用户名: 密码: 验证码:
长江上游保护区长薄鳅和红唇薄鳅种群生态及遗传结构比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长薄鳅和红唇薄鳅隶属鲤形目(Cypriniformes)鳅科(Cobitidae)沙鳅亚科(Botiinae)薄鳅属(Leptobotia),主要分布于长江上游及其支流,均属长江上游特有鱼类,其中长薄鳅己被列入《中国物种红色名录》。近年来由于过度捕捞,水电梯级开发等原因致使两种鱼类的生境不断破碎、萎缩,资源恢复和物种保护面临着巨大挑战。本研究基于2010年10月至2012年12月调查数据对长薄鳅和红唇薄鳅的资源现状、个体生物学特征、种群动态、鱼类早期资源和种群遗传结构进行了研究。论文主要研究结果如下:
     1、研究区域共调查到鱼类102种,隶属于7目17科,物种数目与沱江的相似度最高,与金沙江的相似度最低,102种鱼类中20种为长江上游特有鱼类。研究区域物种数目与历史资料相比下降较多(38种),长薄鳅和红唇薄鳅的分布区域也已发生改变,长薄鳅分布于长江上游除沱江外的其它各水域;红唇薄鳅已难在金沙江、沱江和嘉陵江采集到样本。
     2、长薄鳅和红唇薄鳅耳石、脊椎骨和鳃盖骨均具有较为明显的年轮特征,年龄的可判读率依次为耳石>脊椎骨>鳃盖骨,鳃盖骨相对较差,因此综合选择耳石作为两种鱼类的年龄鉴定材料。透射光下,两种鱼类的耳石横截面由明带和暗带相间组成,其中红唇薄鳅耳石存在普遍的原基分离现象。长薄鳅和红唇薄鳅的耳石年轮形成时间主要为3-6月。
     1525尾长薄鳅样本由1-9龄9个年龄组组成,体长59-461mm(100-250mm占72.76%),体重3.1-1333.7g(<250g占90.43%);1658尾红唇薄鳅样本由2-7龄6个年龄组组成,体长70-166mm(90-130mm占3.12%),体重4.4-60.9g(10-30g占78.71%)。两种鱼类的生长参数如下:长薄鳅-k=0.133/年、L一654.99mm、t0=-0.049、,t1=8.42年;红唇薄鳅k﹦0.232/L=220.17mm、t0=一0.053、t1=4.67年。拟合的生长方程分别为:长薄鳅L1一654.99(1一e),红唇薄鳅厶=220.17(1一e)两种鱼类的生长特征差异较大,表现为长薄鳅生长速度较慢、L。值相对较大、拐点年龄较高;红唇薄鳅生长速度较快、L。值相对较小、拐点年龄较低。
     长薄鳅胃含物共检出8类21种(属),红唇薄鳅共检出7类15种(属),两种鱼类均以小型鱼类、甲壳类、软体类和昆虫类为食,其中甲壳类和小型鱼类为长薄鳅的主要食物来源(重量百分比>75%),钩虾和蜓科幼虫为红唇薄鳅的主要食物来源(重量百分比>65%)。两种鱼类的食物组成多样性指数和均匀度指数属中等水平,优势种集中性较高,因此可初步判定长薄鳅为偏食较大型底栖动物的肉食性鱼类,红唇薄鳅为偏食较小型底栖动物的肉食性鱼类。
     长薄鳅和红唇薄鳅雌雄性比分别为1.238:1和1.222:1,初次性成熟年龄分别为2.3龄和3.5龄,相应体长分别为175.40mm和123.04mm。成熟个体平均卵径分别为1433.40±236.20um和1361.40±214.40u.m,均属一次性产卵类型鱼类。长薄鳅绝对怀卵量和相对怀卵量分别为22484±6422粒和58.74±15.64粒/g,红唇薄鳅分别为4513±1411粒和161.6±26.2粒/g,长薄鳅和红唇薄鳅的繁殖时间集中在6-7月。
     3、长薄鳅总死亡系数(Z)、自然死亡系数(M)、开发率(E)和开捕体长(L。)分别为0.810、0.208、0.740和103.96mm,红唇薄鳅分别为1.580、0.393、0.750和91.75mm。根据体长股分析模型,2011年和2012年长薄鳅年均资源量(B)为8.00吨和8.09吨,最大可持续产量(MSY)为4.08吨和4.79吨,红唇薄鳅年均资源量(B)为2.63吨和2.39吨,最大可持续产量(MSY)为1.10吨和1.01吨。根据B-H动态综合模型,长薄鳅和红唇薄鳅当前开发率(0.740和0.750)均高于最佳渔业开发率(0.430和0.636),显示两种鱼类均已处于过度捕捞状态。
     4、2010-2012年江津江段长薄鳅和红唇薄鳅年平均产卵量为0.62x108ind和0.52×108ind。根据鱼卵发育时期和流速推算,长薄鳅核心产卵场主要为弥沱(弥沱镇一黄市坝)、榕山(铜车湾—楼坊头村)、合江下(茶息亭一赤水河口)和朱杨(朱杨溪一大堂河)4个:红唇薄鳅核心产卵场主要为泸州(桓子树一泸州城南)、上白沙(石鼻子村一鹿角树)、朱沱(龟剑滩一幺店子)和朱杨下(罗林村一二溪)4个。相关分析结果显示,两种鱼类产卵行为与水温和水位的变化存在显著相关关系(P<0.05)。
     5、采用线粒体DNA序列分析了长薄鳅8个群体176尾样本、红唇薄鳅4个群体146尾样本的遗传结构,长薄鳅和红唇薄鳅Cyt b基因序列分别检出变异位点25和36个、单倍型25和39个,单倍型多样性(凰)为0.60852和0.87008,核苷酸多样性(n)为0.00089和0.00337。控制区基因序列共检出变异位点50和56个、单倍型44和55个,单倍型多样性(凰)为0.90709和0.97253,核苷酸多样性(n)为0.00315和0.00689,结果显示红唇薄鳅的遗传多样性较长薄鳅高。长薄鳅和红唇薄鳅单倍型网络结构图和N J树均未显示与地理种群相关的信息。长薄鳅和红唇薄鳅群体间和群体内的分子变异方差分析结果表明:两种鱼类种群内的变异均大于种群间的变异,变异主要来自种群内部,群体遗传分化不显著(F<0.05),种群基因交流十分频繁(Nm>1)。中性检验值Tajima's D. Fu and Li's D*、Fu and Li's F*和单错配分布结果显示长薄鳅经历了最近的种群扩张事件,红唇薄鳅难以确定是否经历了最近的种群扩张事件。
Elongate loach (Leptobotia elongata) and Redlip loach (Leptobotia rubrilabris), belong to Leptobotia of Cobitidae, Cypriniformes, are native species of the Yangtze River. These two species mainly distributed in the upper reaches and branches, due to over fishing and development of hydropower, the habitat of these fish species has been in serious danger. Elongate loach is listed in "China Species Red List". This study aims to provide a data record and comprehensive analysis of Elongate loach and Redlip loach population in the Yangtze River. The field inventory was conducted in September2010to December2012,1025specimens of elongate loach and1658specimens of redlip loach were collected from the upper reaches of the Yangtze River, Based on the inventory data, the analysis of the biological characteristics of individual fish, population dynamics, genetic structure and variation of elongate loach and redlip loach are carried out, the findings of this study are:
     1. Although there were140fish species distributed in the study area. However, only102species were collected which belong to7orders and17families in this study. Among the collected species,20species were endemic of the upper reaches of the Yangtze River. The species similarity is highest between the study area and the Tuo River, while the lowest species similarity is between the study area and the Jinsha River. Comparison with the historical data indicates that the distribution area of elongate loach and redlip loach changed. Elongate loach can be collected in all section in the upper reaches of the Yangtze River except the Tuo River, whereas redlip loach substantially disappeared in the Jinsha River, the Tuo River and the Jialing River, and samples were merely collected in mainstream and the Minjiang River recently. The average annual catches of elongate loach have been dramatically decreased more than5tonnes from the last decade. Reflecting field survey, redlip loach also experiences significant fishing pressure in the study area.
     2. Both Elongate loach and redlip loach have clear annulus differences on otolith, vertebrae and opercular. The ability of discriminating elongate loach and redlip loach decrease as the order as: otolith, vertebrae and opercular decrease. The average error between otolith and vertebrae is higher than that of otolith and opercular. Otolith was selected as verification for identifying age of elongate loach and redlip loach. Observed in transmitted light, translucent band and opaque band arranged in circles on the cross-section of otolith, and the separation phenomenon widespread in the otolith primordial of redlip loach. Results of marginal growth increment showed that new ring of otolith formed mainly from March to June both in elongate loach and redlip loach.
     The relationship between otolith radius and body length of elongate loach and redlip loach were linear correlation. Results of age identification showed that the collected elongate loach samples are in9age groups from1to9ages, the range of body length is from59to461mm, and the weight is from3.1to1333.7g. While the redlip loach samples are in6age groups from2to7ages, the body length is from70to166mm, and the weight is from4.4to60.9g. Because of no significant difference of growth parameters obtained from back-calculation body length and Shepherd method, the average value of the parameters estimated from two methods were taken advantage of as the basic data for the following analysis. In terms of elongate loach, b=3.085, k=0.133/year,L∞=654.99mm, t0=-0.049year and ti=8.42years; for redlip loach, b=2.988, k=0.232/year, L∞=220.17mm, t0=-0.053year and ti=4.67years. Growth equation of elongate loach is Lt=654.99(1-e-0.133(t+0.049),and that of redlip,oach was Lt=220.17(1-e-0.232(t+0.053)). growth characteristics of the two species were significant different: elongate loach grows more slowly with relative large L∞and high inflection point of the weight growth. But the redlip loach grows faster with relative small L∞and lower inflection point of the weight growth.
     The diet of elongate loach consisted of21prey items from a widely array of biological groups which belong to8categories, while the diet of redlip loach consisted of15prey items which belong to7categories. Elongate loach mainly feeded by fish, crustaceans, molluscs, insects and so on, its main food source were gammarid and small fish (weight percentage%W>75%). Redlip loach mainly feeded by crustaceans, molluscs and insects, and the major food were gammarus and the larvae of Aeshnidae (weight percentage%W>65%). Prey diversity and prey evenness in a medium level in both loaches, which indicated the high concentration of dominant species in diets. It can be concluded that elongate loach mainly feeded by larger benthic fauna, and redlip loach mainly feeded by smaller benthic fauna.
     Sex ratio of elongate loach and redlip loach were1.238:1and1.222:1.The minimum ages of individuals at first maturity were2.29year and3.48year, with corresponding body length of175.40mm and123.04mm, respectively. Average egg diameters of mature individuals were1433.40±236.20μm and1361.40±214.40μm, respectively, and the style of spawning of them were one-off. Absolute fecundity and relative fecundity were22484±6422egg,7224±2972egg and58.74±15.64egg/g,251.1±23.7egg/g, respectively. Survey on the early age fish population and coefficient of maturation analysis showed that the spawning activity of both elongate loach and redlip loach took place from June to July.
     3Population parameters estimated from length-converted catch curve and other empirical formulas were derived:For elongate loach:Z=0.810, M=0.208, E=0.740and LC=103.96mm. For redlip loach:Z=1.580, M=0.393, E=0.750and LC=91.75mm. According to length-based cohort analysis (LCA) model, the average annual stock biomass (B) of elongate loach were8.00tonnes and8.09tonnes, the maximum sustainable yield (MSY) were4.08tonnes and4.79tonnes, respectively in2011and2012. The average annual stock biomass (B) of redlip loach was2.63tonnes and2.39tonnes, the maximum sustainable yield (MSY) was1.10tonnes and1.01tonnes, respectively in2011and2012. According to Beverton-Holt dynamic model, the current exploitation ratios (0.740and0.750) were higher than the maximum exploitation ratio (0.430and0.636). These results suggested that both elongate loach and redlip loach had been over-exploited.
     4According to the survey results from2010to2012, the average fecundity of elongate loach and redlip loach were0.62×108ind and0.52×10ind at jiangjin section in the upper reaches of the Yangtze River. The results of spawning ground showed that18sections and10sections were suitable for elongate loach and redlip loach to spawn. The major spawning ground for elongate loach were Mituo town to Huangshiba village, Tongchewan village to Loufangtou village, Chaxiting village to Chishui estuaries and Zhuyangxi town to Datanghe village. The main spawning ground for redlip loach were Huanzishu village to Luzhou south, Shibizi village to Lujiaoshu village, Guijiantan village to Yaodianzi village and Luolin Village to Erxi Village. The spawning behavior was significantly correlated with water temperature and water level. While the water flows velocity does not have significant impact on the spawning.
     5In this study,176specimens of elongate loach were collected from8sample sites and146specimens of redlip loach collected from4sample sites for the genetic structure analysis. With the utilization of mitochondrial DNA analysis,25and36variable sites,25and39haplotypes of elongate loach and redlip loach were detected by Cyt b gene sequences, and haplotype diversity(Hd) were0.60852and0.87008, nucleotide diversity (π) were0.00089and0.00337, respectively.50and 56variable sites,44and55haplotypes of elongate loach and redlip loach were detected from control region gene sequences, and haplotype diversity (Ha) were0.90709and0.97253, nucleotide diversity (π) were0.00315and0.00689, respectively. The results showed that the genetic diversity of redlip loach was higher than elongate loach. Haplotype network structure and NJ molecular phylogenetic tree of both two fishes were not sharp branch or geographic populations. Hierarchical analysis of molecular variance (AMOVA) of Cyt b and control region gene sequence among and within populations revealed no significant genetic structuring among populations and variation were mainly within the population. Also, there was no significant population structure (Fst<0.05), and estimates of gene flows among groups were relatively high(Nm>1). Significant values of Tajima's D, Fu and Li's D*and Fu and Li's F*, together with uni-modal mismatch distribution indicated that elongate loach had experienced recent demographic expansion, but the redlip loach had not clear experienced recent demographic expansion.
引文
[1]鲍新国,谢文星,黄道明,等.金沙江长鳍吻年龄与生长的研究.安徽农业科学,2009,37(21):10017-10019.
    [2]蔡焰值,何长仁,蔡烨强,等.中华倒刺鲤生物学初步研究.淡水渔业,2003,33(3):16-18.
    [3]曹文宣,常剑波,乔晔,等.长江鱼类早期资源.第一版,北京:中国水利水电出版社.2007.
    [4]曹玉琼.异鳔鳅鸵的年龄与生长、繁殖生物学研究.华中农业大学硕士学位论文,2003.
    [5]柴辛娜,李明,张随成,等.基于鱼耳石元素空间分布鉴定鲫鱼生长年龄.分析化学,2009,37(Z):83-83.
    [6]常剑波.长江中华鲟繁殖群体结构特征和数量变动趋势研究.[博士论文],中国科学院研究生院,1999.
    [7]陈国宝,李永振,陈丕茂,等.鱼类最佳体长频率分析组距研究.中国水产科学,2008,15(4):659-666.
    [8]陈馄慈,邬国民,李恒颂.珠江斑鲮年龄和生长的研究.中国水产科学,1999,6(4):62-66.
    [9]陈建武,汪登强,张燕,等.长江铜鱼种群遗传结构的微卫星分析.长江流域资源与环境,2010,19(Z1):138-142.
    [10]陈进,黄薇,张卉.长江上游水电开发对流域生态环境影响初探.水利发展研究,2006,8: 10-17.
    [11]陈康贵,王志坚,岳兴建.长薄鳅消化系统结构研究.西南农业大学学报,2002,24(6):487-490.
    [12]陈永柏,廖文根,彭期冬,等.四大家鱼产卵水文水动力特性研究综述.水生态学杂志,2009,2(2):130-133.
    [13]程鹏.长江上游圆口铜鱼的生物学习性.[硕士学位论文],华中农业大学,2010.
    [14]褚新洛,陈银瑞.云南鱼类志(上册).北京:科学出版社,1989.
    [15]邓辉胜,何学福.长江干流长鲭吻绚的生物学研究.西南农业大学学报(自然科学版),2005,27(5):707-708.
    [16]邓其祥,余志伟,李操.二滩库区及相邻江段的鱼类区系.四川师范学院学报,2000,21 (2): 128-131.
    [17]刁晓明,司容树.铜鱼年龄与生长的初步研究.四川动物,1994,13(1):32-33.
    [18]丁宝清,刘焕章.长江流域鱼类食性同资源集团组成特征分析.四川动物,2011,30(1):31-35.
    [19]丁瑞华.四川鱼类志.成都:四川科学技术出版社,1994.
    [20]丁瑞华.沱江鱼类资源及渔业问题.资源开发与保护杂志,1989,5(3):13-19.
    [21]杜时强,冯波,侯刚,等.北部湾口眼镜鱼年龄与生长.水产学报,2012,36(4):576-583.
    [22]段辛斌.长江上游鱼类资源现状及早期资源调查研究.[硕士学位论文],华中农业大学,2008.
    [23]段中华,常剑波,孙建贻.长鳍吻胸年龄和生长的研究.淡水渔业,1991,2:12-14.
    [24]段中华,孙建贻,常剑波,等.网湖鲫鱼的生长与资源评估.湖泊科学,1994,6(3):257-266.
    [25]段中华,孙建贻.瓦氏黄颡鱼年龄与生长的研究.水生生物学集刊,1999,23(6):617-623.
    [26]方翠云,孟妍,祖国掌,等.长江铜陵段紫薄鳅个体生物学与资源保护.水生态学杂志,2011,2:100-104.
    [27]高欣,谭德清,刘焕章,等.长江上游龙溪河厚颌鲂种群资源的利用现状和保护.四川动物,2009,28(3):329-333.
    [28]桂建芳.脊椎动物线粒体DNA的进化遗传学.动物学杂志,1990,(25):50-55.
    [29]郭焱,蔡林钢,张人铭.赛里木湖高白鲑的年龄与生长.大连水产学院学报,2005,20(2):100-104.
    [30]郭志强,刘绍平,段辛斌,等.大宁河红尾副鳅年龄与生长的研究.淡水渔业,2008,6:14-18.
    [31]何德奎,陈毅峰,陈宜瑜,等.特化等级裂腹鱼类的分子系统发育与青藏高原隆起.科学通报,2003,48(22):2354-2362.
    [32]何德奎,陈毅锋.高度特化等级裂腹鱼类分子系统发育与生物地理学.科学通报,2007,52(3):303-312.
    [33]何学福.铜鱼的生物学研究.西南师范学院学报.1980,2:60-76.
    [34]贺舟挺.西藏拉萨异齿裂腹鱼年龄与生长的研究.[硕士学位论文].华中农业大学,2005.
    [35]胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵场的调查研究.淡水渔业,1992,5:6-10.
    [36]黄小铭,张耀光,江星,等.长薄鳅外周血细胞的显微结构和细胞化学特征研究.四川动物,2012,31(1):59-63.
    [37]黄燕,岳兴建,王芳,等.沱江宽体沙鳅个体生殖力的研究.四川动物,2011,6:916-920.
    [38]黄志坚,徐晓鹏,唐晶晶,等.淡水鱼类线粒体DNA D-loop基因的引物设计和应用.中山大学学报:自然科学版,2009,48(4):84-88.
    [39]姜伟,刘焕章,段中华,等.以标志物对长江上游漂流性鱼卵漂流方式的研究.水生生物学报,2010,34(6):1172-1178.
    [40]姜伟.长江上游珍稀特有鱼类国家级自然保护区干流江段鱼类早期资源研究.[博士学位论文],中国科学院研究生院,2009.
    [41]孔焰.长江上游两种铜鱼属鱼类种间特异性ISSR分子标记及遗传多样性研究.[硕十学位论文],西南大学,2010.
    [42]库么梅,温小波,罗静波,等.长薄鳅池塘移植养殖试验.湖北农学院学报,1999-19(2): 146-148.
    [43]库么梅.长薄鳅食性的初步研究.水利渔业,1999,19(5):4-5.
    [44]乐佩琦,陈宜瑜.中国濒危动物红皮书:鱼类.北京:科学出版社,1998.
    [45]乐佩琦.中国动物志·硬骨鱼纲·鲤形目(下卷).北京:科学出版社,2000.
    [46]冷永智,何立太,魏清和.葛洲坝水利枢纽截流后长江上游铜鱼的种群生物学及资源量估算.1984,5:21-25.
    [47]黎明政,姜伟,高欣,等.长江武穴江段鱼类早期资源现状.水生生物学报,2010,34(6): 1211-1217.
    [48]李斌.三峡库区小江鱼类食物网结构、营养级关系的C、N稳定性同位素研究.[博士学位论文],西南大学,2012.
    [49]李凡,李显森,赵宪勇.底拖网调查数据的Delta—模型分析及其在黄海小黄鱼和银鲳资源评估中的应用.水产学报,2008,32(1):145-151.
    [50]李红清,李德旺,雷明军.长江流域重要生态环境敏感区分布现状.长江流域资源与环境,2012,12(Z1):82-87.
    [51]李红清,李迎喜,雷阿林,等.长江流域珍稀濒危和国家重点保护植物综述.人民长江,2008,39(8):17-24.
    [52]李红清.长江流域自然保护区建设现状与生态保护.长江流域资源与环境,2011,20(2):150-155.
    [53]李娜,陈少波,谢起浪,等. 闽浙地区香鱼线粒体Cyt b基因和D-loop区序列多态性分析. 遗传,2008,30(7): 919-925.
    [54]李文静,王剑伟,谭德清,等.厚颌鲂胚后发育观察.水产学报,2005,29(6):729-736.
    [55]李文静,王剑伟,谢从新,等.厚颌鲂的年龄结构及生长特性.中国水产科学,2007,14(2):215-222.
    [56]李修峰,黄道明,谢文星,等.汉江中游产漂流性卵鱼类产卵场的现状.大连水产学院学报,2006,21(2):105-111.
    [57]李跃飞,李新辉,谭细畅,等.珠江中下游鲮早期资源分布规律.中国水产科学,2011,18(1): 171-177.
    [58]李壮,刘群.应用渔业体长分析方法ELEFAN和SLCA估算鱼类生长参数的研究.海洋湖沼通报,2007(3):81-87.
    [59]梁象秋,方纪祖,杨和岑.水生生物学(形态和分类).北京:中国农业出版社,1996.
    [60]梁银铨,胡小建,虞功亮,等.长薄鳅仔稚鱼发育和生长的研究.水生生物学报,2004, 28(1):96-100.
    [61]梁银铨,胡小建.长薄鳅苗种培育技术总结.水利渔业,2001,21(2):3-4.
    [62]梁银铨,胡小建.长薄鳅人工繁殖技术的研究.水生生物学报,2001,25(4):422-424.
    [63]梁银铨,胡小健,黄道明,等.长薄鳅年龄与生长的研究.水利渔业,2007,27(3):29-31.
    [64]梁银铨,谢从新,胡小建,等.长薄鳅胚胎发育的观察.水生生物学报,1999,23(6):631-635.
    [65]粱秩粲.西江49种鱼类的早期发育特征,见:珠江水系渔业资源调查研究报告,珠江水系渔业资源调查编委会.1985,255-295.
    [66]廖小林.长江流域几种重要鱼类的分子标记筛选开发及群体遗传分析.[博士学位论文],中国科学院研究生院,2006.
    [67]刘飞,吴金明,王剑伟.高体近红鮊的生长与繁殖.水生生物学报,2011,35(4):586-595.
    [68]刘红艳,陈大庆,刘绍平,等.长江上游中华沙鳅遗传多样性研究.淡水渔业,2009,39(3): 8-13.
    [69]刘建虎,卿兰才.中华倒刺鱼巴年龄与生长研究.重庆水产,2002,58:27-32.
    [70]刘建康,曹文宣.长江流域的鱼类资源及其保护对策.长江流域资源与环境,1992,1(1):17-22.
    [71]刘军,王剑伟,苗志国,等.长江上游宜宾江段长鳍吻觞种群资源量的估算.长江流域资源与环境,2010,19(3):276-280.
    [72]刘清,苗志国,谢从新,等.长江宜宾江段渔业资源调查.水产科学,2005,24(7):47-49.
    [73]刘绍平,王珂,袁希平,等..怒江扎那纹胸姚的遗传多样性和遗传分化.遗传,2010.32(3):254-263.
    [74]刘向伟,杜浩,张辉,等.长江上游新市至江津段大型底栖动物漂流调查.中国水产科学,2009,16(2):266-273.
    [75]吕国庆,李思发.鱼类线粒体DNA多态研究和进展,中国水产科学,1998,5(3):94-103.
    [76]吕植,解焱,郑易生,等.高度重视水电过度开发对长江上游特有鱼类的影响.中国经济时报,2009,5(7).
    [77]罗宏伟,段辛斌,王珂,等.三峡库区3种银鱼线粒体DNA细胞色素b基因序列多态性分析.淡水渔业,2009,39(6):16-21.
    [78]马惠钦,何学福.长江干流圆筒吻胸的年龄与生长.动物学杂志,2004,39(3):55-59.
    [79]蒙子宁,杨丽萍,吴丰,等. 斜带石斑鱼、赤点石斑鱼RAPD和线粒体Cyt b基因序列变异分析. 中山大学学报:自然科学版,2007,46(1): 75-80.
    [80]孟立霞,张家波.雅袭江5种(亚种)裂腹鱼类遗传关系RAPD分析.中国水产,2007, 6: 73-76.
    [81]苗志国.中华间吸鳅食性及年龄与生长的初步研究.水生生物学报,1999,23(6):604-609.
    [82]倪海儿.尔海宽体舌鳎的个体生殖力.水产学报,2000,24(4):318-323.
    [83]祁得林.黄河上游花斑裸鲤cyt b基因的序列变异和遗传多样性.动物学研究,2009,30(3):255-261.
    [84]庆宁,吕凤义,廖伟群,等.中间黄颗鱼群体遗传变异与亲缘生物地理.动物学报,2007,53(5):845-852.
    [85]邱春琼,韩宗先,傅晓波,等.长江涪陵段鱼类资源初报.大众科技,2009,12:135-136.
    [86]邱顺林,陈大庆,林康生.长江鲥鱼种群数量变动的初步研究.中国水产科学研究院学报,1988,1(1):36-46.
    [87]邱顺林,陈大庆.长江中游江段四大家鱼资源调查.水生生物学报,2002,26(6):716-718.
    [88]区又君,廖锐,李加儿,等.驼背鲈的年龄与生长特征.水产学报,2007,31(5):624-632.
    [89]任玉芹,陈大庆,刘绍平,等. 三峡库区澎溪河鱼类时空分布特征的水声学研究. 生。态学报,2012,32(6):1734-1744.
    [90]任玉芹,王珂,段辛斌,等.水声学探测在江河鱼类资源评估中的技术分析.渔业现代化,2010,37(2):64-68.
    [91]阮景荣.武汉东湖鲢、鳙生长的儿个问题的研究.水生生物学报,1986,10(3):252-264.
    [92]申严杰,蒲德永,高梅,等.福建纹胸觥年龄与生长的初步研究.西南农业大学学报,2005,27(1):106-110.
    [93]沈伟,姜亚洲,程家骅.东海发光鲷的年龄与生长特性.中国水产科学,2009,16(4):588-595.
    [94]施琼芳.鱼类生理学.北京:农业出版社,1991,308-318.
    [95]宋君,宋昭彬,岳碧松,等.长江合江江段岩原鲤种群遗传多样性的AFLP分析.四川动物,2005,24(4):495-499.
    [96]宋君.岩原鲤种群遗传多样性研究.[硕士学位论文],四川大学,2006.
    [97]孙宝柱,李晋,但胜国,等.张氏新的繁殖生物学特性.水生生物学报,2010,34(5):998-1003.
    [98]孙宝柱,李晋,但胜国,等.张氏箭的年龄结构及生长特性.淡水渔业,2010,40(2):3-8.
    [99]孙大东,杜军,周剑,等.长薄鳅研究现状与保护对策.四川环境,2010,29(6):98-101.
    [100]孙明波,谷孝鸿,曾庆飞,等.不同渔业方式水库鱼类资源的水声学评估.应用生态学报,2013,24(1): 235-242.
    [101]孙玉华.中国胭脂鱼遗传多样性及弧口鱼科分子系统学研究.[博士学位论文],武汉大学,2004.
    [102]谭细畅,李新辉,陶江平,等.西江肇庆江段鱼类早期资源时空分布特征研究.淡水渔业,2007,37(4):37-40.
    [103]谭细畅,史建全,张宏.EY60回声探测仪在青海湖鱼类资源量评估中的应用.湖泊科学,2009,21(6):865-872.
    [104]唐会元,杨志,高少波,等.金沙江中游圆口铜鱼早期资源现状.四川动物,2012,31(3):416-425.
    [105]唐琼英,刘焕章,杨秀平,等.沙鳅亚科鱼类线粒体DNA控制区结构分析及系统发育关系的研究.水生生物学报,2005,6:645-653.
    [106]唐锡良.长江上游江漳江段鱼类早期资源研究.[硕士学位论文],西南大学,2010.
    [107]陶江平,乔哗,谭细畅,等.中华鲟回声信号判别分析及其在葛洲坝产卵场的空间分布.科学通报,2009,54(1):1-8.
    [108]田辉伍,岳兴建,陈大庆,等.怒江东方墨头鱼的年龄结构与生长特性.动物学杂志,2010,45(1):104-110.
    [109]汪松,解焱.中国物种红色名录:第一卷红色名录.北京:高等教育出版社,2004.
    [110]王宝森,姚艳红,王志坚.短体副鳅的胚胎发育观察.淡水渔业,2008,38(2):70-73.
    [111]王昌燮.长江中游“野鱼苗”的种类鉴定.水生生物学集刊,1959,(3):315-343.
    [112]王登玉.中华乌塘鳢线粒体DNA控制区结构分析与群体遗传学研究.[硕士学位论文],厦门大学,2008.
    [113]王继隆,唐富江,刘伟.大麻哈鱼的年龄与生长.水生生物学报,2012,36(6):1149-1155.
    [114]王剑伟.稀有舸鲫的繁殖生物学.水生生物学报,1992,16(2):165-174.
    [115]王静.雌核发育二倍体鲫鲤克隆体系的建立及其衍生后代生物学特性的研究.[硕士学位论文],湖南师范大学,2010.
    [116]王俊,王美荣,但胜国,等.赤水河半豁年龄与生长.四川动物,2012,31(5):713-719.
    [117]王凯,韦善忠,罗江,等.DNA分子标记及其进展.黑龙江八一农垦大学学报,2003,15(1):38-43.
    [118]王美荣,杨少荣,刘飞,等.长江上游圆筒吻绚年龄与生长.水生生物学报,2012,262-269.
    [119]王敏,王卫民,鄢建龙.泥鳅和大鳞副泥鳅年龄与生长的比较研究.水利渔业,2001,1:7-9.
    [120]王生,田辉伍,罗宏伟,等.异鳔鳅舵年龄结构、生长特性与生活史类型.动物学杂志,2012,47(3): 1-8.
    [121]王卫民,AMARARATNEYakupitiyage.徐家河水库近太湖新银鱼(Neosalanx pseudotaihuensis Zhang)的性腺发育与产卵类型.湖泊科学,1999,11(4):338-345.
    [122]王雪辉,邱永松,杜飞雁.珠江口水域鳓鱼生长和死亡参数估算.热带海洋学报,2004,23(4):42-48.
    [123]王志坚,殷江霞,张耀光.长薄鳅的精巢发育和精子发生.淡水渔业,2009,39(1):3-9.
    [124]王志玲,吴国犀.杨德国,等.长江中上游大口鲶的年龄和生长.淡水洫业,1990,6:3-7.
    [125]吴江,吴明森.金沙江的鱼类区系.四川动物,1990,9(3):23-26.
    [126]吴江,吴明森.雅砻江的渔业自然资源.四川动物,1986,1:1-10.
    [127]吴金明,娄必云,赵海涛,等.赤水河鱼类资源量的初步估算.水生态学杂志,2011,32(3):99-101.
    [128]吴金明,王芊芊,刘飞,等.赤水河赤水段鱼类早期资源调查研究.长江流域资源与环境,2010,19(11):1271-1276.
    [129]吴金明,赵海涛,苗志国,等.赤水河鱼类资源的现状与保护.生物多样性,2010,18(2): 168-178.
    [130]吴青,王强,蔡礼明,等.齐口裂腹鱼的胚胎发育和仔鱼的早期发育.大连水产学院学报,2004,19(3):218-221.
    [131]吴清江.长吻能(Leiocassis longirostris Gunther)的种群生态学及其最大持续渔获量的研究.水生生物学集刊,1975,5(3):387-406.
    [132]伍献文.中国鲤科鱼类志(上卷).上海:海科学技术出版社,1977.
    [133]夏曦中.吻婀属和似绚属鱼类物种分化的比较.[硕士学位论文],华中农业大学,2005.
    [134]复颖哲,盛岩,陈宜瑜.利用线粒体DNA控制区序列分析细鳞鲑种群的遗传结构.生物多样性,生物多样性,2006,14(1):48-54.
    [135]项方,邹记兴,邓凤姣,等. 用细胞色素b部分序列研究斑马鱼的分子分类与系统发育. 动物学杂志,2004,39(5): 13-18.
    [136]肖武汉,张亚平.银鲴自然群体线粒体DNA的遗传分化.水生生物学报,2000,24(1):1-10.
    [137]辛建峰,杨宇峰,段中华,等.长江上游长鳍吻觞的种群特征及其物种保护.生态学杂志,2010,29(7):1377.1381.
    [138]辛建峰,杨宇峰,刘焕章.长江上游长鲭吻购年龄与生长的研究.四川动物,2010,29(3):352-356.
    [139]熊飞,陈大庆,刘绍平,等.青海湖裸鲤不同年龄鉴定材料的年轮特征.水生生物学报,2006,30(2):185-191.
    [140]熊美华.长江五种鲤科鱼类早期形态发育与生长.[博士学位论文],中国科学院研究生院,2006.
    [141]熊天寿,王慈生,刘方贵,等.重庆江河鱼类.重庆师范学院学报,1993,10(2):27-32.
    [142]徐钢春,顺若波,闻海波,等.澄湖似刺鳊的年龄和生长特征.中国水产科学,2009, 16(3):307-315.
    [143]徐念,史方,熊美华,等.三峡库区长鳍吻觞种群遗传多样性的初步研究.水生态学杂志,2009,2(2):113-116.
    [144]徐薇,乔哗,龚昱田.长江上游鱼类资源变迁及其保护评析.人民长江,2012,43(1):67-71.
    [145]薛正楷,何学福.黑尾近红鲴的年龄和生长研究.西南师范大学学报,2001,26(6):712-717.
    [146]严朝晖,史为良.大伙房水库鲢鳙的生长及生长模型.水产学报,1995,19(1):28-34.
    [147]严利平,李建生,唐敏等.应用体长结构VPA评估东海群系澳洲鲐资源量.中国水产科学,2007,14(增刊):97-102.
    [148]阎雪岚,唐文乔,杨金权.基于线粒体控制区的序列变异分析中国东南部沿海凤鲚种群遗传结构.生物多样性,2009,17(2):143-150.
    [149]杨慧荣,赵会宏,蒙子宁,等.赤眼鳟线粒体D-loop和Cyt b基因序列的对比分析.中山大学学报(自然科学版),2012,51(5):100-106.
    [150]杨明生,丁夏.中华沙鳅的繁殖生物学研究.水生态学杂志,2010,3(2):38-41.
    [151]杨明生,李建华,黄孝湘.滠河花斑副沙鳅的繁殖生态学研究.水利渔业,2007,5:84-85.
    [152]杨明生,王剑伟,李文静.厚颌鲂年龄材料的比较.动物学杂志,2004,39(2):58-61.
    [153]杨明生.花斑副沙鳅的年龄和生长特征.孝感学院学报,2009,6:17-19.
    [154]杨明生.花斑副沙鳅的胚胎发育观察.淡水渔业,2004,34(6)34-36.
    [155]杨瑞斌,边书京,周洁,等.梁子湖麦穗鱼食性的研究.华中农业大学学报,2004,23(3):331-334.
    [156]杨少荣,马宝珊,孔焰,等.三峡库区木洞江段圆口铜鱼幼鱼的生长特征及资源保护.长江流域资源与环境,2010,19(Z2):52-57.
    [157]杨志,乔哗,张轶超,等.长江中上游圆口铜鱼的种群死亡特征及其物种保护.水生态学杂志,2010,2(2):50-55.
    [158]杨志,万力,陶江平,等.长江干流圆口铜鱼的年龄与生长研究.水生态学杂志,2011,4:46-52.
    [159]易伯鲁,梁秩燊.长江家鱼产卵场的自然条件和促使产卵的主要外界因素.水生生物学集刊,1964,5(1):1-15.
    [160]易伯鲁,余志堂,梁秩粲.葛洲坝水利枢纽与长江四大家鱼.湖北:湖北科学技术出版社,1988.
    [161]阴双雨,刘明典,田辉伍,等.中华鲱鲇年龄鉴定及生长特征.动物学杂志,2011,46(2):12-21.
    [162]殷名称.鱼类生态学.北京:中国农业出版社,1995.
    [163]殷瑞,刘群.应用体重结构的实际种群分析模型估算捕捞死亡系数和资源繁的初步研究.南方水产,2007,3(2):36-41.
    [164]于晓东,罗大宏,罗宏章.长江流域鱼类物种多样性大尺度格局研究.生物多样性,2005,13(6):473-495.
    [165]余忐堂,邓中辫,许蕴玕,等.葛洲坝水利枢纽兴建后长江干流四大家鱼产卵场的现状及工程对家鱼繁殖影响的评价,见:葛洲坝水利枢纽与长江四大家鱼(易伯鲁,余忐堂,梁秩粲等著),湖北:湖北科学技术出版社.1988,47-68.
    [166]余志堂,梁秩桑,易伯鲁.铜鱼和圆口铜鱼的早期发育.水生生物学集刊,1984,8(4):371-380.
    [167]袁娟,张其中,李飞,等.铜鱼线粒体控制区的序列变异和遗传多样性.水生生物学报,2010,34(1):9-19.
    [168]袁希平,严莉,徐树英,等.长江流域铜鱼和圆口铜鱼的遗传多样性.中国水产科学,2008,15(3):377-385.
    [169]岳兴建.怒江裂腹鱼类的种群遗传结构及历史动态.[博十学位论文],西南大学,2010.
    [170]曾烯,周小云.嘉陵江流域鱼类区系分析.华中农业大学学报,2012,31(4):506-511.
    [171]詹秉义.渔业资源评估.北京:中国农业出版社,1995.
    [172]张健东.中华鸟塘鳢的生长、生长模型和生活史类型.生态学报,2002,22(6):841-846.
    [173]张俊,闵要武,陈新国.三峡水库动库容特性分析.人民长江,2011,42(6):90-93.
    [174]张庆,李凤莲,付蔷,等.云南昭通北部金沙江地区的鱼类多样性及保护.中国生物多样性保护与研究进展,2006,347-354.
    [175]张松.长江上游合江江段渔业现状评估及长鳍吻觞的资源评估.[硕士学位论文],华中农业大学土,2003.
    [176]张堂林.扁担塘鱼类生活史策略、营养特征及群落结构研究.[博士学位论文],中国科学院研究生院,2005.
    [177]赵刚,周剑,杜军,等.长薄鳅(Leptobotia elongata)线粒体DNA控制区遗传多样性研究.西南农业学报,2010,23(3):930-937.
    [178]赵鹤凌.胭脂鱼胚胎发育的观察.水利渔业,2006,26(1):34-35.
    [179]赵天,刘建虎.长江江津江段中华沙鳅耳石及年龄生长的初步研究.淡水渔业,2008,5:46-50.
    [180]赵云芳.长薄鳅生物学特性的初步观察.四川动物,1995,14(3):122.
    [181]郑颖,戴小杰,朱江峰. 长江河口定置张网渔获物组成及其多样性分析. 安徽农业科学,2009,37(20): 9510-9513.
    [182]周灿,祝蓠,刘焕章.长江上游圆口铜鱼生长方程的分析.四川动物,2010,29(4):510-516.
    [183]周灿.长江上游圆口铜鱼生长及种群特征.[硕士学位论文],山东大学,2010.
    [184]周启贵,何学福.长鳍吻绚生物学的初步研究.淡水渔业,1992,5:11-14.
    [185]朱秀芳,陈毅峰.巨须裂腹鱼年龄与生长的初步研究.动物学杂志,2009,44(3):76-82.
    [186]朱雪莲,王志勇,陈明茹.系统地理学的研究及其在鱼类上的应用.浙江海洋学院学报,2006,2:183-19.
    [187]庄平,曹文宣.长江中上游铜鱼的生长特性.水生生物学报,1999,23(6):577-583.
    [188]Alicja B, Iwona J, Dorota J, et al. Age and growth of the karyologically identified spined loach Cobitis taenia (Teleostei, Cobitidae) from a diploid population. Folia Zoologica,2008, 57 (1-2):155-161.
    [189]Allen H A, Kenneth H C, Joeclyn L N. Application of an ion-exchange separation technique and thermal ionization mass spectrometry to Ra226 determination in otoliths for radiometric age determination of long-lived fishes. Can J Fish Aquat Sci,1999,56:1329-1338.
    [190]Araya M, Cubillos L A. Evidence of two phase growth in elasmobranchs. Environ Biol Fish, 2006,77:293-300.
    [191]Ault J S, Bohnsack J A, Meester G A. A retrospective (1979-1996) multispecies assessment of coral reef fish stocks in the Florida Keys. Fish Bull,1998,96 (3),395-414.
    [192]Avise J C. Intraspecifie Phylogeography: the mitochondrial bridge between population genetics and systematics. Annu Rev Eeol Evol Syst,1987,18:489-522.
    [193]Bagenal T B, Tesch E W. Age and growth//Bangenal T. Methods for Assessment of Fish in Fresh waters. Oxford:Blackwell Scientific Publications,1978,101-136.
    [194]Baker M S, Wilosn C A, VanGent D L. Testing assumptions of otolith radiometric aging with two long lived from the northern Gulf of Mexico. Can J Fish Aquat Sci,2001,58:1244-1252.
    [195]Bandelt H J, Forster P. Median-joining networksfor inferring intraspecific phylogenies. Mol Biol Evol,1999,16 (1):37-48.
    [196]Beamish R J, Fournier D A. A method for comparing the precision of a set of age determinations. Can J Fish Aquat Sci,1981,38:982-983.
    [197]Beverton R J H, Holr S J. On the dynamics of exploited fish populations. New York:Fish Invest Press,1957.
    [198]Beverton R J H. Patterns of reproductive strategy parameters in some marine teleost fishes. J Fish Biol,1992,41 (Suppl.B):137-160.
    [199]Blunh B A, Brey T. Age determination in the Antarctic shrimp Notocrangon anatarcticus (Crustaces:Decapoda) using the auto fluorescent lipofuscin. Marine Biology,2001,138: 247-257.
    [200]Bowen S H. Quantitative description of the diet. pages 513-532 in B R Murphy and D W Willis, editers, fisheries techniques. American Fisheries Society Bethesda Maryland USA, 1996.
    [201]Bream R A, Ebel W J. A back-pack shocker for collecting lamprey ammocoetes. Progressive Fish-Culturist,1961,23:87-91.
    [202]Britten R J, Kohne D E. Repeated sequence in mitoehondrial DNA. Science,1968,161: 529-540.
    [203]Brown W M, George M. Rapid evolution of animal mitochonal DNA. Proceeding of the National Academy of Sciences of the US,1979,76:95-130.
    [204]Campana S E, Thorrold S R. Otoliths, increments, and elements:Keys to a comprehensive understanding of fish populations. Can J Fish Aqant Sci,2001,58 (1):30-38.
    [205]Castro M S, Bonecker A C T, Valentin J L. Seasonal variation in fish larvae at the entrance of Guanabara Bay, Brazil. Brazilian Archives of Biology and Technology,2005,48:121-128.
    [206]Chang W Y B. A statistical method for evaluating the reproducibility of age determination. Can J Fish Aquat Sci,1982,39:1208-1210.
    [207]Chen Y F, Jackson D A, Harvey H H. A comparison of von BertanlanfFy and polynomial functions in modeling fish growth data. Can J Fish Aquat Sci,1992,49:1228-1235
    [208]Cortes.E. A critical review of methods of studying fish feeding based on analysis of stomach contents:application to elasmobrabch fishes. Can J Fish Aquat Sci,1997,54(32):726-738.
    [209]Curtis G L, Ramsey J S, Scamecchia D L. Habitat use and movements of shovelnose sturgeon in pool 13 of the upper Mississippi River during extreme low flow conditions. Env Biol Fish, 1997,50 (2):175.
    [210]Cushing D H. Fisheries biology:a study in population dynamics. Madison:University of Wisconsin Press.1981,2:295.
    [211]Davor Z, Milorad M, Perica M et al.. Age and growth of Sabanejewia balcanica in the Rijeka River, central Croatia. Folia Zool,2008,57 (1-2):162-167.
    [212]Dong C L, Bruce D M, Garry R R, et al.. Using otolith weight-age relationships to predict age based metrics of coral reef fish populations across different temporal scales. Fisheries Research,2007,83:216-227.
    [213]Dynesius M C. Nilsson, Fragmentation and flow regulation of river systems in the northern third of the world. Science,1994,266 (5186):753-762.
    [214]Farias I P, Orti G, Sampaio I, et al.. The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. J Mol Evol,2001,53(2): 89-103.
    [215]Froese R, Binohlan C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology,2000,56 (4):758-773.
    [216]Gauanilo F C, Pauly D. FAO-ICLARM stock assessment tools (FiSAT), Reference Manual. Rome:FAO World Fish Center,1997.
    [217]Gaughan D J, I C Potter. Analysis of diet and feeding strategies within an assemblage of estuarine larval fish and an objective assessment of dietary niche overlap. Fish Bull,1997, 95:722-731.
    [218]Gayanilo F C, Sparre P, Pauly D. FAO-ICLARM stock assessment tools Ⅱ Revised version. Rome:FAO World Fish Center,2005.
    [219]Ghosh S, Sivadas M, Abdussamad E M, et al. Fishery, population dynamics and stock structure of frigate tuna Auxis thazard (Lacepede,1800) exploited from Indian waters. Indian Journal of Fisheries,201259 (2):95-100.
    [220]Goncalves J M S, Bentes L, Coelho R, et al.. Age and growth, maturity, mortality and yield-per-recruit for two banded bream (Diplodus vulgaris Geoffr) from the south coast of Portugal. Fisheries Research,2003,62:349-359.
    [221]Grover M C. Changes in size and age at maturity in a population of kokanee ureka period of declining growth conditions. J Fish Biol,2005,66:122-134
    [222]GuangXun Liu, Jian Zhou, DingGang Zhou. Mitochondrial DNA reveals low population differentiation in elongate loach, Leptobotia elongata (Bleeker):implications for conservation. Environmental Biology of Fishes,2012,93 (3):393-402.
    [223]Guangxun Liu, Jian Zhou, Dinggang Zhou. Mitochondrial DNA reveals low population differentiation in elongate loach, Leptobotia elongata (Bleeker):implications for conservation. Environmental Biology of Fishes,2012,93 (3):393-402.
    [224]Guliand J A. Fish stock assessment A manual of basic methods. New York:FA O/Wiley Press, 1983,1.
    [225]Gulland J A. Fish stock assessment: A manual of basic methods. New York:FAO/Wiley Ser 1,1971,223.
    [226]Gunderson D R. Surveys of fisheries resources. New York:John Wiley and Sons,1993:1-31.
    [227]Hansson S. Methods of study ing fish feeding:a comment. Can J Fish Aquat Sci,1998,55: 2706-2707.
    [228]He YF, Wang JW, Sovan L, et al.. Structure of endemic fish assemblages in the upper Yangtze River Basin. River Research and Applications,2011,27:59-75.
    [229]Hoenig J M, Csirke J, Sanders M J, et al.. Data acquisition for length-based stock assessment. Report of Working Group I/Pauly D, Morgan G R. Length-based methods in fisheries research. Intentional Center for Living Aquatic Resources Management Kuwait Institute for Scientific Research,1987,13:343-352.
    [230]Hong Yan Liu, Fei Xiong, Xin Bin Duan, et al.. A first set of polymorphic microsatellite loci isolated from Rhinogobio cylindricus. Conservation Genet Resour,2012,4:307-310.
    [231]HongYan Liu, Fei Xiong, XinBin Duan, et al.. Isolation and characterization of polymorphic microsatellite loci from elongate loach (Leptobotia elongata), a threatened fish species endemic to the Yangtze River. Conservation Genetics Resources,2012,4 (1):129-131.
    [232]Jones R. Assessing the effects of changes in exploitation pattern using length composition data. Rome:FAO Fisheries Technical Paper,1984.
    [233]Kai Y, Nakayama K, Nakabo T. Genetic differences among three colour morph types of the black rockfish, Sedates interims, inferred from mtDNA and AFLP analyses. Mol Ecol,2002, 11 (12):2591-2598.
    [234]Katsanevakis S, Maravelias C D. Modeling fish growth:multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish Fish,2008,9:178-187.
    [235]Kelso W E, Rutherford D A. Collection, Preservation, and Identification of Fish Eggs and Larvae, in Fisheries techniques, Murphy B R, Willis D W. Editors. American Fisheries Society:Bethesda, Maryland,1996,255-302.
    [236]Kotlik P, Berrebi P. Genetic subdivision and biogeography of the Danubian phylogenetic analysis of mitochondrial DNA variation. Mol Phylogenet Evol,2002,24(1):10-18.
    [237]Krebs C J. Ecological Methodology.2nd ed. Petaluma: Addison Wesley Longman,1999: 620-620.
    [238]Lam T J. Environmental influences on gonadal activity in fish. Hoar W S ed, Fish physiology, London:Academic Press,1983:65-166.
    [239]Li GQ, Li SF, Bernatchez L. Mitochondrial DNA diversity, population structure, and conservation genetics of four native carps within the Yangtze River, China. Can J Fish Aquat Sci,1997,54:47-58.
    [240]Liao H, Pierce C L, Larscheid J G. Diet Dynamics of the Adult piscivorous Fish Community in Spirit Lake, Iowa, USA 1995-1997. Ecology of Freshwater Fish,2002,11:178-189.
    [241]Liao H, Pierce C L, Larscheid J G. Empirical assessment of indices of prey importance in diets of predacious fish. Trans Amer Fish Soc,2001,130:583-591.
    [242]Librado P, Rozas J. DnaSP v5:a software for comprehen-sive analysis of DNA polymorphism data. Bioinformatics,2009,25 (11):1451-1452.
    [243]Macdonald P D M, Pitcher T J. Age-groups from size frequency data: a versatile and efficient method of analyzing distribution mixtures. Fish Res Board Can,1979,36:987-1001.
    [244]Markle D F. Phosphate buffered formalin for long term preservation of formalin fixed ichthyoplankton. Copeia,1984:525-528.
    [245]Marvin A B, Geoffrey P. A comparison of otolith and scale ages for western Labrador lake whitefish, Coregonus clupeaformis. Environmental Biology of Fishes,1984,10(4):297-299.
    [246]Mehanna S F. Stock assessment and management of the Egyptian sole Solea aegyptiaca Chabanaud,1927 (Osteichthyes: Soleidae) in the Southeastern Mediterranean, Egypt. Turkozan in Journal of Zoology,2007,31:379-388.
    [247]Meihua Xiong, Yanfu Que, Fang Shi, et al.. Isolation and characterization of microsatellite loci in Onychostoma sima. Conservation Genetics Resources,2009 (1):389-392.
    [248]Meyer A. Evolution of mitochondria DNA in fishes//Mommsen T P, Hochachka P W. Biochemistry and Molecular Biology of Fishes,. New York: Elsevier,1993,2:1-38.
    [249]Morita M. A new model of growth back-calculation incorporating age effect based on otolih. Can J Fish Aquat Sci,2001,58:1805-1811.
    [250]Muth R T, Schmulbach J C. Downstream Transport of Fish Larvae in a Shallow Prairie River. Transactions of the American Fisheries Society,1984,113 (2):224-230.
    [251]Natanson L J. Casey J G. Kohler N E. Age and growth estimates for the dusky shark Carcharhinus obscurus in the western North Atlantic Ocean. Fish Bull,1995,93:116-126.
    [252]Neilson J D, Geen G H, Chan B. Variability in dimensions of salmonid otolith nuclei: implications for stock identification and microstructure interpretation. Fish Bull, US,1985, 83:81-89.
    [253]Nian Xu, Fang Shi, Meihua Xiong, et al.. Isolation and characterization of microsatellite loci in Rhinogobio ventralis. Conservation genetics resources,2009, DOI 10.1007/s 12686-009-9024-9.
    [254]Pauly D, David N. A BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforschung/Rep,1981, Mar Res 28:205-211.
    [255]Pauly D, Morgan G R. Length-based Methods in Fisheries Research. ICLARM Conference Proceedings,1987.
    [256]Pauly D, Soriano M L. Some practical extensions to Beverton and Holt's relative yield-per-recruit model//Maclean J L, Dizon L B, Hosillo L V. The first Asian fisheries forum. Manila: Asian Fisheries Society,1986,491-496.
    [257]Pauly D. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science,1980,39 (2): 175-192.
    [258]Pavlov D S. The downstream migration of young fishes in rivers: mechanisms and distribution. Folia Zoologica,1994,43 (3):193-208.
    [259]Peng Li, Chengzhong Yang, Feiyun Tu, et al.. The complete mitochondrial genome of the Elongate loach Leptobotia elongata (Cypriniformes:Cobitidae). Mitochondrial DNA,2012, 23 (5):352-354.
    [260]Pope, J G. An investigation of the accuracy of Virtual Populations Analysis using Cohort Analysis. Res Bull IC-NAF,1972,9:65-74.
    [261]Ricker W E. Handbook of computations for biological statistics offish populations. Fish Res Bd Can Bull, (Fei H N, Yuan V W. translated in1984)Beijing:Science Press,1975,141-163.
    [262]Robinson H J,Cailliet G M,Ebert D A. Food habits of the longnose skate, Raja rhina (Jordan and Gilbert,1880), in central California waters. Environmental Biology of Fishes,2007, 80 (2/3):165-179.
    [263]Rodrigo R B, Rosangela P L, Fabio H H, et al., Age and growth of the blacknose shark, Carcharhinus acronotus (Poey,1860) off the northeastern Brazilian Coast Fisheries Research, 2011,110:170-176.
    [264]Rosenberg D M, McCully P, Pringle C M. Global-scale environmental effects of hydrological alterations:introduction. BioScience,2000,50 (9):746-751.
    [265]Sanja M S, Josipa F, Fran S, et al.. Age, growth and validation of otolith morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae). Fisheries Research,2011,112: 52-58.
    [266]Sauvage H E, Dabry T. Les poissons des douces de Chine. Ann Sci Nat Paris,1874,6(5): 1-18.
    [267]Shepherd J G. A weakly parametric method for estimating growth parameters from length composition data. In:Pauly D, Morgan G R (Eds). Length-based Methods in Fisheries Research. ICLARM Conference Proceedings,1987,113-119.
    [268]Shiao J C, Tzeng C S, Leu C L, et al.. Enhancing the contrast and visibility of daily growth increments in fish otoliths etched by proteinase K buffer. Journal of Fish Biology,1999,54: 302-309.
    [269]Soriguer M C, Vallesp'in C, Gomez-Cama C et al.. Age, diet, growth and reproduction of a Population of Cobitis paludica (de Buen,1930) in the Palancar Stream (southwest of Europe, Spain) (Pisces:Cobitidae). Hydrobiologia,2000,436:51-58.
    [270]Sparre P, Willmann R. Beam 4, A bio-economic multi-species, multi-fleet, multi-plant, multi-area extension of the traditional forecast model. Copenhagen:ICES. Statistical Committee,1992.
    [271]Stabile E J, Waldman J R, Parauka F, et al. Stock structure and homing fidelity in Gulf of Mexieo sturgeon(Aeipenseroxyrinchus desotoi) based on restrietion fragment length polymorphism and sequence analysis of mitochondrial DNA. Genetics,1995,144:767-775.
    [272]Stratoudakis Y, Bernal M, Ganias K, et al.. The daily egg production method: recent advances, current applications and future challenges. Fish and Fisheries,2006,7(1):35-57.
    [273]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecu-lar Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24 (8):1596-1599.
    [274]Tucker J J W, Chester A J. Effects of salinity, formalin concentration and buffer on quality of preservation of southern flounder (Paralichthys lethostigma) larvae. Copeia,1984:981-988.
    [275]Vander Zanden M J, Rasmussen J B. Primary consumer 813C and 815N and the tropic position of aquatic consumers. Ecology,1999,80:1395-1404.
    [276]Washington H G. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research,1984,18 (6):653-694.
    [277]Welch T J, Van Den M J, Avyle R K. Precision and relative accuracy of striped bass age estimates from otolith, scales, and anal rays and spines. N Am J Fish Mang,1993,13: 616-620.
    [278]Wilson A C, Cann R L. Mitoehondrial DNA and two perspectives on evolutionary genetics. Biol J of Linnesn Society,1985,26:375-400.
    [279]XiaoFeng Cheng, HuiWu Tian, DengQiang Wang, et al., Characterization and cross-species amplification of 14 polymorphic microsatellite loci in Xenophysogobio boulengeri. Conservation Genet Resour,2012,4 (4):1015-1017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700