用户名: 密码: 验证码:
基于空间滤波器的结构健康监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,基于Lamb波的结构健康监测方法具有对结构小损伤敏感、主被动监测和大面积区域监测等特点,是国内外研究较多的一种飞机结构健康监测方法,具有很好的应用前景。空间滤波器监测和成像技术是结构健康监测中出现的新方法。空间滤波器结构健康监测技术是利用传感器阵列构成具有空间-波数域滤波属性的空间滤波器,利用空间滤波器的虚拟转动,实现对结构的多方位滤波扫描,判别结构中的冲击或损伤,并对判别结构进行有效的成像。本文重点研究了利用Lamb波与空间滤波器技术实现对飞机复合材料结构损伤和冲击的有效监测方法,从而将空间滤波器方法应用到了复合材料结构伤和冲击监测中,为结构健康监测提供了新的技术手段。
     本文取得的主要研究工作包括以下几个方面:
     (1)综述了目前基于Lamb波的结构健康监测技术和空间滤波器方法的研究背景和意义,给出了本文的研究内容。
     (2)从理论上对Lamb波在板结构中传播的波数域特征进行了讨论,对Lamb波信号的空间滤波理论进行了深入的研究,得到了理想空间滤波器的解析表达式及空间滤波器的适用范围,并对空间滤波器的空间滤波特性进行了详细的讨论。对常规的空间滤波器成像方法进行了理论研究和实验验证,为后文改进滤波器的提出奠定了理论和实验基础。
     (3)提出了一种基于Hilbert变换的空间滤波器结构损伤成像的优化方法。该方法利用Hilbert变换直接构造响应信号的复信号实现空间-波数域滤波信号合成,解决了目前方法依赖结构参数的问题,从而将该方法应用到了复合材料结构的损伤诊断应用中。
     (4)提出了一种基于Shannon连续复数小波变换的空间滤波器结构成像的优化方法。该方法利用Shannon连续复数小波的等幅频率窗特性,解决了冲击产生的宽带信号的窄带提取问题,弥补了Hilbert变换在这方面的不足,使得该方法既能应用于复合材料结构的主动损伤监测又能应用于被动的冲击监测。
     (5)提出了一种基于空间滤波器的基准优化损伤成像方法,该方法通过结构健康状态和损伤状态成像结果的对比实现损伤判别,避免了利用差信号进行损伤成像的做法,降低了对结构健康状态下基准响应信号的依赖。
At present, the method of structural health monitoring based on Lamb wave, which has goodapplication foreground, is one of the basic study of aircraft structure at home and abroad due to itssensitivity to small defects, active and passive monitoring and large area monitoring in plate structures.The spatial filter monitoring and imaging technology is a new method for structural health monitoring(SHM), which uses the sensors array to constitute spatial filter with space-wave number domainfiltering properties and uses the method of virtual rotation of spatial filter to realize themulti-directional scanning for the structure, identify the structural impact or damage and get theeffective mapped image of the recognition results. The goal of research in this dissertation is to detecteffective monitoring and damage information based on Lamb wave and spatial filter technology. Thisresearch lays the foundation for developing new technical means of impact and damage monitoring ofComposite Material structures in structural health monitoring.
     The main works and novel researches done in this dissertation include:
     (1) Discussing and analyzing multi-mode which lamb wave propagate, dispersion characteristicsand wave number characteristics of lamb wave, we have achieved the wave number dispersion curvesof lamb wave.
     (2) After researching the model, which is compounded by basic signal of linear sensor array, wecan get the dividing strip of near-field and far-field. After studying spatial filtering theory of lambwave signal deeply, we obtain the analytic expression and the scope of application of the ideal spatialfilter. The spatial filtering characteristics of the spatial filter have been discussed in detail. Theconventional imaging method of the spatial filter has been researched in theory and verified inexperiment. The feasibility of the spatial filter method testing structural damage has been verified inmetal structure. All above has provided theoretical and experimental basis for the improvement of thespatial filter in the following passage.
     (3) Improved imaging method of spatial filter structural damage based on Hilbert transform isproposed, the method uses Hilbert transform to construct the complex signal to participate in thesynthesis of spatial filtering signals. As it avoids the conventional use of structure parameters for thesimplified approach on the imaginary part, thus the spatial filter method is extended to the applicationof composite material structural damage diagnosis.
     (4) Improved imaging method of spatial filter structure, which is based on Shannon continuouscomplex wavelet transform has been put forward. The method can be applied not only to active damage monitoring but also to the passive impact monitoring,which makes up the disadvantage ofthe Hilbert transform. Thus the spatial filter method is extended to the application of the passiveimpact monitoring.
     (5) The nominal optimal damage imaging method based on the improved spatial filter has beenput forward to overcoming the error on signal attainment and the difficulties that the temperaturechanges make the baseline damage monitoring method difficult to carry out. The engineeringapplication of the structure health monitoring technology has been promoted by the method.
     (6) By taking the oil tank of the real aircraft as the research object, we have verified theimproved spatial filter method and the nominal optimal damage imaging methods that are proposed inthe paper.
引文
[1]国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2011年~2020年)机械工程学科发展战略报告.北京:科学出版社,2010.
    [2] http://www.air-safety.com/accident/index.asp
    [3] http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [4] Boller C. Next Generation Structural Health Monitoring and Its Integration into Aircraft Design.International Journal of Systems Science,2000,31(11):1333-1349.
    [5]梁振河.中国直升机、民用飞行未来的发展.北京:国防科技工业,2002.
    [6] Guizzo E. Carbon takeoff-carbon fiber composites. Spectrum, IEEE,2006,43(1):26-29.
    [7]陶春.探寻中国大型飞机发展之路——访国防科工委秘书长黄强.国防科技工业,2007,5:18-20.
    [8]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考.复合材料学报,2008,25(1):1-10。
    [9]袁慎芳,邱雷,吴键等.大型飞机的发展对结构健康监测的需求与挑战.航空制造技术,2009,22:62-67.
    [10]卿新林,王奕首,高丽敏,武湛君.多功能复合材料结构状态感知系统.实验力学,2011,26(5):611-616。
    [11]袁慎芳.结构健康监控.北京:国防工业出版社,2007.
    [12] Staszewski W, Boller C, Tomlinson Geof. Health monitoring of aerospace structure. WileyInter science, Join-Wiley&Sons, Inc.2004.
    [13] Su Z, Ye L. Identification of Damage Using Lamb Waves-From Fundamentals to Applications.Springer-Verlag Berlin Heidelberg,2009.
    [14] Weiland H, Heinimann M, Liu J, et al. Aluminum Extrusions with Microcavities EnablingCost-Effective Monitoring of Aerospace Structures. Structural Health Monitoring-From SystemIntegration to Autonomous Systems, Proceedings of the Seventh International Workshop onStructural Health Monitoring, September9-11, Stanford University,2009,119-125.
    [15] Roach D, Pinsonnault J. Use of Mountable Sensors to Address Periodic Inspections for Crackson Regional Aircraft. Structural Health Monitoring-From System Integration to AutonomousSystems, Proceedings of the Seventh International Workshop on Structural Health Monitoring,September9-11, Stanford University,2009,175-182.
    [16] Hu F, Liu M, Gao H, et al. Flaw-detected coating sensors applied in aircraft R&M. Reliabilityand Maintainability Symposium,2009,95-99.
    [17] Hu F, Liu M, Lv Z, et al. The flaw-detected coating and its applications in R&M of aircrafts.Second International Conference on Smart Materials and Nanotechnology in Engineering,edited by Jinsong Leng, Anand K. Asundi, Wolfgang Ecke, Proc. of SPIE Vol.7493:1-7.
    [18] Lamb H. On waves in an elastic plate review of vibration-based helicopters health and usagemonitoring methods. Proceedings of the Royal Society,1917, A93:114-128.
    [19] Worlton D. Experimental confirmation of Lamb waves at megacycle frequencies, Journal ofApplied Physics,1961,32:967-971.
    [20] Demer L, Fentnor L. Lamb wave techniques in nondestructive testing. International Journal ofNondestructive Testing,1969,1:251-283.
    [21] Lu Y, Ye L, Su Z, et al. Quantitative assessment of through-thickness crack size based on Lambwave scattering in aluminium plates. NDT&E International,2008,41(1):59-68.
    [22] Kim Y, Kim D, Han J, et al. Damage assessment in layered composites using spectral analysisand Lamb wave. Composites: Part B,2007,38(7-8):800-809.
    [23] Hoon S, Gyuhae P, Jeannette R, et al. Wavelet-based active sensing for delamination detectionin composite structures. Smart Material and Structures,2004,13(1):153-160.
    [24]孙亚杰,袁慎芳,王帮峰.极值理论在复合材料结构健康监测中的应用研究.宇航学报,2007,28(5):1366-1370.
    [25]艾春安,吴安法.超声Lamb波在发动机壳体无损检测中的应用研究.无损检测,2007,31(6):5-7,13.
    [26]杨齐,郑祥明,郝国法等.缝类缺陷对Lamb波的影响研究.武汉科技大学学报(自然科学版),2007,30(6):567-570.
    [27]郑祥明,杨齐,郝国法等.金属薄板中缝类缺陷的兰姆波检测.无损检测,2007,29(11):630-633.
    [28]罗婕,路宏年.火箭发动机界面回波信号增强的兰姆波技术研究.宇航材料工艺,2007,1:75-78.
    [29]刘增华,何存富,吴斌.利用兰姆波对板状结构中隐蔽腐蚀缺陷的检测.实验力学,2005,20(2):760-764.
    [30]张恒萍.Lamb波在结构中的传播特性研究[硕士论文].南京:南京航空航天大学,2009.
    [31] Peng G, Yuan S. Damage Localization on Two–Dimensional Structure Based on WaveletTransform and Active Lamb Wave-Based Method. Materials Science Forum,2005,475-479:2119-212.
    [32]苏永振.航空材料结构低速冲击健康监测研究.[博士论文].南京:南京航空航天大学,2010.
    [33] Su Z, Wang X, Chen Z, et al. A built-in active sensor network for health monitoring ofcomposite structures. Smart Materials and Structures,2006,15(6):1939-1949.
    [34] Su Z, Wang X, Chen Z, et al. A hierarchical data fusion scheme for identifying multi-damage incomposite structures with a built-in sensor network. Smart Materials and Structures,2007,16(6):2067-2079.
    [35] Lu Y, Ye L, Su Z. Crack identification in aluminium plates using Lamb wave signals of a PZTsensor network. Smart Materials and Structures,2006,15(3):839-849.
    [36] Yuan S, Xu Y, Peng G. New Developments in Structural Health Monitoring Based onDiagnostic Lamb Wave. Journal of Material Science&Technology,2004,20(5):490-496.
    [37]龚仁荣,顾建祖,骆英等.基于Lamb波频散特性的声发射源平面定位新方法.无损检测,2006,28(10):521-525.
    [38]严刚,周丽,孟伟杰.基于Lamb波与时频分析的复合材料结构损伤监测和识别.南京航空航天大学学报,2007,39(3):397-402.
    [39]严刚,周丽.应用遗传算法和散射Lamb波的板结构损伤识别.振动工程学报,2007,20(3):291-296.
    [40] Unnikrishna S, Burrus C. Array Signal Processing. Beijing: World Publishing Corporation,1990.
    [41]孙超.水下多传感器阵列信号处理.西安:西北工业大学出版社,2007.
    [42] Harry L, Trees V. Optimum Array Processing. Part IV of Detection, Estimation, andModulation Theory. New York: John Wiley&Sons, Inc.,2008.
    [43] Michaels E, Michaels E. Enhanced differential methods for guided wave phased array imagingusing spatially distributed piezoelectric transducers. Review of Quantitative NondestructiveEvaluation.2006,25:837-844.
    [44] Wilcox D, Konstantinidis G, Drinkwater B. Structural health monitoring using sparsedistributed networks of guided wave sensors. Smart Materials and Structures, edited by YujiMatsuzaki, Proc. of SPIE.2006,61731L:1-12.
    [45] Michaels E, Michaels E. Guided wave signal processing and image fusion for in situ damagelocalization in plates. Wave Motion.2007,44(6):482-492.
    [46] Michaels E. Detection, localization and characterization of damage in plates with an in situarray of spatially distributed ultrasonic sensors. Smart Materials and Structures.2008,7:035035-1-15.
    [47] Michaels J. Detection, localization and characterization of damage in plates with an in-situarray of spatially distributed ultrasonic sensors, Smart Materials and Structures,2008,17(3):035035-1-15.
    [48] Lhn J, Chang F, Pitch-catch active sensing methods in structural health monitoring for aircraftstructures, Structural Health Monitoring,2008,7(1):5-15.
    [49] Qing X, Beard S, and Shen S, et al. Development of a real-time active pipeline integritydetection system, Smart Materials and Structures,2009,18(11):10.1088/0964-1726/18/11/115010.
    [50] Clarke T, Cawley P, Wilcox P. Evaluation of the damage detection capability of a sparse-arrayguided-wave SHM system applied to a complex structure under varying thermal conditions,IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(12):2666-2678.
    [51] Wang C, Rose T. Chang F. A synthetic time-reversal imaging method for structural healthmonitoring. Smart Materials and Structures,2004,13(2):415-423.
    [52] Wang L, Yuan F. Damage identification in a composite plate using pre-stack reverse-timemigration technique. Structural Health Monitoring,2005,4(3):195-211.
    [53] Sohn H, Park W, Law H, et al. Damage Detection in Composite Plates by Using an EnhancedTime Reversal Method. Journal of Aerospace Engineering,2007,20(3):141-151.
    [54] Park W, Sohn H, Law H, et al. Time reversal active sensing for health monitoring of acomposite plate. Journal of Sound and Vibration,2007,302(1-2):50-66.
    [55] Park W, Kim B, Sohn H, Understanding a Time Reversal Process in Lamb Wave PropagationWave Motion,2009,46(7):451-467.
    [56] Chen C, Yuan, F. Impact source identification in finite isotropic plates using a time-reversalmethod: theoretical study. Smart Materials and Structures,2010,19(10):105028-1-11.
    [57] Wang Q, Yuan S. Baseline-free Imaging Method based on New PZT Sensor Arrangements.Journal of intelligent Material Systems and Structures,2009,20(14):1663-1673.
    [58] Qiu L, Yuan S, Zhang X, et al. A time reversal focusing based impact imaging method and itsapplication on an aircraft wing box. Smart Materials and Structures.2011,20(10),doi:10.1088/0964-1726/20/10/105014.
    [59] Cai J, Shi L, Yuan S. High spatial resolution imaging for structural health monitoring based onvirtual time reversal. Smart Materials and Structures,2011,20(5):055018-1-11.
    [60]王强,袁慎芳,邱雷.基于时间反转方法的复合材料螺钉连接失效监测研究.宇航学报,2007,28(6):1719-1723.
    [61]王强,袁慎芳.复合材料板脱层损伤的时间反转成像监测研究.复合材料学报,2008,26(3):99-104.
    [62]王强,袁慎芳.主动Lamb波结构健康监测中信号增强与损伤成像方法.航空学报,2008,29(4):1601-1607.
    [63]王强.Lamb波时间反转方法及其在结构健康监测中的应用研究[博士论文].南京:南京航空航天大学,2009.
    [64]邱雷,袁慎芳,张逍越,王强,张炳良,杨伟伟.基于Shannon复数小波的复合材料结构时间反转聚焦多损伤成像方法.复合材料学报,2010,27(2):101-107.
    [65] Yu L, Giurgiutiu V. Design, implementation, and comparison of guided wave phased arraysusing embedded piezoelectric wafer active sensors for structural health monitoring. SmartStructures and Integrated Systems, edited by Yuji Matsuzaki, Proc. of SPIE,2006,61731M:1-12.
    [66] Holmes C, Drinkwater W, Wilcox D. Advanced post-processing for scanned ultrasonic arrays:Application to defect detection and classification in non-destructive evaluation. Ultrasonics.2008,48(6-7):636-642.
    [67] Malinowski P, Wandowski T, Trendafilova I, et al. A phased array-based method for damagedetection and localization in thin plates, Structural Health Monitoring,2009,8(1):5-15.
    [68] Ostachowicz W, Wandowski T, Malinowski P, Combined distributed and concentratedtransducer network for failure indication, Conference on Health Monitoring of Structural andBiological Systems, San Diego, CA, USA,08-11March,2010.
    [69]孙亚杰,袁慎芳,蔡建.基于超声相控阵的材料结构健康监测实验研究.宇航学报,2008,29(4):1393-1396.
    [70]孙亚杰,袁慎芳,邱雷等.基于Lamb波和相控阵的损伤图像监测研究,航空学报,2009,30(7):1325-1330.
    [71]孙亚杰.基于超声相控阵原理的结构健康监测技术研究[博士论文].南京:南京航空航天大学,2010.
    [72]少川.空间滤波器及其应用.激光与红外,1975,9:581-587.
    [73] Simaan M. Optimum array filters for array data signal processing. IEEE Transactions onAcoustics, Speech and Signal Processing,1983, ASSP-31(4):1006-1015.
    [74] Hanna M, Simaan M. Minimum rejection response array filters in the presence of white noise.Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP85.1985,10:1796-1799.
    [75] Hanna M, Simaan M. Absolutely optimum array filter for sensor arrays. IEEE transactions onAcoustics, Speech and Signal Processing,1985,33(6):1380-1386.
    [76] Hanna M, Simaan M. Arrays filters for sidelobe elimination. IEEE Journal of OceanicEngineering,1985,10(3):248-254.
    [77] Buckley K. Spatial/spectral filtering with linearly-constrained minimum variance beamformers.IEEE Transactions on Acoustics, Speech and Signal Processing,1987,35(3):249-266.
    [78]栾经德,李启虎,刘文化等.一种最佳空间滤波器的实现.声学学报,2004,29(2):143-148.
    [79]栾经德,汲长利,陈锦光.一种最佳空间滤波器在圆柱型基阵上的实现.声学技术,2005,25(2):98-100,116.
    [80]冯杰,杨益新,孙超.自适应空域矩阵滤波器设计和目标方位估计.系统仿真学报,2007,19(20):4798-4802.
    [81]孙超.水下多传感器阵列信号处理.西安:西北工业大学出版社,2007:161-165.
    [82]程守洙,王之水主编.普通物理学.高等教育出版社,2002年.
    [83] Giurgiutiu V. Tuned Lamb wave excitation and detection with piezoelectric wafer activesensors for structural health monitoring. Journal of Intelligent Material Systems and Structures,2005,16(4):291-305.
    [84] Xu B, Giurgiutiu V. Single Mode Tuning Effects on Lamb Wave Time Reversal withPiezoelectric Wafer Active Sensors for Structural Health Monitoring. Journal of NondestructiveEvaluation,2007,26(2-4):123-134.
    [85] Lee C, Staszewski J. Modeling of Lamb Waves for Damage Detection in Metallic Structures:Part I. Wave Propagation. Smart Materials and Structures,2003,12(5):804-814.
    [86] Lee C, Staszewski J. Modeling of Lamb Waves for Damage Detection in Metallic Structures:Part II. Wave Interactions with Damage. Smart Materials and Structures,2003,12(5):815-824.
    [87] Moulin E, Assaad J, Delebarre C. Modeling of Lamb waves generated by integratedtransducers in composite plates using a coupled finite element-normal modes expansionmethod. Journal of Acoustic Society of American,2000,107(1):87-94.
    [88] Santoni B, Yu L, Xu B, et al. Lamb Wave-Mode Tuning of Piezoelectric Wafer Active Sensorsfor Structural Health Monitoring. Journal of Vibration and Acoustics,2007,129(6):752-762.
    [89]张逍越,袁慎芳,邱雷.飞行器板结构中Lamb波解析建模研究.南京航空航天大学学报,2010,42(3):351-356.
    [90] Purekar A, Pines D. Interrogation of Beam and Plate Structures Using Phased Array Concepts.12th Annual International Conference on Adaptive Structures Technology, University ofMaryland, College Park, MD, October12-14,2001.
    [91] Purekar A, Pines D, Sundararaman S, et al. Directional piezoelectric phased array filters fordetecting damage in isotropic plates, Smart Materials and Structures,2004,13(4):838-850.
    [92] Engholm M, Stepinski T, Olofsson T. Imaging and suppression of Lamb modes using adaptivebeamforming, Smart Materials and Structures,2011,20(8):doi:10.1088/0964-1726/20/8/085024.
    [93] Achenbach J. Wave Propagation in Elastic Solids. North-Holland, New York,1984.
    [94]何存富,吴斌,王秀彦(译).固体中的超声波.北京:科学出版社,2004.
    [95]彭鸽.基于Lamb波的结构健康主动监测技术研究[博士论文].南京:南京航空航天大学,2006.
    [96]黄竞,何雅玲,李茹.声波衰减的数值模拟.工程热物理学报,2008,29(2):201-204.
    [97]贺梅英,黄沛天.声速测量实验中声波衰减现象的研究.物理测试,2007,25(1):27-28.
    [98]王勇,何雅玲,刘迎文等.声波衰减的格子-Boltzmann方法模拟.西安交通大学学报,2007,41(1):5-8.
    [99]王磊,袁慎芳,朱安华.基于主动监测技术的蜂窝夹芯结构损伤监测研究.仪器仪表学报,2002年,23(4):404-407.
    [100]王磊,袁慎芳.一种应用于结构损伤监测的新型应力波因子.2002,24(5):404-407.
    [101]彭鸽,袁慎芳,徐颖娣.基于主动Lamb波和小波变换得二维结构损伤定位研究.振动工程学报,2004,17(4):488-493.
    [102] Peng G, Yuan S. Damage Localization on Two–Dimensional Structure Based on WaveletTransform and Active Lamb Wave-Based Method. Materials Science Forum,2005,475-479:2119-212.
    [103]徐颖娣,袁慎芳,彭鸽.二维结构损伤的主动Lamb波定位技术研究.航空学报,2004,25(5):476-479.
    [104] Su Z, Wang X, Chen Z, et al. A built-in active sensor network for health monitoring ofcomposite structures. Smart Materials and Structures,2006,15(6):1939-1949.
    [105] Su Z, Wang X, Chen Z, et al. A hierarchical data fusion scheme for identifying multi-damage incomposite structures with a built-in sensor network. Smart Materials and Structures,2007,16(6):2067-2079.
    [106] Lu Y, Ye L, Su Z. Crack identification in aluminium plates using Lamb wave signals of a PZTsensor network. Smart Materials and Structures,2006,15(3):839-849.
    [107] Yuan S, Xu Y, Peng G. New Developments in Structural Health Monitoring Based onDiagnostic Lamb Wave. Journal of Material Science&Technology,2004,20(5):490-496.
    [108] Kessler S, Spearing M, Constantinos S. Damage Detection in Composite Materials UsingLamb wave Methods. Smart Materials and Structures,2002,11(2):269-278.
    [109] Lin X, Yuan F. Diagnostic Lamb Waves in an Integrated Piezoelectric Sensor/Actuator Plate:Analytical and Experimental Studies. Smart Materials and Structures,2001,10(5):1-7.
    [110] Poddar B, Kumar A, Mitra M, et al. Time reversibility of a Lamb wave for damage detection ina metallic plate. Smart Materials and Structures,2011,20(2):025001-1-10.
    [111] Qiu L, Yuan S. On development of a multi-channel PZT array scanning system and itsevaluating application on UAV wing box. Sensors and Actuators A, Physical.2009,151(2):220-230.
    [112] Qiu L, Yuan S, Wang Q, et al. Design and Experiment of PZT Network-based Structural HealthMonitoring Scanning System. Chinese Journal of Aeronautics,2009,22(5):505-512.
    [113] Newland E. Harmonic and musical wavelets. Proceedings of the Royal Society of London,Series A,1994,444:605-620.
    [114] Teolis A. Computational signal processing with wavelets, Birkh user,1998.
    [115] Qing X, Beard S, Kumar A, et al. The performance of a piezoelectric-sensor-based SHMsystem under a combined cryogenic temperature and vibration environment. Smart Materialsand Structures,2008,17, doi:10.1088/0964-1726/17/5/055010.
    [116] Raghavan A, Carlos E. Effects of Elevated Temperature on Guided-wave Structural HealthMonitoring. Journal of Intelligent Material Systems and Structures,2008,19(12):1383-1398.
    [117] Qing X, Chan H, Beard S, et al. Effect of adhesive on the performance of piezoelectricelements used to monitor structural health. International Journal of Adhesion&Adhesives,2006,26(8):622-628.
    [118] Ha S, Lonkar K, Mittal A, et al. Adhesive Layer Effects on PZT-induced Lamb Waves atElevated Temperatures. Structural Health Monitoring,2010,9(3):247-256.
    [119] Konstantinidis G, Drinkwater B, Wilcox P. The temperature stability of guided wave structuralhealth monitoring systems, Smart Materials and Structures,2006,15,doi:10.1088/0964-1726/15/4/010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700