用户名: 密码: 验证码:
正常发育大鼠视皮层神经元特点及突触输入模式对其影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     研究正常发育大鼠生后视皮层Ⅳ层神经元细胞电学生理特点及不同来源突触的输入及其输入模式的变化对神经元细胞反应的影响。
     1.正常发育大鼠视皮层神经元脉冲潜时及膜电导成分动力学变化分析研究;
     2.不同来源突触输入及其输入方式对正常发育大鼠视皮层神经元反应特性的影响;
     3.年龄因素对大鼠视皮层神经元反应特性的影响。研究方法
     1.采用电流钳全细胞记录模式,在电流钳下绘制I-V曲线进行视皮层神经元突触电导成分变化的分析;在电压钳全细胞记录模式下,利用不同的钳制电压用电学分离方式记录兴奋性及抑制性电流的发生,测量两种电流成分的潜时差异。
     2.改变刺激模式,观察大鼠视皮层神经元细胞膜脉冲电导的变化。
     3.改变白质两个刺激电极间的距离及两个刺激模式及时序,记录大鼠视皮层Ⅳ层的细胞反应变化情况;在电压钳模式下进行全细胞记录,利用计算变异系数的方法对被激发的突触事件进行间接描述。研究结果
     1. EPSC的反转电位在-50.39±13.74mV,而IPSC的反转电位在0.47±10.33mV。利用两种电活动的反转电位的差异,将神经元细胞钳制在不同的电位水平,从而分离出EPSC与IPSC。两者分离后,利用潜时测量方法,可以分别测出EPSC与IPSC潜时,EPSC为5.10±0.52ms,IPSC的潜时为11.45±1.84ms。
     2.利用突触定量分析公式,得出正常发育的神经元细胞膜电导存在两种成分,即兴奋性成分和抑制性成分。
     3.分别利用单纯刺激和联合刺激的模式,在不同的电流水平下记录细胞膜电位的改变,从而计算出生理状态下大鼠视皮层神经元电导成分的改变。可以得出:单纯纯刺激后,兴奋性电导与抑制性电成分均较刺激前发生改变,利用配对t检验,发现这种差异具有统计学意义(P<0.01)。而联合刺激后,两种成分的改变亦具有统计学意义(P<0.01),而对于两种不同的刺激模式,联合刺激后抑制性成分的变化具有统计学意义(P<0.01),而兴奋性成分的变化差异无统计学意义(P>0.01)。
     4.观察不同距离白质刺激后视皮层Ⅳ层神经元细胞反应的特点,可以发现在100-120μm差异具有统计学意义(P<0.01)。提示100-120μm可能是大鼠视皮层微功能柱的范围。
     5.利用配对t检验,对刺激前后大鼠视皮层神经元反应的幅度大小进行统计学检验,差异具有统计学意义(P<0.01),提示不同的刺激模式对大鼠视皮层神经元细胞的影响不同。
     6.根据CV=σ/M=[(1-p)/np]1/2将刺激前后不同组别CV进行标准化,同时将刺激前后反应幅度的变化标准化后得出对于单纯刺激而言,突触效能的改变多依赖于突触前机制,而对于联合刺激而言,突触效能的改变以突触后机制为主
     7.不同年龄大鼠白质刺激引起相应视皮层Ⅳ层的细胞反应变化情况:P20大鼠视皮层对于刺激输入,不论单纯刺激或联合刺激,均有可能引发LTP,而P14大鼠视皮层,两种刺激模式诱发的均为LTD改变。
     8.改变白质两个刺激模式时序,两个刺激时间差不同,可以得出:对于不同发育时期大鼠,刺激的时序的改变均导致在一特定的时间窗内产生非线性加和结果,即在某一特定时间窗内,联合刺激的模式所产生的神经元细胞反应大小不仅仅是每个刺激单纯刺激时引起的反应的加和。而当超出这个时间窗时,此加和现象不明显。
     结论
     1.大鼠视皮层Ⅳ层神经元细EPSC的反转电位在-50.39±13.74mV,而IPSC的反转电位在0.47±10.33mV。利用两种电活动的反转电位的差异,将神经元细胞钳制在不同的电位水平,分离出EPSC与IPSC。可以分别测出EPSC与IPSC潜时,EPSC为5.10±0.52ms,IPSC的潜时为11.45±1.84ms,两种电流成分的潜时不同。
     2.正常发育的神经元细胞膜电导存在两种成分,即兴奋性成分和抑制性成分,且两种成分发生动态性变化以维持神经元细胞的正常反应。
     3.刺激模式的变化对大鼠视皮层神经元细胞膜脉冲的兴奋性电导和抑制性电导均产生影响,且抑制性电导的变化差异具有统计学意义。
     4.根据对应于视皮层不同距离白质刺激引起视皮层Ⅳ层的细胞反应变化情况可以得出在正常发育大鼠初级视皮层微小功能柱或类功能柱的存在。
     5.对应于视皮层不同距离的两个不同刺激模式的白质刺激引起视皮层Ⅳ层突触效能的变化提示不同的刺激模式对大鼠视皮层神经元细胞的影响不同。且其发生机制可能存在差异:对于单纯刺激而言,突触效能的改变多依赖于突触前机制,而对于联合刺激而言,突触效能的改变以突触后机制为主。
     6.不同年龄大鼠白质刺激引起相应视皮层Ⅳ层的细胞反应变化不同,P20大鼠视皮层对于刺激输入,不论单纯刺激或联合刺激,均有可能引发LTP,而P14大鼠视皮层,两种刺激模式诱发的均为LTD改变。
     7.对于不同发育时期大鼠,刺激的时序的改变均导致在一特定的时间窗内产生非线性加和结果,即在某一特定时间窗内,联合刺激的模式所产生的神经元细胞反应大小不仅仅是每个刺激单纯刺激时引起的反应的加和。而当超出这个时间窗时,这样的加和现象不明显。对于P14大鼠,其时间窗约为±0.5ms,而对于P20大鼠,时间窗范围则缩短为±0.1ms.
Objective
     To observe the electrophysiological characteristics of visual cortex layer IV in normal development rats and the impact of different synapse and the input mode on neuron reaction of visual cortex in rats. Research if or not the time windows of different synapse affect the different afferent and how to regulation.
     1. To identify the electrophysiological characteristics and latency of visual cortex layer IV in normal development rats.
     2. To search the impact of different synapse and the input mode on neuron reaction of visual cortex in rats.
     3. To study the age impact on the neuron reaction.
     Methods1. Analyze the synaptic conductance according to the mode with current patch clamp; and dissociated the EPSC and IPSC under different voltage condition, which is used to calculate the latency of the two different current.
     2. Change the stimulation mode to observe the dynamics of synaptic conductance in visual cortex layer IV of rats.
     3. Change the distance between two stimulation pipettes to record the synaptic response and calculate the CV of before and after stimulation to describe the synaptic events under the voltage patch clamp mode.
     Result
     1. The reversal potential of EPSC is at-50.39±13.74mV, but IPSC's is at0.47±10.33mV. The latency of EPSC is5.10±0.52ms, and the latency of IPSC is11.45±1.84ms.
     2. There have two different composition of synaptic conductance:excitation and inhibition.
     3. Different stimulation mode can result in distinct change, in which the combined stimulation with S1and S2may displays much more distinction; and the synaptic conductance has altered before and after different synaptic input.
     4.100-120μm may be the mini-column in visual cortex of rats.
     5. Different synaptic input may alter the synaptic response in visual cortex of rats.
     6. The classical coefficient of variation method for "quantal" analysis of synaptic response allows unambiguous identification of the before and after stimulation synaptic plasticity mechanisms.
     7. LTP is absent in layer IV of visual cortex in postnatal14rats, but can be induced in postnatal20rats, whatever the stimulation mode.
     8. There has an nonlinear reconciliation between S1and S2during an'"time window" and the “time window”of P14is±0.5ms and P20is±0.1ms
     Conclusions
     1. The reversal potential and latency of EPSC and IPSC is different.
     2. Dynamics of excitation and inhibition underlying different current injection in rat visual cortex layer IV.
     3. The different synaptic inputs have impact on the synaptic conductance, respectively, including the excitation and inhibition conductance.
     4. mini-column or alike-column may exist in rats visual cortex.
     5. The synaptic mechanism may differ underlying different synaptic inputs, including pre-or/and postsynaptic mechanism.
     6. Age may have an role in synaptic response:LTP is absent in layer IV of visual cortex in postnatal14rats, but can be induced in postnatal20rats, whatever the stimulation mode.
     7. It displays an “time window” in P14and P20rats, and during this time, there has an nonlinear reconciliation between S1and S2.
引文
[1]McCormick D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 1992,39:337-388.
    [2]Sherman S. M. and Guillery R. W. Functional organization of thalamocortical relays[J]. J. Neurophysiol.1996,76:1367-1395.
    [3]Steriade M. and McCarley R. W. Brainstem control of Wakefulness and sleep[J]. 1989, Plenum, New York.
    [4]Murphy P. C. and Sillito A. M. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus[J]. J. Neurosci.1996,16:1180-1192.
    [5]Tsumoto T., Creutzfeldt O. D. and Legendy C. R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical nomosynaptic connections). Expl Brain Res.1978.32:345-364.
    [6]Henderson, J.M., Hollingworth, A.. Eye movements during scene viewing:an overview. In:Underwood, G. (Ed.), Eye Guidance in Reading and Scene Perception. Elsevier, New York, NY,1998, pp.269-283.
    [7]Fahle, M, Poggio, T.,2002. Perceptual Learning. MIT Press, Cambridge, MA.
    [8]Hochstein, S., Ahissar, M.. View from the top:hierarchies and reverse hierarchies in the visual system[J]. Neuron 2002,36(5):791-804.
    [9]Sharpee, T.O., Sugihara, H., Kurgansky, A.V., Rebrik, S.P., Stryker, M.P., Miller, K.D.. Adaptive filtering enhances information transmission in visual cortex[J]. Nature 2006,439(7079):936-942.
    [10]Kersten, D., Mamassian, P., Yuille, A.. Object perception as Bayesian inference[J]. Annu. Rev. Psychol.2004,55:271-304.
    [11]Doya, K., Ishii, S., Pouget, A., Rao, R.P.N.. Bayesian Brain:Probabilistic Approaches to Neural Coding. MIT Press, Cambridge, MA.2006.
    [12]Ma. W.J., Hamker. F.. Koch. C..2006. Neural mechanisms underlying temporal aspects of conscious visual perception. In:Ogmen, H., Breitmeyer, B.G. (Eds.), The First Half Second. MIT Press, Cambridge, MA, pp.275-294.
    [13]Yuille, A., Kersten, D.. Vision as Bayesian inference:analysis by synthesis[J]? Trends Cogn. Sci.2006,10(7):301-308.
    [14]Navon, D.. Forest before trees:the precedence of global features in visual perception[J]. Cogn. Psychol.1977,9:353-383.
    [15]Reynolds, R.I.. Perception of an illusory contour as a function of processing time. Perception[J].1981;10(1):107-115.
    [16]Efron, R.. The duration of the present[J]. Proc. N.Y. Acad. Sci. 1967;138:713-729.
    [17]Koch, C., Crick, F.. The neuronal basis of visual consciousness. In:Chalupa, L.M., Werner, J.M. (Eds.), The Visual Neurosciences. MIT Press, Cambridge, MA,2004, pp.1682-1694.
    [18]Thorpe, S., Fize, D., Marlot, C. Speed of processing in the human visual system[J]. Nature 1996,381(6582):520-522.
    [19]Johnson, J.S., Olshqusen, B.A.. Timecourse of neural signatures of object recognition[J]. J. Vis.2003;3(7),499-512.
    [20]Johnson, J.S., Olshqusen, B.A.. The earliest EEG signatures of object recognition in a cued-target task are postsensory[J]. J. Vis.2005;5(4),299-312.
    [21]Fabre-Thorpe, M.. Visual categorization:accessing abstraction in nonhuman primates. Philos. Trans. R. Soc. Lond. B. Biol. Sci.2003,358,1215-1223.
    [22]Rousselet, G.A., Thorpe, S.J., Fabre-Thorpe, M.. How parallel is visual processing in the ventral pathway[J]? Trends Cogn. Sci.2004;8(8):363-370.
    [23]Fabre-Thorpe, M., Delorme, A., Marlot, C., Thorpe, S.. A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes[J]. J. Cogn. Neurosci.2001; 13(2):171-180.
    [24]Grill-Spector, K., Kanwisher, N.. Visual recognition:as soon as you know it is there, you know what it is[J]. Psychol. Sci.2005; 16(2),152-160.
    [25]Mervis, C.B., Rosch, E.. Categorization of natural objects[J]. Annu. Rev. Psychol. 1981,32:89-115.
    [26]Fei-Fei. L. lyer. A.. Koch. C. Perona. P.. What do we perceive in a glance of a real-world scene[J]? J. Vis.2007;7(1):1-29.
    [27]Potter, M.C., Faulconer, B.A.. Time to understand pictures and words[J]. Nature 1975;253(5491):437-438.
    [28]Henderson, J.M., Hollingworth, A.. High-level scene perception[J]. Annu. Rev. Psychol.1999;50:243-271.
    [29]Pylyshyn, Z.W.,2003. Seeing and Visualizing. MIT Press, Cambridge MA.
    [30]Bar, M.. Visual objects in context[J]. Nat. Rev. Neurosci.2004;5(8):617-629.
    [31]Johnson, J.S., Olshausen, B.A.. The recognition of partially visible natural objects in the presence and absence of their occluders[J]. Vision Res. 2005;45(25-26):3262-3276.
    [32]Hegde, J., Fang, F., Murray, S.O., Kersten, D. Functional specialization for occluded objects in the human extrastriate cortex. J. Vis., in press.
    [33]Hegdé, J., Felleman, D.J.. Reappraising the functional implications of the primate visual anatomical hierarchy[J]. Neuroscientist 2007;13(5):416-421.
    [34]Ahissar, M., Hochstein, S.,. The reverse hierarchy theory of visual perceptual learning[J]. Trends Cogn, Sci.2004;8(10):457-464.
    [35]Fabre-Thorpe, M., Richard, G, Thorpe, S.J.. Rapid categorization of natural images by rhesus monkeys[J]. Neuroreport 1998;9(2):303-308.
    [36]Girard, P., Hupe, J.M., Bullier, J.. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities[J]. J. Neurophysiol.2001; 85(3):1328-1331.
    [37]Bullier, J.. Integrated model of visual processing[J]. Brain Res. Brain Res. Rev. 2001;36(2-3):96-107.
    [38]Lamme, V.A., Roelfsema, P.R.. The distinct modes of vision offered by feedforward and recurrent processing[J]. Trends Neurosci.2000;23(11): 571-579.
    [39]Azouz, R., Gray, CM.. Cellular mechanisms contributing to response variability of cortical neurons in vivo[J]. J. Neurosci.1999;19(6):2209-2223.
    [40]Schwartz E L, Rojer A S,1994. Cortical hypercolumns and the topology of random orientation maps. International Conference on Pattern Recognition, 150-155.
    [41]Frazor, R.A., Albrecht, D.G, Geisler, W.S., Crane, A.M.. Visual cortex neurons of monkeys and cats:temporal dynamics of the spatial frequency response function[J]. J-Neurophysiol.2004;91(6):2607-2627.
    [42]Nishimoto, S., Arai, M., Ohzawa, I.. Accuracy of subspace mapping of spatiotemporal frequency domain visual receptive fields[J]. J. Neurophysiol. 2005;93(6):3524-3536.
    [43]Allen, E.A., Freeman, R.D.. Dynamic spatial processing originates in early visual pathways. J. Neurosci[J].2006; 26(45):11763-11774.
    [44]Malone, B.J., Kumar, V., Ringach, D.L.. Dynamics of receptive field size in primary visual cortex[J]. J. Neurophysiol.2007;97(l):407-414.
    [45]Bar, M, Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmid, A.M., Dale, A.M., Hamalainen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R., Halgren, E.. Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. U. S. A. 2006; 103(2):449-454.
    [46]Iidaka, T., Yamashita, K., Kashikura, K., Yonekura, Y. Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI[J]. Cogn. Brain Res.2004; 18(2):196-204.
    [47]Menz, M.D., Freeman, R.D.. Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism[J]. Nat. Neurosci.2003;6(l):59-65.
    [48]Menz, M.D., Freeman, R.D.. Temporal dynamics of binocular disparity processing in the central visual pathway[J]. J. Neurophysiol. 2004;91(4):1782-1793.
    [49]Rust, N.C., Schwartz, O., Movshon, J.A., Simoncelli, E.P.. Spatiotemporal elements of macaque VI receptive fields[J]. Neuron 2005;46(6):945-956.
    [50]Wu, M.C., David, S.V., Gallant, J.L.. Complete functional characterization of sensory neurons by system identification[J]. Annu. Rev. Neurosci.2006;29: 477-505.
    [51]Ioannides, A.A.. Dynamic functional connectivity[J]. Curr. Opin. Neurobiol. 2007;17(2):161-170.
    [52]Monier, C, Chavane, F., Baudot, P., Graham, L.J.& Fregnac, Y. Orientation and direction selectivity of synaptic inputs in visual cortical neurons:a diversity of combinations produces spike tuning[J]. Neuron 2003,37:663-680.
    [53]Schummers, J., Marino, J., Sur, M. Synaptic integration by V1 neurons depends on location within the orientation map[J]. Neuron 2002,36:969-978.
    [54]Mountcastle, V.B. Modality and topographic properties of single neurons of cat's somatic sensory cortex[J]. J. Neurophysiol.1957,20:408-434.
    [55]Bruno, R. M., Khatri, V., Land, P. W., Simons, D. J. Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex[J]. J. Neurosci.2003,23:9565-9574.
    [56]Frey U, Huang YY, Kandel ER. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons[J]. Science,1993,260(5114):1661-1664.
    [57]Wanghua Shen, Bei Wu, Zhijun Zhang, et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling[J]. Neuron, 2006,50(3):401-414.
    [58]Owens, D.F., and Kriegstein, A.R. Is there more to GABA than synaptic inhibition[J]? Nat. Rev. Neurosci,2002,3,715-727.
    [59]Ben-Ari, Y, Gaiarsa, J. L., Tyzio, R., and Khazipov, R. GABA:a pionner transmitter that excites immature neurons and generates primitive oscillations[J]. Physiol. Rev.2007,87,1215-1284.
    [60]Safiulina VF, Cherubini E. At immature mossy fibers-CA3 connections, activation of presynaptic GABA(B) receptors by endogenously released GABA contributes to synapses silencing[J]. Front Cell Neurosci.2009,3:1.
    [61]Kirmse K, Kirischuk S. N-ethylmaleimide increases release probability at GABAergic synapses in layer I of the mouse visual cortex[J]. Eur J Neurosci. 2006,24(10):2741-8.
    [62]Blomfield S. Arithmetical operations performed by nerve cells[J]. Brain Res, 1974,69:115-124.
    [63]Jagadeesh, B., Wheat, H.S., Ferster, D. Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex [J]. Science,1993,262:1901-1904.
    [64]Jagadeesh, B., Wheat, H.S., Kontsevich, L.L., Tyler, C.W., Ferster, D. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex[J]. J. Neurophysiol,1997,78:2772-2802.
    [65]Torre, V., Poggio, T. A synaptic mechanism possibly underlying derectinal selectivity to motion[J]. Proc. R. Soc, Lond. R. Biol, Sci.1978,202:409-416.
    [66]Grzywacz, N.M., Koch, C. Functional properties of models for direction selectivity in the retina[J]. Synapse,1987, I:417-434.
    [67]BorgGraham, L.J., Monier, C, Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons[J]. Nature,1998,393: 369-373.
    [68]Hirsch, J.A., Alonso, J.M., Reid, R.C., Martinez, L.M. Synaptic integration in striate cortical simple cells[J]. J. Neurosci.1998,18:9517-9528.
    [69]Anderson, J.C., Binzegger, T., Kahana, O., Martin, K.A. Segev, I. Dendritic asymmetry cannot account for directional responses of neurons in visual cortex[J]. Nat. Neurosci.1999,2:820-824.
    [70]Ferster D, Jagadeesh B. EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording[J]. J. Neurosci.1992,12:1262-1274.
    [71]E. Adrian. The Basis of Sensation, Londres, Christophers,1928.
    [72]Buonomano DV, Merzenich MM. Cortical plasticity:from synapses to maps[J]. Annu. Rev, Neurosci.1998,21:149-86.
    [73]Fronius M, China L, Cordey A, Ohrloff C. Visual improvement during psychophysical training in an adult amblyopic eye following visual loss in the contralateral eye[J]. Graefes Arch Clin Exp Ophthalmol.2005 Mar;243(3):278-80.
    [74]Song S, Miller KD, and Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nat Neurosci 2000;3:919-926.
    [75]Haishan Yao,Yang Dan. Synaptic Learning Rules,Cortical Circuits, and Visual Function[J]. Neuroscientist,2005,11 (3):206-216.
    [76]Dan Y and Poo MM. Spike timing-dependent plasticity:From synapse to perception[J]. Physiol Rev 2006;86:1033-1048.
    [77]Bear MF. Bidirectional synaptic plasticity:from theory to reality[J]. Phil. Trans. R. Soc. Lond. B,2003;358:649-655.
    [78]Murphy K. VI.. Beston B. R.. Boley P. M.. et al. Development of human visual cortex:A balance between excitatory and inhibitory plasticity mechanisms[J]. Dev Psychobiol,2005,46(3):209-221.
    [79]Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development[J]. Curr Opin Neurobiol,2000,10(1):138-145.
    [80]Ramoa A S, Sur M. Short-term synaptic plasticity in the visual cortex during development[J]t. Cereb Cortex,1996,6(4):640-646.
    [81]Bruno, R.M., Simons, D.J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields[J]. J. Neurosci,2002,22:10966-10975.
    [82]Wilent, W.B., Contreras, D. Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity[J]. J. Neurosci. 2004,24:3985-3998.
    [83]Miller, K.D., Pinto, D.J., Simons, D.J. Processing in layer 4 of the neocortical circuit:new insights from visual and somatosensory cortex[J]. Curr. Opin. Neurobiol,2001,11:488-497.
    [84]Douglas, R.J., Martin, K.A. Neuronal circuits of the neocortex[J]. Annu. Rev. Neurosci,2004,27:419-451.
    [85]Paxinos G, Watson C. The rat brain atlas in stereotaxic coordinates[J]. Orlando, FL:Academic,1986.
    [86]Stuart GJ, Dodt HU, Sakmann B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy[J]. Pflugers Arch,1993,423(5-6):511-518.
    [87]Froemke RC, Poo MM, Dan Y. Spike-timing-dependent synaptic plasticity depends on dendritic location[J]. Nature,2005,434:221-225.
    [88]Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains[J]. Nature,2002,416:433-438.
    [89]Fronius M, Cirina L, Cordey A, Ohrloff C. Visual improvement during psychophysical training in an adult amblyopic eye following visual loss in the contralateral eye[J]. Graefes Arch Clin Exp Ophthalmol.2005 Mar; 243(3):278-280.
    [90]Song S, Miller KD, and Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nat Neurosci,2000; 3:919-926.
    [91]Dan Y and Poo M-m. Spike timing-dependent plasticity of neural circuits[J]. Neuron,2004,44:23-30.
    [92]Bi GQ, Rubin J. Timing in synaptic plasticity:from detection to intergration[J]. Trends in Neurosciences,2005,28(5):222-228.
    [93]Bohte, S. Mozer MC. Reducing spike train variability:A computational theory of spike-timing dependent plasticity. In L. K. Saul, Y. Weiss, and L. Bottou (Eds.). Advances in Neural Information Processing Systems,2005,17:201-208. Cambridge, MA:MIT Press.
    [94]Gorchetchnikova A, Versacea M, Hasselmo ME. A model of STDP based on spatially and temporally local information:Derivation and combination with gated decay[J]. Neural Netw,2005,18(5-6):458-66.
    [95]Legenstein R, Naeger C, Maass W. What can a neuron learn with spike-timing-dependent plasticity[J]. Neural Comput,2005,17(11):2337-82.
    [96]VanRullen R. Visual saliency and spike timing in the ventral visual pathway[J]. J Physiol,2003,97(2-3):365-377.
    [97]Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. Spikes: Exploring the Neural Code.1997 (Cambridge, MA:MIT Press).
    [98]Markram, H., Lubke, J., Frotscher, M., Roth, A., and Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurons in the developing rat neocortex[J]. J. Physiol,1997,500:409-440.
    [99]Loudon SE, Polling JR, Smonsz HJ. A preliminary report about the relation between visual acuity increase and compliance in patching therapy for amblyopia[J]. Strabismus 2002,10(2):79-82.
    [100]Buonomano DV, Merzenich MM. Cortical plasticity:from synapses to maps[J]. Annu Rev Neurosci,1998,21:149-86.
    [101]Shuler, M.G., and Bear, M.F. Reward timing in the primary visual cortex[J]. Science,2006,311:1606-1609.
    [102]Berardi, N., Pizzorusso, T., and Maffei, L. Extracellular matrix and visual cortical plasticity:freeing the synapse[J]. Neuron,2004,44:905-908.
    [103]Hensch, T.K. Critical period regulation[J]. Annu. Rev. Neurosci,2004,27: 549-579.
    [104]Sawtell, N.B., Frenkel, M. Y., Philpot, B.D., Nakazawa, K., Tonegawa, S., and Bear, M.F. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex[J]. Neuron,2003,38:977-985.
    [105]Pham, T.A., Graham, S.J., Suzuki, S., Barco, A., Kandel, E.R., Gordon, B., and Lickey, M.E. Asemi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB[J]. Learn. Mem.,2004,11:738-747.
    [106]Tagawa, Y., Kanold, P.O., Majdan, M., and Shatz, C.J. Multiple periods of functional ocular dominance plasticity in mouse visual cortex[J]. Neurosci,2005, 8:380-388.
    [107]He, H.Y., Hodos, W., and Quinlan, E.M. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex[J]. J. Neurosci,2006,26: 2951-2955.
    [108]Karmarkar, U.R., and Dan, Y. Experience-dependent plasticity in adult visual cortex[J]. Neuron,2006,52:577-585.
    [109]Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N., and Maffei, L. Structural and functional recovery from early monocular deprivation in adult rats[J]. Proc. Natl. Acad. Sci. USA,2006,103:8517-8522.
    [110]Fahle, M., and Poggio, T. (2000). Perceptual learning (Cambridge, MA:MIT Press).
    [111]Uma R, Karmarkar, Yang Dan. Experience-Dependent Plasticity in Adult Visual Cortex[J].Neuron,2006,52:577-585.
    [112]Fronius M, Cirina L, Cordey A, Ohrloff C. Visual improvement during psychophysical training in an adult amblyopic eye following visual loss in the contralateral eye[J]. Graefes Arch Clin Exp Ophthalmol.2005 Mar;243(3):278-80.
    [113]Song S, Miller KD, and Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nat Neurosci 2000;3:919-926.
    [114]Bell CC, Han VZ, Sugawara Y, and Grant K. Synaptic plasticity in a cerebellum-like structure depends on temporal order[J]. Nature 387:278-281,1997.
    [115]Bi GQ and Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[J]. J Neurosci 18:10464-10472,1998.
    [116]Boettiger CA and Doupe AJ. Developmentally restricted synaptic plasticity in a songbird nucleus required for song learing[J]. Neuron 31:809-818,2001.
    [117]Feldman DE. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex[J]. Neuron 27:45-56,2000.
    [118]Froemke RC and Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains[J]. Nature 416:433-438,2002.
    [119]Sjostrom PJ, Turrigiano CG, and Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[J]. Neuron 32:1149-1164,2001.
    [120]Tzounopoulos T, Kim Y, Oertel D, and Trussell LO. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus[J]. Nat Neurosci 7:719-725,2004.
    [121]Dan Y and Poo MM. Spike timing-dependent plasticity:From synapse to perception[J]. Physiol Rev 2006;86:1033-1048.
    [122]Bear MF. Bidirectional synaptic plasticity:from theory to reality[J]. Phil. Trans. R. Soc. Lond. B,2003;358:649-655.
    [123]Faber D.S. and Korn Henri. Applicability of the coefficient of variation method for analyzing synaptic plasticity[J]. Biophys. J.,1991,60:1288-1294.
    [124]Moore, C.I., Nelson, S.B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex[J]. J. Neurophysiol. 1998,80:2882-2892.
    [125]Wilent, W.B., Contreras, D. Synaptic responses to whisker defections in rat barrel cortex as a function of cortical layer and stimulus intensity[J]. J. Neurosci, 2004,24:3985-3998.
    [126]Pinto, D.J., Hartings, J.A., Brumberg,J.C., Simons, D.J. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex[J]. Cereb. Cortex,2003,13:33-44.
    [127]Pinto, D.J., Brumberg, J.C., Simons, D.J. Circuit dynamics and coding strategies in rodent somatosensory cortex[J]. J. Neurophysiol,2000,83:1158-1166.
    [128]Haishan Yao.Yang Dan. Synaptic Learning Rules.Cortical Circuits, and Visual Function[J]. Neuroscientist,2005,11(3):206-216.
    [129]Uma R, Karmarkar, Yang Dan. Experience-Dependent Plasticity in Adult Visual Cortex[J].Neuron,2006,52:577-585.
    [130]Anderson J.S., Lampl I., Gillespie D.C., Ferster D. Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex[J]. J. Neurosci,2001,21(6):2104-12.
    [131]Bury SD, Jones TA. Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the'"unaffected" forelimb and training-induced dendritic structural plasticity in the motor cortex[J]. J Neurosci,2002, 22(19):8597-606.
    [132]Uma R, Karmarkar, Yang Dan. Experience-Dependent Plasticity in Adult Visual Cortex[J]. Neuron,2006,52:577-585.
    [133]Buonomano DV, Merzenich MM. Cortical plasticity:from synapses to maps[J]. Annu Rev Neurosci,1998,21:149-86.
    [134]Mower, G.D. The effect of dark rearing on the time course of the critical period in cat visual cortex[J]. Dev. Brain Res.1991,58:151-158.
    [135]Creutzfeldt, O.D., L.J. Garey, R. Kuroda, J.R. Wolff. The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat[J]. Exp. Brain Res.1977,27:419-440.
    [136]Fisken, R.A., L.J. Garey, T.P.S. Powell. The intrinsic association and commissural connections of area 17 of the visual cortex[J]. Philos. Trans. R. Soc. Lond. (Biol.) 1975,272:487-536.
    [137]Hubel, D.H., T.N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. J. Physiol. (Lond.) 1962,160:106-154.
    [138]Jonathan SB, Ken Nakayama, Gilbert CD. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations[J]. J. Neurosci.2000, 20(21):8188-8198.
    [139]Kapadia MK, Westheimer G Gilbert CD. Dynamics of spatial summation in primary visual cortex of alert monkeys[J]. Proc Natl Acad Sci USA, 1999,96:12073-12078.
    [140]Ringach DL. HAwken MJ. Shapley R. Dynamics of orientation tuning in macaque primary visual cortex[J]. Nature,1997,387:282-284.
    [141]del Castillo, J., and B. Katz. Quantal components of the end-plate potential. J. Physiol. (Lond.).1954a.124:560-573.
    [142]Bekkers, J. M., and C. F. Stevens. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature (Lond.).1990,346:724-729.
    [143]Froemke RC, Poo MM, Dan Y. Spike-timing-dependent synaptic plasticity depends on dendritic location[J]. Nature,2005,434(7030):221-5.
    [144]Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains[J]. Nature,2002,416(6879):433-8.
    [145]Hubel DH and Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol, (Lond),1962,160:106-154.
    [146]Hubel DH and Wiesel TN. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat[J]. Journal of Neurophysiology, 1965,28:229-289.
    [147]Hubel DH and Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.),1968,195:215-243.
    [148]Ferster D. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex[J]. J Neurosci,1988,8:1172-1180.
    [149]Victor AF Lamme, Hans Super and Henk Spekreijse. Feedforward, horizontal, and feed back processing in the visual cortex[J]. Curr Opin Neurobiol,1998, 8:529-535.
    [150]Salin PA and Bullier J. Corticocortical connections in the visual system: Structure and function[J]. Physiol Rev,1995,75:107-154.
    [151]Kisvarday ZF and Eysel UT. Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17)[J]. Neuroscience,1992,46:274-286.
    [152]Allman J, Miezin F and McGuinness E. Stimulus specific responses from beyond the classical receptive field, neurophysiological mechanisms for local-global comparisons in visual neurons[J]. Ann Rev Neurosci,1985,8: 407-430.
    [153]Hirsch JA and Gilbert CD. Synaptic physiology of horizontal connections in the cat's visual cortex[J]. J Neurosci,1991,11:1800-1809.
    [154]Mcllwain JT. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity[J]. J Neurophysiology,1964, 27:1154-1173.
    [155]McIlwain JT. Some evidence concerning the physiological basis of the periphery effect in the cat's retina[J]. Exp Brain Res,1966,1:265-271.
    [156]Atwood HL, Wojtowicz JM. Silent synapses in neural plasticity:current evidence[J]. Learn Mem,1999,6(6):542-571.
    [157]Sawtell NB, Frenkel MY, Philpot BD, et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex[J]. Neuron,2003,38(6):977-985.
    [158]Salami M, Fathollahi Y, Esteky H, et al. Effects of ketamine on synaptic transmission and long-term potentiation in layer II/III of rat visual cortex in vitro[J]. Euro J Pharmacol,2000,390(3):287-293.
    [159]Fathollahi Y, Salami M. The role of N-methyl-D-aspartate receptors in synaptic plasticity of rat visual cortex in vitro:effect of sensory expertence[J]. Neurosci Letters,2001,306(3):149-152.
    [160]Chen L, Yang C, Mower GD. Developmental changes in the expression of GABA receptor subunits A (a1,a2,a3) in the cat visual cortex and the effects of dark rearing[J]. Brain Res Mol Brain Res,2001,88:135-143.
    [161]Munoz A, DeFelipe J, Jones EG. Patterns of GABA(B)Rla,b receptor gene expression in monkey and human visual cortex[J]. Cerebral cortex,2001, 11:104-113
    [162]Wigstrom H and Gustafsson B. Postsynaptic control of hippocampal long-term potentiation[J]. J Physiol,1986,81:228-236.
    [163]Nishiyama M, Hong K, Mikoshiba K, Poo MM, and Kato K. Calcium stores regulate the polarity and input specificity of synaptic modification[J]. Nature, 408:584-588,2000.
    [164]Togashi K, Kitajima T, Aihara T, Hong K, PooM, and Nishiyama M. Gating of activity-dependent long-term depression by GABAergic activity in the hippocampus[J]. Soc Neurosci Abstr 2003,123.4.
    [165]Nevian T, Sakmann B. Single spine Ca2+signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex[J]. J Neurosci,2004,24:1689-1699.
    [166]Bear MR Bidirectional synaptic plasticity:from theory to reality[J]. Phil. Trans. R. Soc. Lond. B,2003;358:649-655.
    [167]Wang, X.F. and Daw, N.W. Long term potentiation varies with layer in rat visual cortex[J]. Brain Research,2003,989:26-34.
    [168]M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, L. Maffei. Functional postnatal development of the rat primary visual cortex and the role of visual experience[J]. Vision Res,1994,34:709-720.
    [169]Rao Yan and Daw Nigel W. Layer variations of long-term depression in rat visual cortex[J]. J. Neurophysiol,2004,92:2652-2658.
    [170]Monier, C, Chavane, F., Baudot, P., Graham, L.J. and Fregnac, Y. Orientation and direction selectivity of synaptic inputs in visual cortical neurons:a diversity of combinations produces spike tuning[J]. Neuron,2003,37:663-680.
    [171]Schummers, J., Marino, J. and Sur, M. Synaptic integration by V1 neurons depends on location within the orientation map[J]. Neuron,2002,36:969-978.
    [172]Wehr, M. and Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex[J]. Nature,2003,426:442-446.
    [173]Bruno, R.M. and Simons, D.J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields[J]. J. Neurosci,2002,22:10966-10975.
    [174]Wilent, W.B. and Contreras, D. Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity[J]. J. Neurosci, 2004,24:3985-3998.
    [175]Uma R, Karmarkar, Yang Dan. Experience-Dependent Plasticity in Adult Visual Cortex [J].Neuron,2006,52:577-585.
    [176]Bi GQ and Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[J]. J Neurosci 18:10464-10472,1998.
    [177]Yang Dan, Mu-Ming Poo. Spike Timing-Dependent Plasticity:From Synapse to Perception[J]. Physiol Rev,2006,86:1033-1048.
    [1]赵堪兴.早期发现和早期干预努力提高弱视的防治水平[J].中华眼科杂志,2002;38(8):449-451.
    [2]Buonomano DV, Merzenich MM. Cortical plasticity:from synapses to map[J]s. Annu Rev Neurosci,1998,21:149-86.
    [3]Fahle, M., and Poggio, T. (2000). Perceptual learning (Cambridge, MA:MIT Press).
    [4]Hebb DO. The Organization of behavior:a neuropsychological theory 4th, New York:John Wiley,1949,62.
    [5]Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J]. J Physiol,1973,232:331-56.
    [6]Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus[J]. Neuron,1992,9: 967-975.
    [7]Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[J]. J Neurosci,1998,18:10464-10472.
    [8]Uma R, Karmarkar, Yang Dan. Experience-Dependent Plasticity in Adult Visual Cortex[J].Neuron,2006,52:577-585.
    [9]Hubel DH, Wiesel TN. Functional architecture of macaque monkey visual cortex (ferrier lecture). Proc R Soc Lond B Biol Sci,1977,198:1-59.
    [10]LeVay S, Stryker MP, Shatz CJ. Ocular dominance columns and their development in layer Ⅳ of the cat's visual cortex:a quantitative study[J]. J Comp Neurol,1978,179:223-244.
    [11]Fronius M, Cirina L, Cordey A, Ohrloff C. Visual improvement during psychophysical training in an adult amblyopic eye following visual loss in the contralateral eye[J]. Graefes Arch Clin Exp Ophthalmol.2005 Mar;243(3):278-80.
    [12]Song S. Miller K.D. and Abbott LF. Competitive Hcbbian learning through spike-timing-dependent synaptic plasticity[J]. Nat Neurosci 2000;3:919-926.
    [13]Bell CC, Han VZ, Sugawara Y, and Grant K. Synaptic plasticity in a cerebellum-like structure depends on temporal order[J]. Nature 387:278-281,1997.
    [14]Bi GQ and Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[J]. J Neurosci 18:10464-10472,1998.
    [15]Boettiger CA and Doupe AJ. Developmentally restricted synaptic plasticity in a songbird nucleus required for song learing[J]. Neuron 31:809-818,2001.
    [16]Feldman DE. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex[J]. Neuron 27:45-56,2000.
    [17]Froemke RC and Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains[J]. Nature 416:433-438,2002.
    [18]Sjostrom PJ, Turrigiano CG, and Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[J]. Neuron 32:1149-1164,2001.
    [19]Tzounopoulos T, Kim Y, Oertel D, and Trussell LO. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus[J]. Nat Neurosci 7:719-725,2004.
    [20]Dan Y and Poo MM. Spike timing-dependent plasticity:From synapse to perception[J]. Physiol Rev 2006;86:1033-1048.
    [21]Bear MF. Bidirectional synaptic plasticity:from theory to reality[J]. Phil. Trans. R. Soc. Lond. B,2003;358:649-655.
    [22]Lisman J. Long-term potentiation:outstanding questions and attempted synthesis[J]. Phil. Trans. R. Soc. Lond. B.2003;358:829-842.
    [23]Atwood HL, Wojtowicz JM. Silent synapses in neural plasticity:current evidence[J]. Learn Mem,1999,6(6):542-571.
    [24]Frey U, Huang YY, Kandel ER. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons[J]. Science,1993,260(5114):1661-1664.
    [25]Wanghua Shen, Bei Wu, Zhijun Zhang, et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling[J]. Neuron, 2006.50(3):401-414.
    [26]Kumar A, Zou L, Yuan X, et al. N-methyl-D-aspartate receptors:transient loss of NR1/NR2A/NR2B subunits after traumati brain injury in a rodent model[J]. J Neurosi Res,2002,67(6):781-786.
    [27]Hrabetova S, Serrano P, Blace N, et al. Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction[J]. J Neurosci,2000,20(12):RC81.
    [28]Philpot BD, Sekhar AK, Shouval HZ, et al. Visual experience and deprivation bidirectionally modify the compostition and function of NMDA receptors in visual cortex[J]. Neuron,2001,29(1):157-169.
    [29]Sawtell NB, Frenkel MY, Philpot BD, et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex[J]. Neuron,2003,38(6):977-985.
    [30]Salami M, Fathollahi Y, Esteky H, et al. Effects of ketamine on synaptic transmission and long-term potentiation in layer II/III of rat visual cortex in vitro[J]. Euro J Pharmacol,2000,390(3):287-293.
    [31]Fathollahi Y, Salami M. The role of N-methyl-D-aspartate receptors in synaptic plasticity of rat visual cortex in vitro:effect of sensory expertence[J]. Neurosci Letters,2001,306(3):149-152.
    [32]Liao D, Scannevin RH, Huganir R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors[J]. J Neurosci, 2001,21(16):6008-6017.
    [33]Montgometry JM, Pavlidis P, Madison DV. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation[J]. Neuron,2001,29(3):691-701.
    [34]Pellegrini-Giampietro D E, Gorter J A, Bennett MVL, et al. The GluR2 (GluR-B) hypothesis:Ca2+-permeable AMPA receptors in neurological disorders. TINS, 1997,20(10):464-470.
    [35]Tanaka H, Grooms SY, Bennett MVL, et al. The AMPAR subunit GluR2:still front and center-stage. Brain res,2000,886:190-207.
    [36]Weiss JH, Sensi SL. Ca2+-Zn2+permeable AMPA or kainite receptors:possible key factors in selective neurodegeneration. TINS,2000,23(8):365-371.
    [37]Haas Kurt. Li Jianli, Cline Hollis T. AMPA receptors regulate experience-dependent dendritic arbor growth in vivo[J]. Proc Natl Acad Sci U S A, 2006,103(32):12127-12131.
    [38]Jiaz Lwy, Agopyan N. Gene targeting reveals a role for the glutamate receptors mGluR5 and mGluR2 in learning and memory. Physiol and Behavior,2001, 73:793-802.
    [39]Nase G, Weishanpt J. Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex. Eur J Neurosci,1999,11:4320-4326.
    [40]Cho K, Brown MW, Bashir ZI. Mechanisms and physiological role of enhancement of mGluR5 receptor function by group II mGlu receptor activation in rat perihinal cortex[J]. J Physiol,2002,540:895-906.
    [41]Bashir ZL, Bortolotto ZA, Davies CH, et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors[J]. Nature,1993,363(6427):347-350.
    [42]Chen L, Yang C, Mower GD. Developmental changes in the expression of GABA receptor subunits A (al,a2,a3) in the cat visual cortex and the effects of dark rearing[J]. Brain Res Mol Brain Res,2001,88:135-143.
    [43]Munoz A, DeFelipe J, Jones EG. Patterns of GABA(B)Rla,b receptor gene expression in monkey and human visual cortex[J]. Cerebral cortex,2001, 11:104-113
    [44]Wigstrom H and Gustafsson B. Postsynaptic control of hippocampal long-term potentiation[J]. J Physiol,1986,81:228-236.
    [45]Nishiyama M, Hong K, Mikoshiba K, Poo MM, and Kato K. Calcium stores regulate the polarity and input specificity of synaptic modification[J]. Nature, 408:584-588,2000.
    [46]Togashi K, Kitajima T, Aihara T, Hong K, PooM, and Nishiyama M. Gating of activity-dependent long-term depression by GABAergic activity in the hippocampus[J]. Soc Neurosci Abstr 2003,123.4.
    [47]Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex[J]. Nature,1994,368:737-740.
    [48]Trachtenberg JT, Chen BE, Knott GW, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature.2002.420: 788-794.
    [49]Lewin GR, Barde YA. Physiology of the neurotrophins[J]. Annu Rev Neurosci, 1996,19:289-317.
    [50]Nevian T, Sakmann B. Single spine Ca2+signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex[J]. J Neurosci,2004,24:1689-1699.
    [51]Haishan Yao,Yang Dan. Synaptic Learning Rules,Cortical Circuits, and Visual Function[J], Neuroscientist,2005, 11(3):206-216.
    [52]Uma R, Karmarkar, Yang Dan. Experience-Dependent Plasticity in Adult Visual Cortex[J].Neuron,2006,52:577-585.
    [53]Yang Dan, Mu-Ming Poo. Spike Timing-Dependent Plasticity:From Synapse to Perception[J]. Physiol Rev,2006,86:1033-1048.
    [54]Woodin MA, Ganguly K, Poo MM. Coincident pre-and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl-transporter activity[J]. Neuron,2003,39:807-20.
    [55]Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains[J]. Nature,2002,416:433-8.
    [56]Sjostrom PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[J]. Neuron,2001,32:1149-64.
    [57]Knudsen El. Instructed learning in the auditory localization pathway of the barn owl[J]. Nature,2002,417:322-328.
    [58]Zhang LI, Tan AY, Schreiner CE, Merzenich MM. Topography and synaptic shaping of direction selectivity in primary auditory cortex[J]. Nature, 2003,424:201-205.
    [59]Chang EF, and Merzenich MM. Environmental noise retards auditory cortical development[J]. Science,2003,300:498-502.
    [60]Suga N, Ma X. Multiparametric corticofugal modulation and plasticity in the auditory system[J]. Nat Rev Neurosci,2003,4:783-794.
    [61]Erzurumlu RS, Kind PC. Neural activity:sculptor of "barrels’ in the neocortex[J]. Trends Neurosci,2001 Oct; 24(10):589-95.
    [62]Zhao H, Reed RR. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system[J]. Cell.2001 Mar 9;104(5):651-60.
    [63]Gill DS, Pearce TC. Wiring the olfactory bulb-activity-dependent models of axonal targeting in the developing olfactory pathway[J]. Rev Neurosci. 2003;14(l-2):63-72.
    [64]Bliss, T.V., and LΦmo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 1973,232,331-356.
    [65]Malenka, R.C., and Nicoll, R.A. Long-term potentiation—A decade of progress[J]? Science,1999,285,1870-1874.
    [66]Bear, M.F., and Linden, D.J. (2001). The mechanisms and meaning of long-term synaptic depression in the mammalian brain[J]. In synapses, W.M. Cowan, T.C. S u dhof, and C.F. Stevens, eds. (Baltimore, Maryland:Johns Hopkins University),pp.455-517.
    [67]Bi, G. and Poo, M. Synaptic modification by correlated activity:Hebb's postulate revisited[J]. Annu. Rev. Neurosci.2001,24,139-166.
    [68]Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., and Poo, M.M. A critical window for cooperation and competition among developing retinotectal synapses[J]. Nature,1998,395,37-44.
    [69]Katz, L.C., and Shatz, C.J. Synaptic activity and the construction of cortical circuits[J]. Science,1996,274,1133-1138.
    [70]Zhang, L.I., and Poo, M-m. Electrical activity and development of neural circuits[J]. Nat. Neurosci.2001,4,1207-1214.
    [71]Katz, L.C. and Crowley, J.C. Development of Cortical Circuits:Lessons From Ocular Dominance Columns[J]. Nat. Rev. Neurosci.2002,3,34-42.
    [72]Lewontin, R.C., Rose, Steven, and Kamin, Leon J. (1984). Not in our genes—Biology, Ideology, and Human Nature. (New York, NY:Pantheon Books, Random House).
    [73]Ridley, M. (2003). Nature via Nurture.-Genes, Experience,& What Makes Us Human. (New York, NY:HarperCollins).
    [74]Wang. Z.R.. Xu. N.L.. Wu. C.P.. Duan. S.M.. and Poo. M.M. Changes in spatial summation associated with activity-induced persistent synaptic modifications[J]. Neuron,2003,37,463-472.
    [75]Ruthazer ES, Akerman CJ, and Cline HT. Control of axon branch dynamics by correlated activity in vivo[J]. Science.2003 Jul 4;301(5629):66-70.
    [76]Wang XJ. Probabilistic decision making by slow reverberation in cortical circuits[J]. Neuron.2002 Dec 5;36(5):955-68.
    [77]Aizenman CD, Munoz-Elias G, Cline HT. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines[J]. Neuron.2002 May 16;34(4):623-34.
    [78]Aizenman CD, Akerman CJ, Jensen K.R, Cline HT. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo[J], Neuron. 2003,39:831-842.
    [79]Ganguly, K., Kiss, L., and Poo, M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking[J]. Nat. Neurosci. 2000,3,1081-1026.
    [80]Li, C.Y., Lu, J.T., Wu, C.P., Duan, S.M., and Poo, M.M.. Bi-Directional Modification of Presynaptic Neuronal Excitability Accompanying Spike Timing-Dependent Synaptic Plasticity[J]. Neuron, in press. (2004).
    [81]Loudon SE, Polling JR, Smonsz HJ. A preliminary report about the relation between visual acuity increase and compliance in patching therapy for amblyopia[J], Strabismus 2002,10(2):79-82.
    [82]Zhou Y, Huang C, Xu P, Tao L, Qiu Z, Li X, Lu ZL. Perceptual learning improves contrast sensitivity and visual acuity in adults with amisometropic amblyopia[J]. Vision Research 2006,46(5):739-750.
    [83]Pizzorusso T, Medini P, Berardi P, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominace plasticity in the adult visual cortex[J]. Science 2002;298:1248-1251.
    [84]Levi DM. Perceptual learning in adults with amblyopia:A reevaluation of critical periods in human vision[J]. Developmental Psychobiology,2005; 46(3):222-232.
    [85]Fiorentini A, Berardi N. Perceptual learning specific for orientation and spatial frequency[J]. Nature.1980.287:43-44.
    [86]Furmanski CS, Schluppeck D, Engel SA. Learning strengthens the response of primary visual cortex to simple patterns[J]. Curr Biol.2004,14:573-578.
    [87]Maertens M, Pollmann S. fMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning[J]. J Cogn Neurosci. 2005,17:1553-1564.
    [88]Neary K, Anand S, Hotson JR. Perceptual learning of line orientation modifies the effects of transcranial magnetic stimulation of visual cortex[J]. Exp Brain Res. 2005,162:23-24.
    [89]Holtmaat AJ, Trachtenberg JT. Transient and persistent dendritic spines in the neocortex in vivo[J]. Neuron,2005,45:279-291.
    [90]Grutzendler J, Kasthuri N. Long-term dendritic spine stability in the adult cortex[J]. Nature,2002,420:812-816.
    [91]Lee WC, Huang H, Feng G. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex[J]. PLoS Biol.2006,4:e29.
    [92]Stettler D, Yamahachi H. Axons and synaptic boutons are highly dynamic in adult visual cortex[J]. Neuron,2006,49:877-887.
    [93]McGee AW. Yang Y. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor[J]. Science,2005,309:2222-2226.
    [94]Pizzorusso T, Medini P. Reactivation of ocular dominance plasticity in the adult visual cortex[J]. Science,2002,298:1248-1251.
    [95]Oray S, Majewska A. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation[J]. Neuron,2004,44:1021-1030.
    [96]Fagiolini M, Hensch TK. Inhibitory threshold for critical period activation in primary visual cortex[J]. Nature,2000,404:83-86.
    [97]Hensch TK, Fagiolini M. Local GABA circuit control of experience-dependent plasticity in developing visual cortex[J]. Science,1998,282:1504-1508.
    [98]Chen L. Perceptual organization:To reverse back the inverted (upside-down) question of feature binding[J]. Visual Cognition,2001;8(3/4/5),287-303.
    [99]Chen L, Zhang SW, Srinivasan M. Global perception in small brains:Topological pattern recognition in honeybees[J]. Proceedings of the National Academy of Sciences,2003; 100:6884-6889.
    [100]VanRullen R. Visual saliency and spike timing in the ventral visual path\vay[J]. J Physiol,2003,97(2-3):365-377.
    [101]Kersten, D., Mamassian, P., Yuille, A.. Object perception as Bayesian inference[J]. Annu. Rev. Psychol.2004,55:271-304.
    [102]Doya, K., Ishii, S., Pouget, A., Rao, R.P.N.,2006. Bayesian Brain:Probabilistic Approaches to Neural Coding[J]. MIT Press, Cambridge, MA.
    [103]Ma, W.J., Hamker, F., Koch, C,2006. Neural mechanisms underlying temporal aspects of conscious visual perception. In:Ogmen, H., Breitmeyer, B.G. (Eds.), The First Half Second. MIT Press, Cambridge, MA, pp.275-294.
    [104]Yuille, A., Kersten, D.. Vision as Bayesian inference:analysis by synthesis[J]? Trends Cogn. Sci.2006,10(7):301-308.
    [105]Henderson, J.M., Hollingworth, A.,1998. Eye movements during scene viewing: an overview. In:Underwood, G. (Ed.), Eye Guidance in Reading and Scene Perception. Elsevier, New York, NY, pp.269-283.
    [106]Fahle, M., Poggio, T.,2002. Perceptual Learning. MIT Press, Cambridge, MA.
    [107]Hochstein, S., Ahissar, M.. View from the top:hierarchies and reverse hierarchies in the visual system[J]. Neuron 2002,36(5):791-804.
    [108]Sharpee, T.O., Sugihara, H., Kurgansky, A.V., Rebrik, S.P., Stryker, M.P., Miller, K.D.. Adaptive filtering enhances information transmission in visual cortex[J]. Nature 2006,439(7079):936-942.
    [109]Navon, D.. Forest before trees:the precedence of global features in visual perception[J]. Cogn. Psychol.1977,9,353-383.
    [110]Reynolds, R.I.. Perception of an illusory contour as a function of processing time[J]. Perception 1981;10(1):107-115.
    [111]Efron, R.. The duration of the present[J]. Proc. N.Y. Acad. Sci. 1967;138:713-729.
    [112]Koch, C, Crick, F.,2004. The neuronal basis of visual consciousness. In: Chalupa, L.M., Werner, J.M. (Eds.), The Visual Neurosciences. MIT Press, Cambridge, MA, pp.1682-1694.
    [113]Thorpe, S., Fize, D., Marlot, C.. Speed of processing in the human visual system[J]. Nature 1996.381 (6582):520-522.
    [114]Johnson, J.S., Olshqusen, B.A.. Timecourse of neural signatures of object recognition[J]. J. Vis.2003;3(7),499-512.
    [115]Johnson, J.S., Olshqusen, B.A.. The earliest EEG signatures of object recognition in a cued-target task are postsensory[J]. J. Vis.2005;5(4),299-312.
    [116]Fabre-Thorpe, M. Visual categorization:accessing abstraction in nonhuman primates[J]. Philos. Trans. R. Soc. Lond. B. Biol. Sci.2003,358,1215-1223.
    [117]Rousselet, G.A., Thorpe, S.J., Fabre-Thorpe, M. How parallel is visual processing in the ventral pathway[J]? Trends Cogn. Sci.2004;8(8):363-370.
    [118]Fabre-Thorpe, M., Delorme, A., Marlot, C, Thorpe, S.. A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes[J]. J. Cogn. Neurosci.2001;13(2):171-180.
    [119]Grill-Spector, K., Kanwisher, N.. Visual recognition:as soon as you know it is there, you know what it is[J]. Psychol. Sci.2005; 16(2),152-160.
    [120]Mervis, C.B., Rosch, E.,1981. Categorization of natural objects[J]. Annu. Rev. Psychol.32,89-115.
    [121]Fei-Fei, L., Iyer, A., Koch, C, Perona, P.. What do we perceive in a glance of a real-world scen[J]e? J. Vis.2007;7(1):1-29.
    [122]Potter, M.C., Faulconer, B.A.. Time to understand pictures and words[J]. Nature 1975;253(5491):437-438.
    [123]Henderson, J.M., Hollingworth, A.. High-level scene perception[J]. Annu. Rev. Psychol.1999;50:243-271.
    [124]Pylyshyn, Z.W.,2003. Seeing and Visualizing. MIT Press, Cambridge MA.
    [125]Bar, M.. Visual objects in context[J]. Nat. Rev. Neurosci.2004;5(8):617-629.
    [126]Johnson, J.S., Olshausen, B.A.. The recognition of partially visible natural objects in the presence and absence of their occluders[J]. Vision Res. 2005;45(25-26):3262-3276.
    [127]Hegde, J., Fang, F., Murray, S.O., Kersten, D. Functional specialization for occluded objects in the human extrastriate cortex. J. Vis., in press.
    [128]Hegdé, J., Felleman, D.J.. Reappraising the functional implications of the primate visual anatomical hierarchy[J]. Neuroscientist 2007; 13(5):416-421.
    [129]Ahissar. M.. Hochstein. S... The reverse hierarchy theory of visual perceptual learning[J]. Trends Cogn. Sci.2004;8(10):457-464.
    [130]Fabre-Thorpe, M., Richard, G, Thorpe, S.J.. Rapid categorization of natural images by rhesus monkeys[J]. Neuroreport 1998;9(2):303-308.
    [131]Girard, P., Hupe, J.M., Bullier, J.. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities[J]. J. Neurophysiol.2001; 85(3):1328-1331.
    [132]Bullier, J.. Integrated model of visual processing[J]. Brain Res. Brain Res. Rev. 2001;36(2-3):96-107.
    [133]Lamme, V.A., Roelfsema, P.R.. The distinct modes of vision offered by feedforward and recurrent processing[J]. Trends Neurosci.2000;23(11): 571-579.
    [134]Azouz, R., Gray, CM.. Cellular mechanisms contributing to response variability of cortical neurons in vivo[J]. J. Neurosci.1999; 19(6):2209-2223.
    [135]Schwartz E L, Rojer A S,1994. Cortical hypercolumns and the topology of random orientation maps[J]. International Conference on Pattern Recognition, 150-155.
    [136]Frazor, R.A., Albrecht, D.G., Geisler, W.S., Crane, A.M.. Visual cortex neurons of monkeys and cats:temporal dynamics of the spatial frequency response function[J]. J. Neurophysiol.2004;91(6):2607-2627.
    [137]Nishimoto, S., Arai, M., Ohzawa, I.. Accuracy of subspace mapping of spatiotemporal frequency domain visual receptive fields[J], J. Neurophysiol. 2005;93(6):3524-3536.
    [138]Allen, E.A., Freeman, R.D.. Dynamic spatial processing originates in early visual pathways[J]. J. Neurosci.2006; 26(45):11763-11774.
    [139]Malone, B.J., Kumar, V, Ringach, D.L.. Dynamics of receptive field size in primary visual cortex[J]. J. Neurophysiol.2007;97(l):407-414.
    [140]Bar, M., Kassam, K.S., Ghuman. A.S., Boshyan, J., Schmid, A.M., Dale, A.M., Hamalainen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R., Halgren, E. Top-down facilitation of visual recognition[J]. Proc. Natl. Acad. Sci. U. S. A. 2006; 103(2):449-454.
    [141]lidaka. T.. Yamashita. K.. Kashikura. K.. Yonekura. Y.. Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI[J]. Cogn. Brain Res.2004; 18(2):196-204.
    [142]Menz, M.D., Freeman, R.D.. Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism[J]. Nat. Neurosci.2003;6(l):59-65.
    [143]Menz, M.D., Freeman, R.D.. Temporal dynamics of binocular disparity processing in the central visual pathway[J]. J. Neurophysiol. 2004;91(4):1782-1793.
    [144]Lampl I, Reichova I, Ferster D. Synchronous membrane potential fluctuations in neurons of the cat visual cortex[J]. Neuron,1999,22:361-374.
    [145]Anderson J, Lampl I, Reichova I, Carandini M, Ferster D. Stimulus dependence of two-state fluctuations in membrane potential in cat visual cortex. [J] Nat Neurosci,2000,3:617-621.
    [146]Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex[J]. Nat Neurosci,2000,3:1027-34.
    [147]Steriade M, Timofeev I, Grenier F. Natural waking and sleep state:A view from inside neocortical neurons[J]. J Physiol,2001,85:1969-1985.
    [148]Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex[J]. Nature,2003,423:283-288.
    [149]McCormick DA, Shu YS, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T. Persistent cortical activity:Mechanisms of generation and effects on neuronal excitability[J]. Cerebral Cortex,2003,13:1219-1231.
    [150]Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity[J]. Nature,2003,423:288-293.
    [151]Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA. Barrage of synaptic activity control the gain and sensitivity of cortical neurons[J]. J Neurosci,2003, 23:10388-10401.
    [152]Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex[J]. Proc Natl Acad Sci USA,2003,100:13638-13643.
    [153]Sachdev RNS, Ebner FF, Wilson CJ. Effect of subthreshold Up and Down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol.2004. 92:3511-3521.
    [154]Leger LF, Stern E, Aertsen A, Heck D. Synaptic integration in rat frontal cortex shaped by network activity[J]. J Neurophysiol,2005,93:281-293.
    [155]Hasenstaub A, Shu Y, Haider B, Drqushaar U, Duque A, McCormick DA. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical network[J]. Neuron,2005,47:423-435.
    [156]MacLean J, Watson BO, Aaron GB, Yuster R. Internal dynamics determine the cortical response to thalamic stimulation[J]. Neuron,2005,48:811-823.
    [157]Fujisawa S, Matsuki N, Ikegaya Y. Single neurons can induce phase transitions of cortical recurrent networks with multiple internal States[J]. Cereb Cortex 2006,16:639-654.
    [158]Kang S, Kitano K, Fukai T. Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model. PLoS Comput Biol,2008, 4(3):el 000022.
    [159]蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,1999.109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700