志华. OFDM系统资源分配和调度策略研究[博士学位论文].中国合肥:中国科学技术大学,2009.
    [82]Wei Xu, Chunming Zhao and Zhi Ding. Limited Feedback Multiuser Scheduling of SpatiallyCorrelated Broadcast Channels. IEEE Transactions on Vehicular Technology,2009,58(8):4406-4418.
    [83]Wei Xu, Chunming Zhao and Zhi Ding. Limited Feedback Design for MIMO Broadcast Channelswith ARQ Mechanism. IEEE Transactions on Wireless Communications,2009,8(4):2132-2141.
    [84]Wei Xu, Chunming Zhao and Zhi Ding. Optimisation of Limited Feedback Design forHeterogeneous Users in Multi-antenna Downlinks. IET Communications,2008,3(11):1724-1735.
    [85]Lan Tang, Pengcheng Zhu and Yan Wang, et al. Adaptive Modulation Based on Finite-RateFeedback in Broadcast Channels. IEEE Transactions on Wireless Communications,2008,7(11):4449-4454.
    [86]Jordi Diaz, Osvaldo Simeone and Yeheskel Bar-Ness. Asymptotic Analysis of Reduced-FeedbackStrategies for MIMO Gaussian Broadcast Channels. IEEE Transactions on Information Theory,2008,54(3):1308-1316.
    [87]Antonio G. Marques, Xin Wang and Georgios B. Giannakis. Dynamic Resource Management forCognitive Radios Using Limited-Rate Feedback. IEEE Transactions on Signal Processing,2009,57(9):1-16.
    [88]Yang-wen Liang, Robert Schober and Wolfgang Gerstacker. Time-Domain TransmitBeamforming for MIMO-OFDM Systems with Finite Rate Feedback. IEEE Transactions onCommunications,2009,57(9):2828-2838.
    [89]Filippo Zuccardi Merli, Xiaodong Wang and Giorgio Vitetta. Low-Rate-Feedback-AssistedBeamforming and Power Control for MIMO-OFDM Systems. IEEE Transactions on VehicularTechnology,2010,59(1):225-234.
    [90]罗涛,乐光新.多天线无线通信原理与应用.中国北京:北京邮电大学出版社,2005:86-93.
    [91]宋述龙. n个服从指数分布的独立随机变量和分布的推导.辽宁师范大学学报,1990,13(4):51-58.
    [92]Handong Gong, Wu Ye and Suili Feng, et al. A Subcarrier Allocation Algorithm for EfficientlyReducing Power in Multiuser OFDM Systems. Wireless Personal Communications,2007,40(2):233-243.
    [93]Didem Kivanc, Guoqing Li and Hui Liu. Computationally Efficient Bandwidth Allocation andPower Control for OFDMA. IEEE Transactions on Wireless Communications,2003,2(11):1150-1158.
    [94]Ho Ting Cheng, Weihua Zhuang. QoS-Driven MAC-Layer Resource Allocation for WirelessMesh Networks with Non-Altruistic Node Cooperation and Service Differentiation. IEEETransactions on Wireless Communications,2009,8(12):6089-6103.
    [95]Lifang Li, Andrea J. Goldsmith. Capacity and Optimal Resource Allocation for Fading BroadcastChannels-Part I: Ergodic Capacity. IEEE Transactions on Information Theory,2001,47(3):1083-1102.
    [96]Alexander L. Stolyar. On the Asymptotic Optimality of the Gradient Scheduling Algorithm forMulti-user Throughput Allocation. Operation Research,2005,53(1):12-25.
    [97]Rajendra K. Jain, Dah-Ming Chiu and William R. Hawe. A Quantitative Measure of Fairness andDiscrimination for Resource Allocation in Shared Computer Systems. DEC Research Report,1984,1-6.
    [98]Keunyoung Kim, Youngnam Han and Seong-Lyun Kim. Joint Subcarrier and Power Allocation inUplink OFDMA Systems. IEEE Communications Letters,2005,9(6):526-528.
    [99]Eugene Visotsky, Upamanyu Madhow. Space-Time Transmit Precoding with Imperfect Feedback.IEEE Transactions on Information Theory,2001,47(6):2632-2639.
    [100]Eugene Visotsky, Upamanyu Madhow. Space-Time Precoding with Imperfect Feedback. InProceeding of IEEE ISIT, Sorrento, Italy, IEEE,2000:312-313.
    [101]Haitong Sun, Zhi Ding. Optimal Linear Transceiver Design for MIMO Flat Fading ChannelsExploiting Channel Mean Feedback. In Proceeding of IEEE GLOBECOM, San Francisco, CAUSA, IEEE,2006:1-5.
    [102]Liu Li, Zhang Hailin. Power Allocation and Modulation in MIMO System with Channel MeanFeedback. In Proceeding of IEEE AINA, Vienna, Austria, IEEE,2006:1-3.
    [103]Shengli Zhou, Georgios B. Giannakis. Optimal Transmitter Eigen-Beamforming andSpace-Time Block Coding Based on Channel Mean Feedback. IEEE Transactions on SignalProcessing,2002,50(10):2599-2613.
    [104]Shengli Zhou, Georgios B. Giannakis. Adaptive Modulation for Multiantenna Transmissionswith Channel Mean Feedback. IEEE Transactions on Wireless Communications,2004,3(5):1626-1636.
    [105]Shengli Zhou, Georgios B. Giannakis. Adaptive Modulation for Multi-antenna Transmissionswith Channel Mean Feedback. In Proceeding of IEEE ICC, Anchorage, Alaska USA, IEEE,2003:2281-2285.
    [106]Dirk Hughes-Hartogs. Ensemble Modem Structure for Imperfect Transmission Media. USA,Patents, No.4679227, July1987.
    [107]Peter S. Chow, John M. Cioffi. Bandwidth Optimization for High Speed Data Transmission overChannels with Severe Intersymbol Interference. In Proceeding of IEEE GLOBECOM, Orlando,Florida USA, IEEE,1992:59-63.
    [108]Soung Chang Liew, Ying Jun Zhang. Proportional Fairness in Multi-Channel Multi-RateWireless Networks-Part I: The Case of Deterministic Channels with Application to APAssociation Problem in Large-Scale WLAN. IEEE Transactions on Wireless Communications,2008,7(9):3446-3456.
    [109]Ying Jun Zhang, Soung Chang Liew. Proportional Fairness in Multi-Channel Multi-RateWireless Networks-Part II: The Case of Time-Varying Channels with Application to OFDMSystems. IEEE Transactions on Wireless Communications,2008,7(9):3457-3467.
    [110]霍永青.多载波系统中自适应资源分配算法和LDPC编码研究[博士学位论文].中国成都:电子科技大学,2007.
    [111]Seong Taek Chung, Andrea J. Goldsmith. Degrees of Freedom in Adaptive Modulation: AUnified View. IEEE Transactions on Communications,2001,49(9):1561-1571.
    [112]侯华.跨层无线资源管理算法研究[博士学位论文].中国合肥:中国科学技术大学,2008.
    [113]季薇.无线协作通信的若干关键问题研究[博士学位论文].中国上海:上海交通大学,2008.
    [114]李新.移动Ad hoc网络若干技术研究[博士学位论文].中国北京:北京邮电大学,2006.
    [115]Qing Zhao, Lang Tong. A Multiqueue Service Room MAC Protocol for Wireless Networks withMultipacket Reception. IEEE/ACM Transactions on Networking.,2003,11(1):125-137.
    [116]Qing Zhao, Lang Tong. A Dynamic Queue Protocol for Multi-Access Wireless Networks withMultipacket Reception. IEEE Transactions on Wireless Communications,2004,3(6):2221-2231.
    [117]季薇,郑宝玉.无线传感器网络中基于NDMA的跨层协作多包接收.电子学报,2007,35(5):1001-1004.
    [118]Ying Jun Zhang, Peng Xuan Zheng and Soung Chang Liew. How Does Multiple-PacketReception Capability Scale the Performance of Wireless Local Area Networks? IEEETransactions on Mobile Computing,2009,8(7):923-935.
    [119]Wei Lan Huang, Khaled Ben Letaief and Ying Jun Zhang. Joint Channel State Based RandomAccess and Adaptive Modulation in Wireless LANs with Multi-Packet Reception. IEEETransactions on Wireless Communications,2008,7(11):4185-4197.
    [120]Vincent K. N. Lau, Yu-Kwong Ricky Kwok. Channel-Adaptive Technologies and Cross-LayerDesigns for Wireless Systems with Multiple Antennas: Theory and Applications. USA, JohnWiley&Sons,2006:440-460.
    [121]Shilpa Talwar, Mats Viberg and Arogyaswami Paulraj. Blind Separation of SynchronousCo-Channel Digital Signals Using an Antenna Array-Part I: Algorithms. IEEE Transactions onSignal Processing,1996,44(5):1184-1197.
    [122]Constantinos B. Papadias, Arogyaswami J. Paulraj. A Constant Modus Algorithm for MultiuserSignal Separation in Presence of Delay Spread Using Antenna Arrays. IEEE Signal ProcessingLetters,1997,4(6):178-181.
    [123]LAN/MAN Standards Committee, IEEE802.11a-1999, High-Speed Physical Layer in the5GHzBand. USA: the IEEE Computer Society,1999-2-11.
    [124]Xinfeng Zhao, Laibo Zheng and Mingjuan Huang, et al. Proportional Resource Allocation forMulti-User OFDM Systems. In Proceeding of IEEE ICITIS, Beijing, China, IEEE,2010:1100-1103.
    [125]Ian C. Wong, Zukang Shen and Brian L. Evans, et al. A Low Complexity Algorithm forProportional Resource Allocation in OFDMA Systems. In Proceeding of IEEE SIPS, Austin,Texas USA, IEEE,2004:1-6.
    [126]Nararat Ruangchaijatupon, Yusheng Ji. Integrated Approach to Proportional-fair ResourceAllocation for Multiclass Services in an OFDMA System. In Proceeding of IEEE GLOBECOM,Honolulu, Hawaii USA, IEEE,2009:1-6.
    [127]Chenhui You, Xiaoxin Yi and Yong Yu. Research on Resource Allocation Algorithm in anOFDMA Wireless Mesh Network. In Proceeding of IEEE WiCOM, Dalian, China, IEEE,2008:1-4.
    [128]Zhaowen Huang, Suili Feng and Wu Ye, et al. Ant-Colony-Based Resource Allocation inOFDMA Mesh Network. In Proceeding of IEEE WiCOM, Beijing, China, IEEE,2009:1-5.
    [129]Felix Brah, Luc Vandendorpe. Constrained Resource Allocation for OFDMA Wireless MeshNetworks with Limited Feedback. In Proceeding of IEEE FNMS, Florence, Italy, IEEE,2010:1-8.
    [130]Ching-Ju Lin, Cheng-Fu Chou. Route-Aware Load-Balanced Resource Allocation for WirelessMesh Networks. In Proceeding of IEEE WCNC, HongKong, China, IEEE,2007:3093-3098.
    [131]Kemal Karakayali, Joseph H. Kang and Murali Kodialam, et al. Joint Resource Allocation andRouting for OFDMA-Based Broadband Wireless Mesh Network. In Proceeding of IEEE ICC,Glasgow, Scotland, IEEE,2007:5088-5092.
    [132]Kewei Li, Furong Wang and Yan Zhang, et al. Distributed Joint Resource Allocation inMulti-Radio Multi-Channel Wireless Mesh Networks. In Proceeding of IEEE GLOBECOM,Honolulu, Hawaii USA, IEEE,2009:1-6.
    [133]Ho Ting Cheng, Weihua Zhuang. Pareto Optimal Resource Allocation Management for WirelessMesh Networks with QoS Assurance: Joint Node Clustering and Subcarrier Allocation. IEEETransactions on Wireless Communications,2009,8(3):1573-1583.
    [134]郭晶.高频OFDM通信系统关键技术研究[硕士学位论文].中国南京:南京航空航天大学,2007.
    [135]赖国庭.无线MIMO-OFDM系统的传输技术及性能研究[博士学位论文].中国广州,华南理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700