用户名: 密码: 验证码:
基于MCP位敏阳极探测器的时间相关单光子计数技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,时间相关单光子计数(TCSPC)技术取得了很大的进步,发展成一种快速、多维的光学记录技术,在荧光寿命成像、扩散光学层析、时间分辨荧光显微、激光雷达和超灵敏时间分辨光谱测量中获得了应用。本文主要针对当前时间相关单光子计数技术用于成像探测或光谱测量时,必须利用高精密的光机扫描元件,由于扫描时间长,成像的实时性、时间分辨、空间分辨率不高等问题,提出自主研制具有面阵结构的微通道板(MCP)位敏阳极探测器,光子到达时间和位置同步测量电子学系统和数据处理软件,实现光子到达时间和位置的连续、同步测量,探索在时间分辨光子计数成像,随机数提取等方面的应用。主要研究内容及成果如下:
     (1)调研了时间相关单光子计数技术的原理、国内外研究进展及在相关领域的应用。对单光子探测器、前置放大技术、电荷测量技术、定时技术及时间数字转换技术等TCSPC系统的关键技术进行了详细的分析。提出了基于MCP位敏阳极探测器的光子到达时间和位置同步测量方案;
     (2)设计并研制了MCP位敏阳极探测器。探测器采用电荷直接收集型结构;MCP采用“V”型或“Z”型级联;阳极采用基于电荷分配技术的游标阳极或楔条形阳极;探测器前端电子学采用电荷灵敏前放和整形主放;
     (3)设计并研制了光子到达时间和位置同步测量电子学系统。提出并实现一种光子序列到达时间的连续、高精度测量方法。采用粗时间测量和细时间测量相结合的方法测量光子序列相对于同一起始时刻的时间。粗时间的测量采用对高稳定度时钟进行计数的方式,细时间的测量采用基于FPGA进位链的高精度时间数字转换。提出并实现利用光子到达定时信号来实现光子到达时间和位置同步测量的方法,光子到达定时信号一方面用于确定光子的到达时刻,另一方面经过延时后作为触发信号,触发多路峰值保持采集进行采集。多路脉冲幅度采集采用峰值保持后触发采集的方式,每路单光子脉冲只采集一个点;光子到达定时方法为先对多路脉冲进行求和,然后采用恒比定时(CFD)方法产生光子到达定时信号,并增加了阈值甄别的功能。采用USB2.0接口和内存切换的方式实现将光子到达时间和位置数据连续传输到计算机。经电子学性能测试结果表明,所设计电子学系统的脉冲峰值采集的精度为20mV,定时精度为0.95ns,时间间隔测量的精度为500ps,死时间为100ns,最大平均计数率为2.67Mcps,最长记录时间为6.11小时;
     (4)利用基于MCP位敏阳极探测器的光子到达时间和位置同步测量系统,搭建了时间分辨光子计数成像探测系统。推导了基于MCP位敏阳极探测器的时间分辨光子计数成像理论模型。利用VC6.0开发计算机软件,实现数据采集、数据缓存、数据预处理、数据分析、阳极解码和图像合成等功能。为了提高成像分辨率,对游标阳极解码算法进行了改进。实验中获得极微弱光的时间分辨光子计数图像。经测试,位敏阳极采用游标阳极时空间分辨率优于100μm,位敏阳极采用楔条形阳极时空间分辨率优于80μm,光子到达时间分辨优于1.53ns;
     (5)利用基于MCP楔条形阳极探测器的光子到达时间和位置同步测量系统,搭建了基于光子时空间随机性的光量子随机源。在光子到达空间随机性方面,提出光子到达空间编码的随机位提取方法。在光子到达时间随机性方面,提出三种随机位的提取方法,一是利用等时间间隔内光子的奇偶性来提取随机位;二是利用相邻到达光子时间间隔大小来提取随机位;三是光子到达时间编码随机位提取法。运用国际通用随机性测试软件ENT对上述四种随机数提取方法所获得随机系列进行随机性测试,测试结果表明上述几种方法所提取的二进制随机序列的随机性非常好且不需要后续处理,完全符合真随机数的标准。
Currently, Time-correlated single photon counting technology (TCSPC) has madea great progress,has been developed into a fast, multi-dimensional optical recordingtechnology and widely used in fluorescence lifetime imaging, diffuse opticaltomography, time-resolved fluorescence microscopy, laser radar and ultra-sensitivetime-resolved spectral measurements. The high-precision optical scanningcomponents are required when TCSPC used for imaging detection or spectralmeasurements. Due to long scan time, real-time imaging is limited, and the time andspatial resolution is not high. This paper focused on this problem, and proposed todeveloped MCP position sensitive anode detector with array structure, the electronicssystems, and the data processing software to achieve continuous,simultaneousmeasurement of arrival time and location of single photon, and explore the applicationin the time-resolved photon counting imaging, the pulse profile detection of veryweak X ray and the random number extraction. The main research contents andresults are as follows:
     (1) The principle of TCSPC, research advances and applications in related fields areinvestigated. The key technology of TCSPC system, including single-photon detector,pre-amplification techniques, charge measurement techniques, timing and time-digitalconverter techniques were described in detail. The program of simultaneousmeasurement system of arrival time and location of photon based on MCP positionsensitive anode single photon detector is proposed;
     (2) The MCP position sensitive anode single detectors are designed and developed.The detector is designed as charge directly collected structure, use "V" or the "Z"-typecascade MCP to multiply electron, and read out by charge distribution anode, theVernier anode and WSZ anode. Charge-sensitive preamplifier and shaping amplifierare chose as the front end electronics;
     (3) The electronic system used for simultaneous measurement of arrival time and location of single photon is designed and developed. In the electronic system, thearrival times of photon sequence relative to a common start time is measured bycombing coarse time and fine time. A high stability OCXO clock is counted tomeasure the coarse time and a high resolution FPGA-based carry chain TDC is usedto measure the fine time. The photon arrival timing signal is used to set upsynchronization, on the one hand the timing signal is used to determine the arrivaltime of photon, on the other and, the timing signal trigger peak acquisition after adelay. The amplitudes of multi-channel pulse are measured by triggering sample afterpeak hold and each single-photon pulse sample only one point. The timing circuit ofarrival photon firstly sums up multi-channel pulses into one pulse, and then generatestiming signal by the constant fraction timing methods with threshold discriminationfunction. The data of photon arrival times and locations is transmitted to computer bymemory switching technology and an usb2.0interface. The electronic properties testresults shows that the multi-channel pulse peak acquisition accuracy is20mV, thetiming accuracy of photon arrival is0.95ns, time measurement accuracy is500ps, thedead time of electronic system is100ns and the maximum average count rate is2.67Mcps, maximum recording time is6.11hours;
     (4) A time-resolved photon counting imaging system is set up using thesimultaneous measurement system of arrival time and location of photon based onMCP position sensitive anode detector. Time-resolved photon counting imagingtheoretical model is derived based on the MCP position sensitive anode detector.Software has been developed to achieve the function including data acquisitioncontrol, data preprocessing, data analysis, position decoding, and image synthesis.The time-resolved image of the very weak optical radiation can be reconstructed byimage processing. According to test, the space resolution is superior to100mμ withVernier anode and80mμ with WSZ anode, time resolution is superior to1.53ns;
     (5) An optical quantum random number generator is set up using the simultaneousmeasurement system of arrival time and location of photon based on MCP WSZanode detector. A space encoding method is proposed to extract random number basedon the space randomness of arrival photon. Three different kinds of method are proposed to extract random number based on the time randomness of arrival photon.First, the number of photons detected in parity time interval is proposed to extractrandom number. Second, continuously comparing the time intervals between twoadjacent detected photons is proposed to extract random number. Third, a kind of timeencoding method is proposed to extract random number. The random numbersgenerated by above four methods are tested by software ENT. Test results show all ofrandom numbers have a good randomness, do not require post-processing and fullymeet the standards of true random numbers.
引文
[1] J. M. Stock, O. H. M. Siegmund, J. S. Hull, et al. Cross-delay-line microchannel plate detectorsfor the Spectrographic Imager on the IMAGE satellite. Proc. SPIE,1998,3445:407-414
    [2] R. A. Kimble, P. Y. Bely, J. B. Breckinridge, et al. The on-orbit performance of the spacetelescope imaging spectrograph. Proc. SPIE,1998,3356:188-202
    [3] O. H. W. Siegmund, M. Gummin, J. Stock, G. Naletto, et al. Performance of the double delayline microchannelplate detectors for the Far Ultraviolet Spectroscopic Explorer. Proc. SPIE1997,3114:283-294
    [4] W. Backer. Advanced time-correlated single photon counting techniques, Berlin Springer Press,2005,19-21
    [5] W. Becker, A. Bergmann, K. Karsten. Picosecond Fluorescence Lifetime Microscopy byTCSPC Imaging. Proc. SPIE,2001,4262:414-419
    [6] W. Becker. A. Bergmann. Fluorescence Lifetime Imaging by Time Correlated Single PhotonCounting. Microscopy research and technique,2004,63:58–66
    [7] W. Becker. Multispectral Fluorescence Lifetime Imaging by TCSPC. Microscopy research andtechnique,2007,70:403–409
    [8] S. Michael, Y. Dancik. Non-invasive imaging of skin physiology and percutaneous penetrationusing fluorescence spectral and lifetime imaging withmultiphoton and confocal microscopy.European Journal of Pharmaceutics and Biopharmaceutics,2011,77:469-488
    [9] P.Gallant, A. Belenkov, G. Ma, F. Lesage, et al. A quantitative time domain optical imager forsmall animals in vivo fluorescence studies. OSA Biomedical Optics Topical Meetings,Washington2004
    [10] M. prummer, B. Sick, A. Renn, U. P. Wild. Multiparameter microscopy and spectroscopy forsingle-molecule analysis. Anal. Chem.,2004,6:2663-1640
    [11] A. M. Wallace, P. Csakany, G. S. Buller, et al.3D imaging of transparent objects, Proc. BritishMachine Vision Conf,2000,466-475
    [12] A. M. Wallace, G. S. Buller.3D imaging and ranging by time-correlated single photoncounting. Computing and contort engineering jourkal,2001,12(4):157-168
    [13] B. F. Aull, A. H. Loomis, D. J. Young. Geiger-mode avalanche photodiodes forthree-dimensional imaging. Lincoln. Lab. J.,2002,13:335-3509
    [14] M. A. Albota,R. M. Heinrichs,D. G. Kocher. Three-dimensional imaging laser radar with aphoton-counting avalanche photodiode array and and microchip laser. Appl. Opt.,2002,41:7671-7678
    [15] G. S. Buller and A. M. Wallace. Ranging and three-dimensional imaging using timecorrelatedingle-photon counting and point-by-point acquisition, J. Sel. Top.,2007,13(4):1006-1015
    [16] G. S. Buller, R. J. Collins, N. J. Krichel. A. M.Wallace. Scanning of low-signature targetsusing time-correlated single-photon counting. Proc. SPIE,2009,7320:103-108
    [17]孙怡雯,屈军乐,赵羚伶等.眼底视网膜色素上皮层细胞脂褐素及氧化黑色素自体荧光寿命成像研究.物理学报,2008,57(2):773-776
    [18]邵永红,李恒,王岩等.基于同步扫描相机的荧光寿命测量系统研究.深圳大学学报理工版,2009,26(4):663-668
    [19]寇松峰. APD光子计数成像技术研究.南京:南京理工大学,2010:5-6
    [20]刘维.用于乳腺扩散光学层析成像的多通道光子计数系统的设计.天津:天津大学,2007:8-9
    [21]王翰基.基于时间相关单光子计数技术的激光测距实验研究.哈尔滨:哈尔滨工业大学2011:5-6
    [22]郭颖,侯利冰,舒嵘等.光子计数三维成像激光雷达的分析与实验.激光与红外,2011,41(10):1081-1082
    [23]张秀峰,宋克菲,赵海波,韩炳冬,林久令.皮秒时间相关单光子计数光谱仪的研制.光电子.激光.2004,15(1):45-47
    [24]张秀峰,宋克菲,于涛,韩炳冬,盛翠霞,林久令.皮秒时间相关单光子计数光谱仪的核心技术.光学学报,2004,24(12):1489-1490
    [25] J. M. Stock, O. H. M. Siegmund, J. S. Hull, et al. Cross-delay-line microchannel platedetectors for the Spectrographic Imager on the IMAGE satellite. Proc. SPIE,1998,3445:407-414
    [26] R. A. Kimble, P. Y. Bely, J. B. Breckinridge, et al. The on-orbit performance of the spacetelescope imaging spectrograph. Proc. SPIE,1998,3356:188-202
    [27] O. H. W. Siegmund, M. Gummin, J. Stock, G. Naletto, et al. Performance of the double delayline microchannelplate detectors for the Far Ultraviolet Spectroscopic Explorer. Proc. SPIE1997,3114:283-294
    [28] O. H. W. Siegmund, R. F. Malina, K. Coburn, et al. Microchannel plate EUV detectors for theExtreme Ultraviolet Explorer. IEEE Trans. Nucl. Sci.,1984, NS-31:776-779
    [29] R. A. Kimble, et al. In-flight performance of the MAMA detectors on the Space TelescopeImaging Spectrograph. Proc. SPIE,1999,3764:209-225
    [30] J. S. Lapington, B. S. Sanderson, L. B. Worth. The vernier electronic readout: high resolutionand image stability form charge division readout for microchannel plates. Proc. SPIE,1998,3445:535-545
    [31]徐克尊,陈向军,庞文宁,杨炳忻,张芳,田宝利.一维电阻阳极位置灵敏探测器的研制.核技术,1994,17(9):517-520
    [32]贾昌春,陈向军,田善喜,欧阳攻,黄建福,徐克尊.基于微通道板的二维位置灵敏探测器的研制.核技术,1999,22(3):153-156
    [33]宁传刚,任雪光,邓景康.楔条形位置灵敏探测器的特性.清华大学学报,2004,44(9):445-449
    [34]戴丽英,徐华盛,李慧蕊,黄敏.128×128阵列MAMA器件.光电子技术,1999,19(2):117-120
    [35]黄钧良. MAMA紫外探测器系统与高增益MCP.红外技术,1997,19(5):39-44
    [36]尼启良,刘世界,陈波.极紫外位置灵敏阳极光子计数成像探测器研究.中国光学与应用光学,2009,2(1):36-40
    [37]张兴华,赵宝升,缪震华,朱香平,刘永安,邹玮.紫外单光子成像系统研究.物理学报,2008,57:4238-4242
    [38] Q. R. Yan,B. S. Zhao,Y. A. Liu, et al. Two-dimensional photon counting imaging detectorbased on a Vernier position sensitive anode readout. Chinese Physics C,2011,35(4),386-373
    [1] A. Engel, A. Semenov, H.W. Hubers, K. Ilin, and M. Siegel. Superconducting single-photondetector for thevisible and infrared spectral range. Journal of Modern Optics,2004,51(9):1459-1463
    [2] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai. A single-photon detector inthe far-infraredrange. Nature,2000,403-405
    [3] S. Nomura, L. Samuelson, M.E. Pistol, K. Uchida, N. Miura, T. Sugano, and Y. Aoyagi.Landau level formationin semiconductor quantum dots in a high magnetic field. Appl. Phys.Lett.,1997,71(16):34-39
    [4]安毓英,曾晓东.光电探测原理.西安:西安电子科技大学出版社,2004:13-14
    [5]向世明,倪国强.光电子成像器件原理,北京:国防工业出版社,1999:12-13
    [6]马建一,顾肇业,申屠浩.负电子亲和势III–V族化合物半导体光阴极及其发展.半导体情报,1996,33(6):17-22
    [7] Photon counting using photomultiplier tubes, www.hamamatsu.com
    [8] http://jp.hamamatsu.com/resources/products/PMT
    [9]张淑琴.电子倍增器微通道板在微光夜视技术中的应用.山西电子技术,2003,4:28-29
    [10] H. Kume, K. Koyama, K. Nakatsugawa, et al. Ultrafast microchannel plate photomultipliers.Appl. Opt.1998,27(6):1170–1178
    [11] W. Backer. Advanced time-correlated single photon counting techniques, Berlin SpringerPress,2005,19-21
    [12] H. Daudet et al. Photon counting techniques with silicon avalanche photodiodes. Appl.Opt.1993,32(4):3894-3900
    [13] J. Blazej. Photon number resolving in Geiger mode avalanche photodiode photon counters. J.Mod. Opt.2004,51,1491-1498
    [14] S. Cova, A. Longoni, A. Andreoni. Picoseconds resolution with single-photon avalanchediodes. Rev. Sci. Inst.,1981,52,408-412
    [15] R. H. Haitz. Mechanisms contributing to the noise pulse rate of avalanche diodes. J. Appl.Phys.1965,36:3123–3131
    [16] S. Cova, A. Lacaita, M. Ghioni, et al.20-ps timing resolution with single-photon avalanchediodes. Rev. Sci. Inst.,1989,60:1104-1110
    [17] F. Zappa, M. Ghioni, S. Cova, et al. An integrated active-quenching circuit for single-photonavalanche diodes. IEEE Trans.Instr. Meas.2000,49:1167-1175
    [18] I. Rech, et al. Optical crosstalk in single photon avalanche diode arrays: a new completemodel. Opt. Express,2008,16:8381–8394
    [19] P. Eraerds, M. Legre, A. Rochas, et al. SiAPD for fast photon-counting and multiphotondetection. Opt. Express,2007,15:14539-14549
    [20] S. Cova, M. Ghioni, A. Lotito, et al. Evolution and prospects for single-photon avalanchediodes and quenching circuits. J. Mod. Opt,2004,51:1267-1288
    [21] Multi-pixel photon counter, S10362-11series, www.hamamatsu.com
    [22] B. F. Aullbf, A. H. Loomis,D. J. Young, et a1. Geiger mode avalanche photodiodes for threedimensional imaging,Lincoln Laboratory Journal,2002,13(2):335-350
    [23]沈锋,张学军,饶长辉,等.像增强型CCD探测器的光学特性.光学学报,2002,22(5):601-606
    [24]周立伟,刘广荣,高稚允,等.用于微光摄像的高灵敏度电子轰击电荷耦合器件.中国工程科学,1999,1(3):125-129
    [25]刘小桦. CSR探测器读出电子学方法研究.合肥:中国科学技术大学,2008,32-43
    [26]缪震华.基于楔条形阳极探测器的单光子成像系统.西安:中国科学院西安光学精密机械研究所,2008,56-59
    [27] Fast-timing discriminator introduction, www.Ortec-online.com
    [28]陈宝梅.基于X射线脉冲导航探测系统的定时电路研究.西安:中国科学院西安光学精密机械研究所,2011,40-45
    [29]胡慧君.用于脉冲星导航的X射线光子计数探测器及其关键技术研究.中国科学院西安光学精密机械研究所,2011,33-36
    [30]宋健.基于FPGA的精密时间-数字转换电路研究.中国科学技术大学,2008,42-48
    [31] CAM-Messelektronik GmbH. TDC-GPX high-performance channel TDC.Functionaldescription, www.acam.de
    [32] Y. Arai, M. Ikeno. A time digitizer CMOS gate-array with250ps time resolution, IEEEJournal of Solid State Circuits,1996,31:212-220
    [33] Y. Arai. Development of front-end electronics and TDC LSI for the ATLAS MDT, Nucl.Instr. Meth.2000,453:365-371
    [34] J. Christiansen. An integrated high resolution CMOS timing generator based on array ofdelay-locked loops, IEEE Journal on solid state circuits,1996,31:952-657
    [35] J. Christiansen, M. Mota. A high-resolution time interpolator based on a delay locked loopand an RC delay line, IEEE Journal on solid state circuits1999,34:1360-1366
    [36] J.Kalisz, R.Szplet, J. Pasierbinski, and A. Poniecki. Field programmable gate array basedtime-to-digital converter with200-ps resolution. Instrumentation and Measurement, IEEETransactions on,1997,46(1):51-55
    [37] F.Bigongiari, R. Roncella, R. Saletti, and P. Terreni. A250-ps time-resolution cmos multihittime-to-digital converter for nuclear physics experiments. Nuclear Science, IEEETransactions on,1999,46(2):73-79
    [38] R. Szplet, J. Kalisz, and R. Szymanowski.Interpolating time counter with100ps resolutionon a single fpga device. Instrumentation and Measurement, IEEE Transactions on,2000,49(4):879-883
    [39] Jinyuan Wu, Zonghan Shi, and I.Y. Wang. Firmware-only implementation of time-to-digitalconverter in fpga. Nuclear Science Symposium Conference Record,2003IEEE,1:177
    [40] Jian Song, Qi An, and Shubin Liu. A high resolutiontime to digital converter implemented infield programmable gate arrays. Nuclear Science, IEEE Transactions on,2006,53(1):236-241
    [1] J.L. Wiza. Microchannel plate detectors. Nucl. Instr. and Meth. A,1979,162:587-601
    [2]缪震华.基于楔条形阳极探测器的单光子成像系统.西安:中国科学院西安光学精密机械研究所,2008:15-17
    [3]赵菲菲.基于MCP的紫外光子计数探测器关键技术研究.西安:中国科学院西安光学精密机械研究所,2010:20-58
    [4] M. Lampton, C. W. Carlson. Low-distortionn resistive anodes for two-dimensional positionsensitive MCP systems. Rev. Sci. Inst.,1979,50:1093-1097
    [5] O.Jagutzki, J.Barnstedt, U.Spillmann, et al. Fast position and time sensitive read-out of imageintensifiers for single photon detection. Proc. SPIE,1999,3764:61-69
    [6]张淑琴.电子倍增器微通道板(MCP)在微光夜视技术中的应用.山西电子技术,2003,4:28-29
    [7]郭洪昌,姜德龙,吴奎.改善MCP工作特性的途径.光学精密工程,1994,2(3):62-65
    [8] D. F. ogletree, G. S. blackman, R. Q. hwang, et al. A new pulse counting low-energy electrondiffraction system based on a position sensitive detector. Rev. Sci. Instrum.,1992,63(1):104-113
    [9] O.Jagutzki, V.Mergel, K.Ullmann, et al. Fast position and time resolved read-out ofmicro-channelplates with the delay-line technique for single particle and photon detection.Proc. SPIE,1998,3438:322-333
    [10] C. L. Joseph. UV Image Sensors and Associated Technologies. Experimental Astronomy,1995,6(1):23-25
    [11] O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, R. Abiad, J. Hull. High resolution crossstrip anodes for photon counting detectors, Nucl. Instrum. Meth. A,2003,504:177-181
    [12] D. B. Kasle and J. S. Morgan. High resolution decoding of multi-anode mircochannel arraydetectors, SPIE,1991,1549:52-58
    [13] R. S. Gao, P. S. Gibner, J. H. Newman, K. A. Smith, R. F. Stebbings. Absolute and angularefficiencies of a microchnnel-plate position sensitive detector, Rev. Sci. Instrum.,1984,55(11):1756-1759
    [14] W. Backer. Advanced time-correlated single photon counting techniques, Berlin SpringerPress,2005,25-26
    [15] J. S. Lapington. Positon detecting element, UK Patent Application,1991
    [16] J. S. Lapington, B. Sanderson, L. B. C. Worth, J. A. Tandy, Imaging achievements with theVernier readout. Nucl. Instrum. Meth. A,2002,477:250-255
    [17] J. S. Lapington. A high performance MCP-based imaging detector, SPIE,1995,2518:336-343
    [18] Q. R. Yan, B. S. Zhao, Y. A. Liu, et al. Two-dimensional photon counting imaging detectorbased on a Vernier position sensitive anode readout, Chinese physics C,2011,35(4):68-71
    [19]耿波,方方,张国华,郑奕挺.两种用于氡气测量装置的电荷灵敏放大器的研制.核电子学与探测技术.2005,25(6):813-815
    [20] C. Martin, P. Jelinsky, M. Lampton, R.F. Malina, H.O. Anger.Wedge and strip anodes forcentroid-finding position sensitive photon and particle detectors. Rev. Sci. Instrum.,1981,52(7):1067-1074
    [21]苏弘,周波,李小刚,马晓莉.种小型成形放大与峰保持电路.核电子学与探测技术,2004,24(6):568-570
    [22]王芝英.核电子技术原理.1989,北京:原子能出版社
    [23]鄢秋荣,赵宝升,杨颢,刘永安,朱香平,李梅.一维游标位敏阳极光子计数探测器,物理学报,2010,59(9):6167-6170
    [1] OCXO product data sheet, www. MMDC-TECH. NET
    [2]刘宁艳,王小华,邹洪超.新型高精度峰值保持其PKD01在电触头材料电性能模拟实装置中的应用.2004,4:57-58
    [3]AD9220data sheet, www. Analog devices.com
    [4]D. M. Binkley. Performance of non-delay-line constant–fraction discriminator timing circuit.IEEE Trans Nucl Sci,1992, NS39:1169-1175
    [5]Tanaka M., et al. Development of a monolithic constant fraction discriminator. IEEE Trans NulSci,1992,39(5):611~615
    [6]李涛.高分辨电子能量损失符合谱仪前端电子学和数据获取系统的研制.合肥:中国科学技术大学,1998.23-35
    [7] Spartan-3FPGA family complete Data sheet, www.xilinx.com
    [8] TDC-GPX data sheet, www.acam.com
    [9]江思敏,陈明. Protel电路设计教程.清华大学出版社,2008:242-243
    [10] D. F. Spencer, J.Cole, Drigert M., Aryaeinejad R.A high-resolution, multi-stop,time-to-digital converter for nuclear time-of-flight measurements. Nuclear Instruments andMethods in Physics Research A,2006,556:291-295
    [11] S. Minutoli and E. Robutti,“A96-channel,500ps resolution TDC boardfor the BaBarexperiment at SLAC,” IEEE Trans. Nucl. Sci.,2000,47(2):147–150
    [12]杨涛,赵波,张弛.一种无延迟线的恒比定时器.核电子学与探测技术,2002,22(30):244-246
    [13]范义晨,张岳华.恒比定时器在无源雷达时差定位系统中的应用.现代雷达,2009,31(2):81-84
    [14] J. Kalisz. Review of methods for time interval measurements with picosecond resolution,Metrologis,2004,41:17–32
    [15] M. Mota and J. Christiansen, A high-resolution time interpolator based on a delay locked loopand an R-C delay line, IEEE J. Solid-State Circuits,1999,34(10):1360–1366
    [16] J. Kalisz, R. Szplet, and A. Poniecki, Field programmable gate array based time-to-digitalconverter with200-ps resolution, IEEE Trans. Instrum.Meas.1997,46(1):51-55
    [17] S. Jian, A. Qi, S. B. Liu. A high resolution time-to-digital converter implemented infield-programmable-gate arrays, IEEE Transactions on Nuclear Science,2006,53(1):235-238
    [18] R. Szplet, J. Kalisz, R. Szymanowski. Interpolating time counterwith100ps resolution on asingle FPGA device, IEEE Trans. Instrum.Meas.2000,49(4):879–883
    [19] P. Dudek, S. Szczepanski, and J. V. Hatfield, A high-resolution CMOS time-to-digitalconverter utilizing a vernier delay line. IEEE Trans.Solid-State Circuits,2000,35(2):240–247
    [20]顾牡,王迪,倪晨,刘小林,黄世明,刘波.一种基于微通道板的脉冲X射线时间谱仪.光学学报,2008,28(4):813-816
    [21] J. Va’vra, J. Benitez, S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, A30ps timingresolution for single photons with multi-pixel Burle MCP-PMT. Nuclear Instruments andMethods in Physics Research A,2007,572:459-462
    [22] M. Ghioni, S. Cova, C. Samori, F. Zappa,True constant fraction trigger circuit for picosecondphoton-timing with ultrafast microchannel plate photomultipliers. Rev. Sci. Instrum.,1997,68(5):2228-2237
    [23]胡慧君.用于脉冲星导航的X射线光子计数探测器及关键技术研究,2011:77-78
    [1]缪震华.基于楔条形阳极探测器的单光子成像系统.中国科学院西安光机所,2008:25-26
    [2]张兴华,赵宝升,缪震华,朱香平,刘永安,邹玮.紫外单光子成像系统的研究.物理学报,2008,57(7):4238-4242
    [3]鄢秋荣,赵宝升,杨颢,刘永安,朱香平,李梅.一维游标位敏阳极光子计数探测器.物理学报,2010,59(9):6164-6167
    [4] Q. R. Yan, B. S. Zhao, Y. A. Liu, et al. Two-dimensional photon counting imaging detectorbased on a Vernier position sensitive anode readout, Chinese physics C,2011,35(4):368-372
    [5] L. Mande. Sub-Poissonian photon statistics in resonance fluorescence. Optics lett.1979,4(7):205-207
    [6]罗彭飞,张文明,刘福声,等.随机信号分析.长沙:国防科技大学出版社,2000,191-196
    [7]阮秋琦.数字图像处理学.北京:电子工业出版社,2001;34-56
    [8] C. Rafael Gonzalez, E. Richard Woods. Digital Image Processing.电子工业出版社,2002;98-102
    [9] V. Martin Zombeck, W. Fraser George. Dead-time effects in microchannel-plate imagingdetectors. Proc. SPIE,1991,1549:90-100
    [10] D. F. ogletree, G. S. blackman, R. Q. hwang, et al. A new pulse counting low-energy electrondiffraction system based on a position sensitive detector. Rev. Sci. Instrum.,1992,63(1):104-113
    [11] J. L. Wiza. Microchannel plate detectors. Nucl. Instr. and Meth.,1979,162:587-601
    [12] H. Kume, K. Koyama, K. Nakatsugawa, et al. Ultrafast microchannel plate photomultipliers.Applied optics,1988,27(6):1170-1178
    [13]胡慧君.用于脉冲星导航的X射线光子计数探测器及关键技术研究.西安:中国科学院西安光学精密机械研究所,2011:77-79
    [14]顾牡,王迪,倪晨,刘小林,黄世明,刘波.一种基于微通道板的脉冲X射线时间谱仪.光学学报,2008,28(4):813-816
    [15] J. Va’vra, J. Benitez, G. Mazaheri, et al.30ps timing resolution for single photons withmulti-pixel Burle MCP-PMT. Nuclear Instruments and Methods in Physics Research A,2007,572:459-462
    [16] O. H. W. Siegmund, P. Lammert, and J. V. Vallerga. High amplitude events in microchannelplates. IEEE Trans. Nucl. Sci.,1989,36(1):830-835
    [17] O. Siegmund, J. Vallerga, A. Tremsin. Characterization of Microchannel Plate QuantumEfficiency. Proc. SPIE,2005,5898H:1-11.
    [1] C. Petrie, J. Connelly. A noise-based ic random number generator for applications incryptography. IEEE Trans. Circuits Syst.I: Fundamental Theory and Applications,2000,47(5):615-621
    [2] I. Reidler, Y. Aviad, M. Rosenbluh, et al. Ultrahigh-Speed Random Number Generation Basedon a Chaotic Semiconductor Laser,Phys. Rev. Lett.,2009,103(2):024102-024105
    [3]郭弘,刘钰,党安红,韦韦.物理真随机数发生器,2009,54(23):3651-3657
    [4] W. Killmann and W. Schindler, A design for a physical rng with robust entropy estimators,Lect. Notes. Comput. Sci.,2008,5154:146–163
    [5] J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields. A high speed, postprocessing free,quantum random number generator, Appl. Phys. Lett.2008,93:031109-031114
    [6] M. Stipcevic and B. M. Rogina. Quantum random number generator based on photonicemission in semiconductors. Rev. Sci. Instrum.2007,78:045104-045109
    [7] S. Tisa and F. Zappa. One-chip quantum random number generator,Proc. SPIE2009,7236:72360J1-10
    [8] O. Kwon, W. Cho, and Y. Kim. Quantum random number generator using photon-number pathentanglement. Appl. Opt.2009,48:1774-1778
    [9] P. Wang, G. Long, and Y. Li. Scheme for a quantum random number generator, J. Appl. Phys.2006,100:056107-12
    [10] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden. Optical quantum randomnumber generator, J. Mod. Optic.2000,47:595–598.
    [11] J. Liao, C. Liang, Y. Wei, et al. True random number generator based on photon beamsplitter.Acta Phys. Sin.,2001,50(3):476-472
    [12] M. M. Feng, X. L. Qin, C. Y. Zhou et al. Quantum random number generator based onpolarization. Acta Phys. Sin.,2003,52(1):72-76
    [13] H. Q. Ma, S. M. Wang, D. Zhang et al. A Random Number Generator Based on QuantumEntangled Photon Pairs. Chin. Phys. Lett.,2004,21(10):1961-1964
    [14] A. W. Michael, P. G. Kwiat. Low-bias high-speed quantum random number generator viashaped optical pulses. Opt. Exp.,2010,18(9):9351-9357
    [15] M. Stip evi a, B. Medved. Quantum random number generator based on photonic emissionin semiconductors. Rev. Sci. Instrum.,2007,78(4):0451041-7
    [16] M. Fürst, H. Weier, S. Nauerth et al. High speed optical quantum random number generation.Opt. Exp.,2010,18(12):13029-37
    [17] W. Wei, H. Guo. Bias-free true random-number generator. Opt. Lett.,2009,34(12)1876-1878
    [18] M. Ren, E. Wu, Y. Liang Y, Y. Jian, et al.. Quantum random-number generator based on aphoton-number-resolving detector. Phys. Rev. A,2011,83(12):023820-3
    [19] J. G. Rarity, P. C. M. Owens, and P. R. Tapster. Quantum random-number generation andkey sharing,J. Mod.Opt.1994,41:2435-2439
    [20] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger. A fast and compactquantum random number generator, Rev. Sci. Instr.,2000,71:1675-1680.
    [21] T. Jennewein, U. Achleitner, Weihs G et al.. A fast and compact quantum random numbergenerator. Rev. Sci. Instrum.,2000,71(4):1675-1680
    [22] A. Stefanov, N. Gisin, O. Guinnard et al. Optical quantum random number generator. J. Mod.Opt.,2000,47(4):595-598
    [23] K. Svozil. Three criteria for quantum random number generators based on beam splitters.Phys. Rev. A,2009,79(5):054306-14
    [24] O. Kwon, Y. W. Cho, Y. H. Kim. Quantum random number generator using photon numberpath entanglement. Appl. Opt.,2009,48(9):1774-1778
    [25] S. Prionio. Random numbers certified by Bell’s theorem, Nature,2010,464,1021-1024
    [26] J. Walker. http://www.fourmilab.ch/hotbits/how.html
    [27] G. Marsaglia. http://stat.fsu.edu/pub/diehard
    [28] Statistical Tests Suite, http://csrc.nist.gov/rng/
    [29] X. P. Zhu, B. S. Zhao, Y. Liu et al. Experimental study on30.4nm extreme ultravioletimaging detector. Acta Optica Sinic a,2008,28(10):1925-1929
    [30] F. F. Zhao, B. S. Zhao, X. F. Sai, et al. Properties of germanium thin film and its applicationin photon countingimaging system. Acta Optica Snica,2009,29(11):3236-3240
    [31] G. R. Cao, X. Yu, X. Q. Hu. Photon counting image acquisition technique and its applications.Acta Optica Sinica,1996,16(2):167-172
    [32] F. F. Zhao, B. S. Zhao, X. F. Sai, et al. Influence of annealing on performances of Ge filmand photon counting image system. Chin. Op t. Lett.,2010,8(4):361-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700