用户名: 密码: 验证码:
茶中有机磷农药残留HPTLC检测及茶多酚对毒死蜱光解影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量施用的有机磷农药残留于茶叶及生长环境介质中,建立满足茶叶及土壤、水环境介质中有机磷农药残留日常例行工作要求的检测方法是农药残留控制技术研究的重要内容。高效薄层技术具有多个样品同时检测、前处理要求低、快速廉价等优点,是目前液相色谱技术中可以实现极性和非极性化合物组成流动相、并可以利用不同化合物组合和配比进行多次洗脱的一项技术。研究利用高效薄层技术探求13种典型农药在茶叶中的分离方法,建立6种有机磷农药在茶叶、茶园土壤中检测方法,以及4种有机磷农药在水中的检测方法。
     主要研究结果如下:
     1.对茶叶中13种典型农药进行薄层分离,利用特殊底剂——特丁基甲基醚较好的分离了结构相似、易生成物质对的有机磷农药;两种分离方式,即全自动多项展开(AMD)和传统双槽展缸展开,均可以实现流动相成分及配比与前一次洗脱剂不同;分离8种有机磷农药,AMD可以实现23次洗脱一次完成,重复性比可以3次洗脱的传统双槽展缸展开方法优越;1次洗脱的传统双槽展缸展开方法的灵敏度比AMD多次洗脱的方法高。
     2.建立茶叶中6种有机磷农药残留高效薄层检测方法,并应用于样品实测,方法简单、快速。茶叶样品经过液-液萃取,串联固相柱净化;16个样品同时在1块预制高效薄板上点样,AMD实现1次分离过程中7次洗脱;洗脱溶剂化合物极性差为5.1。灵敏度在10-30ng之间;0.2-2.0mg·hg-1样品添加水平,除毒死蜱外回收率均满足日常例行的检测需求。
     3.建立茶园土壤中6种有机磷农药残留检测方法,应用于部分茶园土壤的实测。样品经液-液萃取,直接检测;16个样品同时在1块预制高效薄板上检测,AMD或传统双槽展缸1次分离过程中2次洗脱;灵敏度在10-30ng之间,0.1-1.0mg·kg-1样品添加水平,毒死蜱回收率较低,其余均满足日常例行的检测需求。
     4.建立水中4种有机磷农药检测方法,样品经液-液萃取,直接检测;4种农药5、1、0.5×10-8g·ml-1添加水平,回收率在86.05%-109.80%之间,变异系数在1.28-5.28%,满足农药残留分析要求。
     光解是食品和环境介质中有机磷农药重要降解途径,受到溶解性有机质(DOM)酚类衍生物的影响。茶多酚是典型DOM,但茶多酚类物质对污染物光解的影响并不明确。研究选取茶多酚主要活性成分EGCG及氧化物TF、有机磷农药模型物毒死蜱,以“高压汞灯-茶多酚-毒死蜱-水”为研究系统,建立水中毒死蜱HPLC、GC和UPLC检测方法,控制不同系统条件,调查茶多酚对水中毒死蜱光解影响;对EGCG和毒死蜱共存体系进行紫外和荧光光谱检测,并利用捕捉剂对系统中活性中间体HO·和激发三线态中间体进行捕捉,探讨茶多酚对水中毒死蜱光解影响的作用机理。结果如下:
     1.建立不同水溶液系统中毒死蜱的GC、HPLC和UPLC-MS-MS检测方法,比较方法特点,指出应用范围,利用建立的方法对水中毒死蜱在茶多酚类物质EGCG和TF的作用下光解进行测定。
     2.蒸馏水中EGCG和TF对毒死蜱光解过程的影响,在光照起始阶段使毒死蜱浓度快速下降,然后上升,之后多数情况呈现较为平稳的下降趋势;比较毒死蜱单独存在的水溶液,EGCG和TF对毒死蜱光解先敏化再抑制的作用,与浓度有关;由于光解中毒死蜱浓度的变化趋势不确定,毒死蜱光解半衰期不能用简单的模型确定。pH稳定的缓冲液中,茶多酚对毒死蜱光解的影响与pH没有递增的正相关性;EGCG比TF对毒死蜱的光解影响更为复杂与强烈;缓冲液较非缓冲溶液毒死蜱光解受EGCG和TFD影响强度小,符合一级动力学反应模型。
     3.紫外和荧光检测显示,水溶液中与毒死蜱共存的EGCG增加了系统对光的吸收,并展现更强的光活性,使难以接受光子即光量子产率极低的毒死蜱通过EGCG的能量传递而受到激发,对毒死蜱光解起到敏化作用;HO·捕捉实验证明,水溶液中与毒死蜱共存的EGCG可以促进系统HO·的产生,形成氧化环境,有助于毒死蜱氧化;光解中检测到毒死蜱的氧化产物——氧化毒死蜱,证明光氧化途径仍然是与EGCG共存的水溶液中毒死蜱光解的途径之一。
     4.利用山梨酸成功捕捉光照过程中毒死蜱激发三线态,证明毒死蜱光解途径之一是通过激发三线态转化,同时证明EGCG可以抑制这一过程;EGCG对典型激发三线态模型物光解的影响结果,佐证了EGCG对毒死蜱激发三线态的抑制作用。荧光检测显示光照时毒死蜱可能与EGCG产生光不稳定络合物,再次光照后可能释放毒死蜱;EGCG的抗氧化还原作用可能使毒死蜱母体浓度升高。总结毒死蜱光照过程中浓度上升的主要原因是EGCG对毒死蜱激发三线态的还原和抑制,络合物的生成以及EGCG的抗氧化还原作用。
     5.水溶液体系中溶解氧、有机溶剂、表面活性剂、腐殖酸、三价铁离子(Fe3+)、亚铁离子(Fe2+)、碳酸根离子(C032-)、碳酸氢根离子(HCO3-)等物质,可以对系统HO·产生影响,并与浓度和作用时间相关。
     6.EGCG影响水溶液中光解机理研究显示EGCG对毒死蜱光解具有敏化和抑制的双重作用,两种作用的竞争结果形成水溶液中毒死蜱光解浓度先下降后上升的现象
Organophosphorus pesticides contaminate not only the foods such as tea, but also the other environmental media. Method for detection to satisfy the daily inspection is a focus on the pesticides resides analysis in food and environmental media. High Performance Thin-layer Chromatography (HPTLC) with multiple samples detecting at same time and a simple pre-process of samples is fast and cheap for application. This work seeks to separation of13pesticides using HPTLC, establish method for detecting6organophosphorous pesticides residues in tea and soil in tea garden, and method for4organophosphorous pesticides residues in water. The results shown as follows:
     1. The butyl-methyl-ether is used as special bottom agent to separate the pesticides with similar structures which is difficult to be separated on account of forming substance pair. Two separation methods, i.e. automatic multiple development (AMD) and the traditional development with two-chamber, can realize the mobile phase composition and proportion is different with the previous eluent; AMD can achieve a development with23-step elution and a good repeatability; Traditional development with two-chamber can achieve3-step elution but the repeatable operation is poor compared with AMD. AMD with multiple developments is not better at sensitivity than Traditional development with one-step elution. A simple and rapid detection method of6organophosphorous pesticides residues in tea is established and applied to the sample test. After liquid-liquid extraction, the tea samples is clean-up with a tandem SPE column;16samples can be applied on one preproduction stationary, separated by AMD with7-step elutions; The polarity of compounds composing the elution solvent is difference of5.1. The sensitivity is between10-30ng; The recoveries of fortifications with0.2~2.0mg· kg-1satisfied for the testing of daily routine, except for Chorpyrifos.
     2. It is also developed for a method to detecting6organophosphorous pesticides residues in soil of tea garden. After liquid-liquid extraction, the samples is determined directly without clean-up and separated by AMD or traditional development with2-step elutions with16samples processed on one stationary plate. The sensitivity is between10~30ng; The recoveries of fortifications with0.1~1.0mg· kg-1satisfied for the testing of daily routine, except for Chorpyrifos.
     3. A method for detecting4organophosphorous pesticides residues in water is achieved. After liquid-liquid extraction, the samples is determined directly without clean-up The recoveries of fortifications with0.1~1.0mg· kg-1is from86.05%to109.80%with a coefficient of variation of1.28~5.28%and satisfied for the testing of water.
     Photolysis is an important pathway of organophosphorus pesticides degradation in food and environmental media and influenced by phenolic derivatives, a dissolved organic matter (DOM). The tea phenols (TP) are typical DOM. However, the effect of TP on pollutions photolysis is unclear. To investigate the interaction of TP and organophosphorus pesticides in light, the main active ingredient in TP, EGCG, and its oxidant, Theafalvin, are chosen to compose the controlling photo-system with Chlopyrifos in water using high press mercury lamp. After establishing the detection method of Chlorpyrifos, the effect of tea polyphenols on chlorpyrifos photolysis in water is investigated by controlling the system conditions. The mechanism is discussed by analysis the interactions between the intermediates, i.e. HO·and triplet material, and the tea phenols while the spectrum of the system was scanned by fluorescence and ultraviolet spectrometer. The results indicate as follows:
     1. Methods, including the assays of HPLC, GC and UPLC, are established to meet the target substances detection in water. The method applicability is discussed and suggested for different analysis.
     2. The concentration of chlorpyrifos rapid decline, then up, finally for the most part shows relatively steady downward trend in the stage of initial photolysis process of chlorpyrifos in distilled water influenced by EGCG and TF. EGCG and TF were sensitized and obstacles, and associated with concentration; Due to the fluctuations of chlorpyrifos concentration, it is difficult to model the half-life of chlorpyrifos using the first-rate kinetic model. There are no increasing positive correlation between the concentration of chlorpyrifos impacted by tea polyphenols and the pH. The influence of EGCG is more complex than TF effect on photolysis of chlorpyrifos and strong. Compared with in the distilled water, the influence of EGCG and TF is slight and the photolysis of chlorpyrifos corresponde to the first-rate kinetic model.
     3. The results of UV and FL detection show that EGCG coexisted with chlorpyrifos increases the energy of aqueous solution system by absorpting light, and has stronger activity excited by chlorpyrifos. It helps chlorpyrifos, which with low light quantity, accepts the energe and is sensitized. EGCG promotes system to produce HO·forming a system with strong oxidizing and promote chlorpyrifos oxidation. That chlorpyrifos-oxon, a product of chlorpyrifos oxidation, was detected in the photolysis indicates that photooxidation is a pathway of chlorpyrifos degradation in water containing EGCG and TF.
     4. Sorbic acid isomerization proves one of pathway of chlorpyrifos photolysis is by the transformation of excited-triplet state and EGCG could inhibit this process, successfully. It is also proved by EGCG affecting the transformation of excited-triplet state of model chemical in water. Therefore, EGCG reducts and inhibits the transformation of chlorpyrifos excited-triplet state is the main reason for the concentration rise of chlorpyrifos after a sharp decreased in the beginning of photolysis. In addition chlorpyrifos may form an unstable complex compound with EGCG and is released after light irritation. It resulted in the concentration of chlorpyrifos increasing. The last, reduction of EGCG may lead to the concentration of chlorpyrifos increasing.
     5. Dissolved oxygen, organic solvents, surfactants, humic acid, ferric iron ion (Fe3+), ferrous ion (Fe2+), carbonate ions (CO32-), and bicarbonate ions (HCO3-) can impact on the production of HO in system. The concentration of the substances and the action time play roles in the process.
     6. Studies on mechanism of EGCG influencing chlorpyrifos photolysis have shown that EGCG in aqueous solution not only sensitized but also inhibit the chlorpyrifos photolysis. The competition of two roles resulted in the phenomenon of chlorpyrifos photolysis in aqueous solution.
引文
1. Alipoor, B.,& Rad, A. H. (2012). A review on the therapeutical effects of tea. Asian Journal of Clinical Nutrition,4,1-15.
    2. Forouzanfar, A. (2011). Review of The therapeutic effects of Camellia sinensis (green tea) on oral and periodontal health. Journal of Medicinal Plants Research.,5(23),5465-5469.
    3. Gupta, J., Siddique, Y. H., Beg, T., Ara, G.,& Afzal, M. (2008). A review on the beneficial effects of tea polyphenols on human health. International Journal of Pharmacology,4(5), 314-338.
    4. TAKEO, T. (2000).; Function and application of tea ingredients. The review on studies of tea chemical components. Journal Code:G0987B,28(4),38-45.
    5. Balentine, D. A., Wiseman, S. A.,& Bouwens, L. C. (1997). The chemistry of tea flavonoids. Critical Reviews in Food Science & Nutrition,37(8),693-704.
    6.宛晓春主编.(2003).茶叶生物化学.中国农业出版社ISBN 978-7-109-08386-8.
    7.GB2760-89,中华人民共和国国家标准.
    8.国家食品药品监督管理局http://www.sfda.gov.cn/WS01/CL0001/
    9.周光明,&王利华.(2012).茶多酚的生物学功能及其在养猪生产中的应用.养猪,(6),17-19
    10.张家泉,et a1.,(2011)晋江流域表层十壤中有机氯农药分布特征及污染评价.环境科学学报,(09).
    11.胡学玉and艾天成,(2006)鄂东(北)茶园十壤及茶叶中的农药残留.农业环境科学学报,(S1).
    12.谭和平,et a1.,(2006)四川茶园土壤中农药残留现状分析.农业环境科学学报,(S1).
    13. Zhang, A., et al., (2012). Residues of Currently and Never Used Organochlorine Pesticides in Agricultural Soils from Zhejiang Province, China. Journal of Agricultural and Food Chemistry,60(12):p.2982-2988.
    14.童小麟,& 邹伟.(2009).欧盟新的茶叶农残标准分析与对策研究.检验检疫学刊,19(3),56-59.
    15.马惠民,王水强,& 钱和.(2012).国内外茶叶农药残留限最标准的比较分析.中国茶叶加T,(4),18-22.
    16.陶玉贵,王其进,黄晓东,谷浩,& 倪正.(2011).胶束电动毛细管色谱法测定水中的毒死蜱含最.环境化学,30(10),1788-1792.
    17.丁明,钟冬莲,汤富彬,等.(2013).固相萃取-高效液相色谱-串联质谱联用测定竹笋中残留的7种杀虫剂农药[J].色谱,31(2):117-121.
    18.韩庆华,田战胜,李国涛,& 赵宝剑.吡蚜酮·毒死蜱悬浮剂高效液相色谱分析方法.农药科学与管理,(2012).33(11),39-41.
    19. Wang, S., Xiang, B.,& Tang, Q. (2012).Trace Determination of Dichlorvos in Environmental Samples by Room Temperature Ionic Liquid-Based Dispersive Liquid-Phase Microextraction Combined with HPLC. Journal of chromatographic science,50(8),702-708.
    20. Heidari, H.,& Razmi, H. (2012).Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe< sub> 3 O< sub> 4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta.
    21. Xiong J, Guan Z, Zhou G, et al. (2012).Determination of chlorpyrifos in environmental water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by gas chromatography with flame photometry detection[J]. Analytical Methods,4(10):3246-3250.
    22.邹孝,高熹,刘小文,肖昭竟,段云鹏,胡羽,…& 李正跃.(2011).凝胶渗透色谱-气相色谱-质谱方法测定茶叶中五种高毒有机磷农药残留.广东化工,38(10),135-136
    23.陈红平,刘新,汪庆华,& 蒋迎.(2011).气相色谱-质谱法同时测定茶叶中72种农药残留量.食品科学,32(06),321-325.
    24.李晓晶,李万红,于鸿,黄聪,&甘平胜.(2010).固相萃取-毛细管气相色谱法测定茶叶中31种有机磷农药残留.中国卫生检验杂志,(12),3221-3223.
    25.王耀,张汉霞,邹潍力,刘少彬,& 谢翠美.(2011).ASE萃取/GPC-SPE净化/GC-MS法测定茶叶中的有机磷残留.食品研究与开发,(2011).32(3),128-132.
    26. Cajka, T., Sandy, C., Bachanova, V., Drabova, L., Kalachova, K., Pulkrabova, J.,& Hajslova, J. (2012).Streamlining sample preparation and gas chromatography-tandem mass spectrometry analysis of multiple pesticide residues in tea. Analytica chimica acta,743, 51-60.
    27. Lee, K. G.,& Lee, S. K. (2012). Monitoring and risk assessment of pesticide residues in yuza fruits (Citrus junos Sieb. ex Tanaka) and yuza tea samples produced in Korea. Food Chemistry.
    28. Zhang, X., Mobley, N., Zhang, J., Zheng, X., Lu, L., Ragin, O.,& Smith, C. J. (2010). Analysis of agricultural residues on tea using d-SPE sample preparation with GC-NCI-MS and UHPLC-MS/MS. Journal of agricultural and food chemistry,58(22),11553-11560.
    29. Ahmadkhaniha, R., Samadi, N., Salimi, M., Sarkhail, P.,& Rastkari, N. (2012). Simultaneous Determination of Parathion, Malathion, Diazinon, and Pirimiphos Methyl in Dried Medicinal Plants Using Solid-Phase Microextraction Fibre Coated with Single-Walled Carbon Nanotubes. The Scientific World Journal,2012.
    30. Sherma J. (2000).Thin-layer chromatography in food and agricultural analysis[J]. Journal of Chromatography A,880(1):129-147.
    31. Sherma J. (2005). Thin-Layer Chromatography of pesticides-a review of applications for 2002-2004[J]. Acta Chromatographica,15:5.
    32. Sherma J, Fried B. (2005). Thin layer chromatographic analysis of biological samples. A review[J]. Journal of liquid chromatography & related technologies,28(15):2297-2314.
    33. Sherma J. (1999). Recent advances in thin-layer chromatography of pesticides[J]. Journal of AOAC International,82(1):48-53.
    34. Bandstra S R, Fried B, Sherma J. (2006). High-performance thin-layer chromatographic analysis of neutral lipids and phospholipids in Biomphalaria glabrata patently infected with Echinostoma caproni[J]. Parasitology research,99(4):414-418.
    35. Buhner M, Geuder W, Gries W K, et al. (1988). A Novel Type of Cationic Host Molecules with π-Acceptor Properties[J]. Angewandte Chemie International Edition in English,27(11): 1553-1556.
    36. Hauck H E, Bund O, Fischer W, et al. (2001). Ultra-thin layer chromatography (UTLC)—A new dimension in thin-layer chromatography[J]. JPC-Journal of Planar Chromatography-Modern TLC,14(4):234-236.
    37.岳永德.(1995).高效薄层析进行农药吸附态光解的研究[J].环境科学,16(4):16-18.
    38.岳永德.(1997).取代脲类和二苯基醚类除草剂的表面光化学相互作用研究[J].安徽农业大学学报,24(2):107-114.
    39. Simona Codruta Cobzac. Neli-Kinga Olah, Simion Gocan, (2012). TLC determination of triazinic pesticides from soils—A comparative study of some extraction method. JPC-Journal of Planar Chromatography-Modern TLC,25 (2):97-100
    40. Wei Fan, Yongde Yue, Feng Tang, Haiqun Cao, Jing Wang, Xi Yao. (2011). Development and validation of a HPTLC method for simultaneous analysis of temephos and fenitrothion in Green tea, JPC-Journal of Planar Chromatography-Modern TLC,24 (1):53-56
    41. Ali Mohammad, Arshi Amin, Abdul Moheman. (2012).Chromatographic behavior and separation of pesticides on thin silica gel layers impregnated with cationic micelles, JPC-Journal of Planar Chromatography-Modern TLC,25 (2):101-107. DOI:10.1556/JPC.25.2012.2.2
    42. Tuzimski, T. (2012). DETERMINATION OF PESTICIDES IN WINES SAMPLES BY HPLC-DAD AND HPTLC-DAD. Journal of Liquid Chromatography & Related Technologies, 35(10),1415-1428.
    43. Shayeghi, M., Khoobdel, M., Bagheri, F., Abtahi, M.,& Zeraati, H. (2012). Organophosphorous residue in< i> Liza aurata and< i> Cyprinus carpio. Asian Pacific Journal of Tropical Biomedicine,2(7),564-569.
    44. Cao, HQ; Yue, YD; Hua, RM; Tang,F.; Zhang, R.; Fan, W.; Chen, HY. (2005). HPTLC Determination of Imidacloprid, Fenitrothion and Parathion in Chinese Cabbage. J. Planar Chromatogr. Mod. TLC 18,151-154.
    45. Seyoum Yami Gebremariam, Marc W. Beutel, David R. Yonge.Markus Flury, and James B. Harsh. (2012). Adsorption and Desorption of Chlorpyrifos to Soils and Sediments. Reviews of Environmental Contamination and Toxicology Reviews of Environmental Contamination and Toxicology, Volume 215,123-175, DOI:10.1007/978-1-4614-1463-6_3
    46. Ginni Kumawat, Swati, Romila Karnawat, I. K. Sharma, P. S. Verma. (2012). ANALYSIS OF METHYL PARATHION IN BIOLOGICAL SAMPLES USING THIN LAYER CHROMATOGRAPHY. International Journal of Applied Biology and Pharmaceutical Technology,,3(1):203-209
    47. Akkad, R.,& Schwack, W. (2008). Multi-enzyme inhibition assay for detection of insecticidal organophosphates and carbamates by high-performance thin-layer chromatography.1. Basics of method development. JPC-Joumal of Planar Chromatography-Modern TLC,21(6), 411-415.
    48. Curtui, M.,& Soran, M. L. (2006). TLC separation of metal ions using di (n-butyl) dithiophosphoric acid and neutral organophosphorus ligands. JPC-Journal of Planar Chromatography-Modern TLC,19(110),297-301.
    49. Daundkar, B. B., Mavle, R. R., Malve, M. K.,& Krishnamurthy, R. (2007). Spectrophotometric and TLC detection reagent for the insecticides dichlorvos (DDVP) and diptrex (trichlorfon), and their metabolites, in biological tissues. JPC-Journal of Planar Chromatography-Modern TLC,20(3),217-219.
    50. Kulkarni, K. V., Shinde, D. B., Mane, D. V.,& Garad, M. V. (2009). A new chromogenic spray reagent for detection and identification of monocrotophos. JPC-Journal of Planar Chromatography-Modern TLC,22(2),133-135.
    51. Hamada, M.,& Wintersteiger, R. (2003). Fluorescence screening of organophosphorus pesticides in water by an enzyme inhibition procedure on TLC plates. JPC-Journal of Planar Chromatography-Modern TLC,16(1),4-10.
    52. F. E. Adelowo. (2012). Synthesis, characterization and fungicidal actibity of some dialkyl phenylphosphonates. IJRRAS 12 (1). July:107-114
    53.陈宗懋,& 岳瑞芝.(1983).化学农药在茶叶中的残留降解规律及茶园用药安全性指标的设计.中国农业科学,1,62-70.
    54. Zongmao, C.,& Haibin, W. (1997). Degradation of pesticides on plant surfaces and its prediction-a case study on tea plant. Environmental monitoring and assessment,44(1-3), 303-313.]
    55. Ozbey, A.,& Uygun, U. (2007). Behaviour of some organophosphorus pesticide residues in thyme and stinging nettle tea during infusion process. International journal of food science & technology,42(3),380-383.
    56.夏会龙,& 屠幼英.(2003).茶树根系吸收对茶叶中农药残留的影响[J].茶叶,29(1),23-24.
    57. Jaggi, S., Sood, C., Kumar, V., Ravindranath, S. D.,& Shanker, A. (2001). Leaching of pesticides in tea brew. Journal of agricultural and food chemistry,49(11),5479-5483.
    58. YUN-HAO, W. A. N. O., HAI-BIN, W. E. N., YU-ZHU, X. U. E., HUI-LONG, X. I. A.,& ZONG-MAO, C. H. E. N. (1991).王运浩,万海滨,薛玉柱,夏会龙,陈宗懋.昆虫学报,1,20-25.
    59. Guleria, S. J., Singh, B.,& Shanker, A. (2012)Quinalphos Behaviour In Tea Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES 3(3):1177-1184
    60.白红妍,韩彬,孙丕喜,郑立,曹磊,杨东方,&王小如.(2013).桑沟湾水体及沉积物中有机磷农残时空分布特征.海洋科学,37(1).
    61.周憨,石雷,李取生,& 杨璇.(2013).珠江河口水体有机磷农药的含量与季节变化.中国环境科学,(2),312-318.
    62.代瑞华,严杨薇,刘燕,刁祎,& 于宁钏.水源水中水华藻类生长和产毒的影响因素概述.中国科技论文在线,http://www.paper.edu.cn 1-9
    63. Lacorte, S., Lartiges, S. B., Garrigues, P.,& Barcelo, D. (1995). Degradation of organophosphorus pesticides and their transformation products in estuarine waters. Environmental science & technology,29(2),431-438.
    64. Pehkonen, S. O.,& Zhang, Q. (2002). The degradation of organophosphorus pesticides in natural waters:a critical review. Critical Reviews in Environmental Science and Technology, 32(1),17-72.
    65. Zhao, X.,& Hwang, H. M. (2009). A study of the degradation of organophosphorus pesticides in river waters and the identification of their degradation products by chromatography coupled with mass spectrometry. Archives of environmental contamination and toxicology,56(4), 646-653.
    66. Souza, A. G., Cardeal, Z. L.,& Augusti, R. (2013). Electrospray Ionization Mass Spectrometry (ESI-MS) monitoring of the photolysis of diazinon in aqueous solution: Degradation route and toxicity of by-products against Artemia salina. Journal of Environmental Science and Health, Part B,48(3),171-176.
    67. lsson, O., Kho dorkovsky, M., Gassmann, M., Friedler, E., Schneider, M.,& Dubowski, Y. (2013). Fate of Pesticides and Their Transformation Products:First Flush Effects in a Semi-Arid Catchment. CLEAN-Soil, Air, Water,41(2),134-142.
    68. Kamiya, M.,& Kameyama, K. (1998). Photochemical effects of humic substances on the degradation of organophosphorus pesticides. Chemosphere,36(10),2337-2344.
    69. Ukpebor, J. E.,& Halsall, C. J. (2012). Effects of Dissolved Water Constituents on the Photodegradation of Fenitrothion and Diazinon. Water, Air,& Soil Pollution,223(2),655-666.
    70. Pajares, A., Bregliani, M., Natera, J., Criado, S., Miskoski, S., Escalada, J. P.,& Garcia, N. A. (2011). Mechanism of the photosensitizing action of a mixture humic acid-riboflavin in the degradation of water-contaminants. Journal of Photochemistry and Photobiology A: Chemistry,219(1),84-89.
    71. Zeng, T.,& Arnold, W. A. (2013). Pesticide photolysis in prairie potholes:probing photosensitized processes. Environmental science & technology. (online).
    72. Rao, B., Wang, W., Cai, Q., Anderson, T.,& Gu, B. (2013). Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole. Science of the Total Environment, 443,692-699.
    73. Bonvin, F., Omlin, J., Rutler, R., Schweizer, W. B., Alaimo, P. J., Strathmann, T. J.,...& Kohn, T. (2012). Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environmental science & technology., Article ASAP, http://pubs.acs.org/doi/abs/10.1021/es303777k.
    74. Zepp, R. G., Schlotzhauer, P. F.,& Sink, R. M. (1985). Photosensitized transformations involving electronic energy transfer in natural waters:role of humic substances. Environmental science & technology,19(1),74-81.
    75. Westerhoff, P., Mezyk, S. P., Cooper, W. J.,& Minakata, D. (2007). Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates. Environmental science & technology,41(13),4640-4646.
    76.76Pajares, A., Bregliani, M., Natera, J., Criado, S., Miskoski, S., Escalada, J. P.,& Garcia, N. A. (2011). Mechanism of the photosensitizing action of a mixture humic acid-riboflavin in the degradation of water-contaminants. Journal of Photochemistry and Photobiology A: Chemistry,219(1),84-89.
    77.杨晓萍,郭大勇,黄友谊,等.(2002).脂溶性茶绿色素制取工艺研究[J].湖北农业科学,4:83-86.
    78.78Ohmori, K. (2011). Synthetic challenge to ubiquitous natural products from plant origin: flavan-derived polyphenols. The Chemical Record,11(5),252-259.
    79. Bernini, R., Crisante, F., Gentili, P., Morana, F., Pierini, M.,& Piras, M. (2011). Chemoselective C-4 Aerobic Oxidation of Catechin Derivatives Catalyzed by the Trametes villosa Laccase/1-Hydroxybenzotriazole System:Synthetic and Mechanistic Aspects. The Journal of Organic Chemistry,76(3),820-832.
    80. Mostofa, G., Liu, C. Q., Minakata, D., Wu, F., Vione, D., Mottaleb, A.,...& Sakugawa, H. (2013). Photoinduced and Microbial Degradation of Dissolved Organic Matter in Natural Waters. In Photobiogeochemistry of Organic Matter (pp.273-364). Springer Berlin Heidelberg.
    81. Ozoemena, K., Kuznetsova, N.,& Nyokong, T. (2001). Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium. Journal of Molecular Catalysis A:Chemical,176(1),29-40.
    82. Hiogne, J. (1990). Formulation and calibration of environmental reaction kinetics; oxidations by aqueous photooxidants as an example. IN:Aquatic Chemical Kinetics:Reaction Rates of Processes in Natural Waters. Environmental Science and Technology Series. John Wiley & Sons, New York.1990. p 43-70.7 fig,4 tab,54 ref.
    83. Becker, E. M., Cardoso, D. R.,& Skibsted, L. H. (2005). Deactivation of riboflavin triplet-excited state by phenolic antioxidants:mechanism behind protective effects in photooxidation of milk-based beverages. European Food Research and Technology,221(3), 382-386.
    84. Cardoso, D. R., Libardi, S. H.,& Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function.3(5),487-502.
    85. Canonica, S. (2007). Oxidation of aquatic organic contaminants induced by excited triplet states. Chimia International Journal for Chemistry,61(10),641-644.
    86. Richard, C.,& Canonica, S. (2005). Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. Environmental Photochemistry Part II, 299-323.
    87. Canonica, S.,& Laubscher, H. U. (2008). Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants. Photochemical & Photobiological Sciences, 7(5),547-551.
    88. Challis, J.K., Carlson, J.C., Friesen, K.J., Hanson, M.L.,& Wong, C.S. (2013). Aquatic photolychemistry of the sulfonamide antibiotic sulfapyridine.Journal of Photochemistry and Photobiology A:Chemistry.
    89. Encinas, S., Miranda, M. A., Marconi, G.,& Monti, S. (1998). Triplet photoreactivity of the diaryl ketone tiaprofenic acid and its decarboxylated photoproduct. Photobiological implications. Photochemistry and photobiology,67(4),420-425.
    90. Feshin, D.;Brodskii, E.;Mir-Kadyrova, E.;Kalinkevich, G. (2013).Determination of phenols in aqueous solutions by chromatography-mass spectrometry as isopropyl hydroxycarbonyl derivatives. Journal of Analytical Chemistry,68 (3),272-274
    91. Sulzberger, B.,& Durisch-Kaiser, E. (2009). Chemical characterization of dissolved organic matter (DOM):A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquatic Sciences-Research Across Boundaries,71(2),104-126.
    92. LI, T. L., KING, J. M.,& MIN, D. B. (2000). Quenching mechanisms and kinetics of carotenoids in riboflavin photosensitized singlet oxygen oxidation of vitamin D2. Journal of food biochemistry,24(6),477-492.
    93. Ahmad, I.,& Rapson, H. D. C. (1990). Multicomponent spectrophotometric assay of riboflavine and photoproducts. Journal of pharmaceutical and biomedical analysis,8(3), 217-223.
    94. Racke, K. D. (1993). Environmental fate of chlorpyrifos. Reviews of environmental contamination and toxicology,131,1.
    95.吴祥为,花日茂,汤锋,李学德,& 操海群.(2006).水中毒死蜱的光催化降解研究.农业环境科学学报,25(2),486-489.
    96.吴祥为,花日茂,& 唐俊.(2009).表面活性剂对毒死蜱在水溶液中的光解影响.农业环境科学学报,28(008),1705-1711.
    97.花日茂,程燕,葛世彬,杨晓凡,李学德,徐利,…& 岳永德.(2003).3种农药对异菌脲的光解影响及相互作用研究.安徽农业大学学报,30(4),353-357.
    98.岳永德,&汤锋.(2000).混合农药及表面活性剂对毒死蜱光解影响的研究.安徽农业大学学报,27(001),1-4.
    99.牛大水.(2010).毒死蜱和百菌清在大棚和露地辣椒中残留消解动态及其光化学降解(Master's thesis,安徽农业大学).
    100. Wu, C.,& Linden, K. G. (2010). Phototransformation of selected organophosphorus pesticides:Roles of hydroxyl and carbonate radicals. Water research,44(12),3585-3594.
    101. Elazzouzi, M., Bensaoud, A., Bouhaouss, A., Guittonneau, S., Dahchour, A., Meallier, P.,& Piccolo, A. (1999). Photodegradation of imazapyr in the presence of humic substances. Fresenius Environmental Bulletin,8(7),478-485.
    102. Kamiya, M.,& Kameyama, K. (1998). Photochemical effects of humic substances on the degradation of organophosphorus pesticides. Chemosphere,36(10),2337-2344.
    103. Kamiya, M., Kameyama, K.,& Ishiwata, S. (2001). Effects of cyclodextrins on photodegradation of organophosphorus pesticides in humic water. Chemosphere,42(3), 251-255.
    104. Bavcon Kralj, M., Franko, M.,& Trebse, P. (2007). Photodegradation of organophosphorus insecticides-investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere,67(1),99-107.
    105. Benitez, F. J., Real, F. J., Gonzalez, M.,& Pineda, M. (2006). Oxidation processes applied to the elimination of chlorpyrifos and acetochlor in aqueous solutions. Fresenius Environmental Bulletin,15(12),1484-1490.
    106. Zhang, Y., Xiao, Z., Chen, F., Ge, Y., Wu, J.,& Hu, X. (2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics sonochemistry,17(1),72-77.
    107. Hebert, V. R., Hoonhout, C.,& Miller, G. C. (2000). Use of stable tracer studies to evaluate pesticide photolysis at elevated temperatures. Journal of agricultural and food chemistry, 48(5),1916-1921.
    108.刘超,强志民,张涛,&毛国兵.(2011).紫外光和基于紫外光的高级氧化工艺降解农药的研究进展.环境科学学报.31(2):225-235
    109. Huang, J.,& Mabury, S. A. (2000). The role of carbonate radical in limiting the persistence of sulfur-containing chemicals in sunlit natural waters. Chemosphere,41(11),1775-1782.
    110. Canonica, S., Kohn, T., Mac, M., Real, F. J., Wirz, J.,& von Gunten, U. (2005). Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environmental science & technology,39(23),9182-9188.
    111. Busset, C., Mazellier, P., Sarakha, M.,& De Laat, J. (2007). Photochemical generation of carbonate radicals and their reactivity with phenol. Journal of Photochemistry and Photobiology A:Chemistry,185(2),127-132.
    112. Mazellier, P., Busset, C., Delmont, A.,& De Laat, J. (2007). A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution. Water research,41(20), 4585-4594.
    113. Augusto, O., Bonini, M. G., Amanso, A. M., Linares, E., Santos, C. C.,& De Menezes, S. L. (2002). Nitrogen dioxide and carbonate radical anion:two emerging radicals in biology. Free Radical Biology and Medicine,32(9),841-859.
    114. Higuchi, A., Yonemitsu, K., Koreeda, A.,& Tsunenari, S. (2003). Inhibitory activity of epigallo-catechin gallate (EGCg) in paraquat-induced microsomal lipid peroxidation—a mechanism of protective effects of EGCg against paraquat toxicity. Toxicology,183(1), 143-149.
    115.姜绍通,& 李晋玲.(2009).茶多酚在绿叶蔬菜贮藏过程中的保鲜作用及对叶绿素,Vc含量的影响.茶业通报,(2),72-74.
    116.柳艳霞,赵改名,李苗云,郝红涛,孟大军,&高晓平.(2009).抗氧化剂对金华火腿抗氧化效果的研究.食品与发酵工业,(2),66-70.
    117.陈志华.(2010).茶多酚是食品行业很有前途的天然抗氧化剂.食品科学.22,94-97.
    118.118车春波.(2010).茶多酚微胶囊对油脂自氧化的抑制活性.哈尔滨商业大学学报:自然科学版,(004),400-403.
    119.潘素君,李向荣,& 刘仲华.(2008).油溶性茶多酚抗氧化作用的研究.茶叶通讯,35(3),11-13.
    120.全吉淑,尹学哲,金泽,& 武道.(2007).茶多酚自山基清除及抗脂蛋白氧化作用研究.中药药理与临床,23(3),75-77.
    121. Yokozawa, T., Dong, E., Liu, Z. W.,& Shimizu, M. (1997). Antioxidative activity of flavones and flavonols in vitro. Phytotherapy Research,11(6),446-449.
    122.刘莉华,宛晓春,& 李大祥.(2002).黄酮类化合物抗氧化活性构效关系的研究进展(综述).安徽农业大学学报,29(3),265-270.
    123.赵保路.(2002).茶多酚的抗氧化作用.科学通报,47(16),1206-1210.
    124. Rice-Evans, C. A., Miller, N. J.,& Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine,20(7), 933-956.
    125.苏怡,周鲁,左之利,& 赵蔡斌.(2001).应用量子化学方法研究茶多酚类抗氧化剂的构效关系.天然产物研究与开发,13(6),19-19.
    126. Liu, Z. Q. (2006). Kinetic study on the prooxidative effect of vitamin C on the autoxidation of glycerol trioleate in micelles. Journal of physical organic chemistry,19(2),136-142.
    127. Belscak-Cvitanovic, A., Durgo, K., Gacina, T., Horzic, D., Franekic, J.,& Komes, D. (2012). Comparative study of cytotoxic and cytoprotective activities of cocoa products affected by their cocoa solids content and bioactive composition. European Food Research and Technology,1-14.
    128. Azam, S., Hadi, N., Khan, N. U.,& Hadi, S. M. (2004). Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate:implications for anticancer properties. Toxicology in vitro,18(5),555-561.
    129. Cemeli, E., Baumgartner, A.,& Anderson, D. (2009). Antioxidants and the Comet assay. Mutation Research/Reviews in Mutation Research,681(1),51-67.
    130.沈生荣,杨贤强,赵保路,& 忻义娟.(1992).茶多酚复合体及(-)-EGCG对氧自由基的清除作用.茶叶科学,12(1),59-64.
    131.沈生荣,杨贤强,赵保路,& 忻文娟.(1992).茶多酚体外助氧化作用的自山基机理.茶叶科学,12(2),145-150.
    132. Elbling, L., Weiss, R. M., Teufelhofer, O., Uhl, M., Knasmueller, S., Schulte-Hermann, R.& Micksche, M. (2005). Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. The FASEB journal,19(7),807-809.
    133. Becker E M, Cardoso D R, Skibsted L H. (2005). Deactivation of riboflavin triplet-excited state by phenolic antioxidants:mechanism behind protective effects in photooxidation of milk-based beverages[J]. European Food Research and Technology,221(3-4):382-386.
    134. Guo Q, Zhao B, Li M, et al. (1996). Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes [J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1304(3):210-222.
    135. Bianchi A, Marchetti N, Scalia S. (2011). Photodegradation of (-)-epigallocatechin-3-gallate in topical cream formulations and its photostabilization [J]. Journal of pharmaceutical and biomedical analysis,56(4):692-697.
    136. Villata L S, Gonzalez M C, Martire D O. (2010). A kinetic study of the reactions of sulfate and dihydrogen phosphate radicals with epicatechin, epicatechingallate, and epigalocatechingallate[J]. International Journal of Chemical Kinetics,42(7):391-396.
    137. Ishikawa M, Sueishi Y, Endo N, et al. (2012). Cyclodextrin encapsulation of the functional group diminishes an antioxidant's free radical scavenging rates[J]. International Journal of Chemical Kinetics,44(9):598-603.
    138. Canonica, S., Jans, U., Stemmler, K.,& Hoigne, J. (1995). Transformation kinetics of phenols in water:Photosensitization by dissolved natural organic material and aromatic ketones. Environmental science & technology,29(7),1822-1831.
    139. Canonica, S.,& Hoigne, J. (1995). Enhanced oxidation of methoxy phenols at micromolar concentration photosensitized by dissolved natural organic material. Chemosphere,30(12), 2365-2374.
    140. Zhou, X.,& Mopper, K. (1990). Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Marine chemistry,30,71-88.
    141.Glaeser, S. P., Grossart, H. P.,& Glaeser, J. (2010). Singlet oxygen, a neglected but important environmental factor:short-term and long-term effects on bacterioplankton composition in a humic lake. Environmental microbiology,12(12),3124-3136.
    142. Page, S. E., Arnold, W. A.,& McNeill, K. (2011). Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environmental science& technology,45(7),2818-2825.
    143. Soltermann F., Lee M., Canonica S., Gunten U. von. (2013) Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine. Water Research,47(1),79-90.
    144. Samet, Y., Agengui, L.,& Abdelhedi, R. (2010). Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes. Chemical Engineering Journal,161(1),167-172.
    145. Ahmad, I., Fasihullah, Q., Noor, A., Ansari, I. A.,& Ali, Q. (2004). Photolysis of riboflavin in aqueous solution:a kinetic study. International journal of pharmaceutics,280(1),199-208
    146. Ahmad, I., Ahmed, S., Sheraz, M. A., Aminuddin, M.,& Vaid, F. H. M. (2009). Effect of caffeine complexation on the photolysis of riboflavin in aqueous solution:a kinetic study. Chemical and Pharmaceutical Bulletin,57(12),1363-1370.
    147. Ahmad, I., Sheraz, M. A., Ahmed, S., Kazi, S. H., Mirza, T.,& Aminuddin, M. (2011). Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution. Results in Pharma Sciences,1(1),11-15
    148. Haggi, E., Bertolotti, S.,& Garcia, N. A. (2004). Modelling the environmental degradation of water contaminants. Kinetics and mechanism of the riboflavin-sensitised-photooxidation of phenolic compounds. Chemosphere,55(11),1501-1507.
    149.焦庆才,于如锻,杨清华,&赵体慧.(1988).薄层色谱中佳展开剂配比的预测.Acta Pharmaceudca Sin 吏 cg,3(7),521-526.
    150.焦庆才,& 陈耀祖.(1992).高效液相色谱中多元流动相最佳配比的计算机预测.药学学报,3,010.
    151. Urban, J.,& Jandera, P. (2013). Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Analytical and bioanalytical chemistry,405(7),2123-2131.
    152. Biagi, G. L., Barbaro, A. M., Sapone, A.,& Recanatini, M. (1994). Determination of lipophilicity by means of reversed-phase thin-layer chromatography:I. Basic aspects and relationship between slope and intercept of TLC equations. Journal of Chromatography A, 662(2),341-361.
    153. Butte, W., Fooken, C., Klussmann, R.,& Schuller, D. (1981). Evaluation of lipophilic properties for a series of phenols, using reversed-phase high-performance liquid chromatography and high-performance thin-layer chromatography. Journal of Chromatography A,214(1),59-67.
    154. Dross, K., Sonntag, C.,& Mannhold, R. (1994). Determination of the hydrophobicity parameter i> RMw by reversed-phase thin-layer chromatography. Journal of Chromatography A,673(1),113-124.
    155. Trivella, A.,& Richard, C. (2013). New insights into pesticide photoprotection. Environmental Science and Pollution Research,1-9.
    156. Zhao, Z., Zeng, H., Wu, J.,& Zhang, L. (2013). Organochlorine pesticide (OCP) residues in mountain soils from Tajikistan. Environmental Science:Processes & Impacts,15(3),608-616.
    157. Harmens, H., Foan, L., Simon, V.,& Mills, G. (2013). Terrestrial mosses as biomonitors of atmospheric POPs pollution:A review. Environmental Pollution,173,245-254.
    158. Zhao, Q., Lu, Q.,& Feng, Y. Q. (2013). Dispersive microextraction based on magnetic polypyrrole nanowires for the fast determination of pesticide residues in beverage and environmental water samples. Analytical and bioanalytical chemistry,1-12.
    159. Yang, B., Zhang, G. L., Deng, W.,& Ma, J. (2013). Review of Arsenic Pollution and Treatment Progress in Nonferrous Metallurgy Industry. Advanced Materials Research,634, 3239-3243.
    160.王而力,王嗣淇,& 徐颖.(2013).沙土不同粒径微团聚体对磷的富集特征.环境科学学报,33(3).
    161.李青青,李云桂,& 陈宝梁.植物角质层的组成结构和表面微形貌及其对有机污染物的吸附作用.
    162.徐建,张莹,李雷,郭昌胜,& 张远.(2013).氧化降解苯酚的机理研究.环境科学学报,33(4).
    163.岳永德.(1995).高效薄层析进行农药吸附态光解的研究.环境科学,16(4),16-18.
    164.司友斌,岳永德,汤锋,& 陈怀满.(2002).磺酰脲类除草剂在硅胶G表面的光解.环境科学学报,22(2),270-272.
    165.陈同斌,& 陈志军.(1998).土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报,4(3),201-210.
    166.凌婉婷,徐建民,高彦征,& 汪海珍.(2004).溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报,15(2),326-330.
    167.葛世攻.(2003).高效薄层色谱法(HPTLC)分析农药残留[D] (Master dissertation,安徽农业大学).
    168.汪东,王敬国,& 慕康国.(2009).TiO2对毒死蜱在土壤表面光降解的催化作用[J].生态环境学报,18(3),934-938.
    169.牛大水,花日茂,唐俊,吴祥为,操海群,&徐勇.(2011).百菌清和毒死蜱在辣椒表面的光化学降解速率.安徽农业大学学报,38(1),91-94
    170.王磊,马鑫,花日茂,汤锋,吴祥为,李学德,…& 唐俊.(2009).毒死蜱和甲胺基阿维菌素苯甲酸盐在甘蓝及玻片上的消解动态与复合效应研究.安徽农业大学学报,36(2),309-314.
    171.Affam, A.C.,& Chaaudhuri,M.(2013). UV Photo-Fenton Treatment of Combined Chlorpyrifoss, Cypermethrin and Chorothalonil Pesticieds A queous solution. (Online, http://eprints.utp.edu.my/9464/)
    172.王磊.(2009).毒死蜱,甲胺基阿维菌素苯甲酸盐在甘蓝和十壤中的残留消解与相关光解研究(Master's thesis,安徽农业大学).
    173. Koll, K., Reich, E., Blatter, A.,& Veit, M. (2003). Validation of standardized high-performance thin-layer chromatographic methods for quality control and stability testing of herbals. Journal of AOAC International,86(5),909-915.
    174.尤新.(2010).绿茶提取物的功能和发展状况.食品与生物技术学报,29(003),321-325.
    175.杨闻翰.(2011).食品中着色剂及天然抗氧化剂茶多酚的检测方法的研究(Master's thesis,北京化工大学).
    176.谢华,戢璐,陈敏,陈艳秋,黄承钰,& 孙建琴.(2010).茶多酚和维生素C联合补充对高尿酸血症伴脂代谢异常者的改善效果研究.营养学报,32(6),576-578.
    177.夏春燕,郭晓畔,李富华,陈龙,赵国华,& 明建.(2012).细胞抗氧化活性方法在食物抗氧化活性评价中的研究进展.食品科学,33(15).
    178.马蕊,林勇,陈金华,& 刘仲华.(2012).茶多酚对皮肤光老化的防治作用研究进展.茶叶通讯,2,008.
    179.范芹,夏长普,王春风,管晓燕,梁文红,& 刘建国.(2012).0.4% 茶多酚液治疗慢性牙周炎的疗效.广东医学,33(16),2484-2486.
    180.孟庆华MQH.(2012).天然黄酮类化合物清除自山基机理及其应用进展Flavonoids' Mechanism of Scavenging Free Radicals and its Application as Natural Antioxidants云南民族大学学报:自然科学版,2012,21(2):79-83.云南民族大学学报(自然科学版),21(2),79-83.
    181.李淑娟.(2010).茶多酚的保健和药理作用研究进展.西北药学杂志,(001),78-79.
    182.王贤波,成浩,赵芸,& 黄海涛.(2011).茶叶中EGCG对小鼠抗凝血作用实验研究.茶叶科学,31(6),532-536.
    183.朱婷,蔡光先,吴海,文丹,& 谭周进.(2010).植物成分对肠道微生物的影响.中国药业,18,016.
    184.张旭,蒋桂韬,王向荣,胡艳,李昊帮,& 戴求仲.(2011).茶多酚对蛋鸡生产性能,蛋品 质和蛋黄胆固醇含量的影响.动物营养学报,23(5),869-874.
    185.唐慧,& 唐人成.(2011).茶多酚在棉织物上的媒染性能.印染,37(9),10-13.
    186.冯萃敏,李莹,张刃,& 曹晓玉.(2010).茶多酚作为饮用水辅助消毒剂的试验研究.城镇供水,(001),35-37.
    187.杨四润,马燕,& 周红杰.(2011).茶多酚的应用.农学学报,4,44-47.
    188.杨洪生,杨曦,徐珑,&张爱茜.(2004).天然水体中腐殖质的光化学研究进展.感光科学与光化学,22(2).
    189.Meikle, R. W., Kurihara, N. H.,& DeVries, D. H. (1983). Chlorpyrifos:the photodecomposition rates in dilute aqueous solution and on a surface, and the volatilization rate from a surface. Archives of Environmental Contamination and Toxicology,12(2), 189-193.
    190.汪东,王敬国,& 慕康国.(2009).Ti02对毒死蜱在土壤表面光降解的催化作用[J].生态环境学报,18(3),934-938.
    191.刘超,强志民,张涛,& 毛国兵.(2011).紫外光和基于紫外光的高级氧化工艺降解农药的研究进展.
    192.刘祥英,邬腊梅,柏连阳,& 盛姣.(2010).Ti02光催化降解农药研究新进展.中国农学通报,26(12),203-208.
    193.王若师,张娴,许秋瑾,杜苗苗,&颜昌宙.(2012).东江流域典型乡镇饮用水源地有机污染物健康风险评价.环境科学学报,32(11).
    194.戴树桂.(2006).环境化学.高等教育出版社.
    195.吴祥为.(2004).毒死蜱在水中降解动态研究[D] (Doctoral dissertation,安徽农业大学).
    196. Armbrust, K. L. (2000). Pesticide hydroxyl radical rate constants:measurements and estimates of their importance in aquatic environments. Environmental toxicology and chemistry,19(9),2175-2180.
    197. Chen, L., Shen, C., Zhou, M., Tang, X.,& Chen, Y. (2013). Accelerated photo-transformation of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) in water by dissolved organic matter. Environmental Science and Pollution Research,20(3),1842-1848.
    198. Oliver, R. G., Wallace, D. F.,& Earll, M. (2013). Variation in chlorotoluron photodegradation rates as a result of seasonal changes in the composition of natural waters. Pest management science,69(1),120-125.
    199.Polubesova, T.,& Chefetz, B. (2013). DOM-Affected Transformation of Contaminants on Mineral Surfaces:a Review. Critical Reviews in Environmental Science and Technology, (just-accepted).
    200. Lin, A. Y. C., Wang, X. H.,& Lee, W. N.(2013) Phototransformation determines the fate of 5-fluorouracil and cyclophosphamide in natural surface waters. Environmental Science & Technology. Accepted
    201.Wenk, J.,& Canonica, S. (2012). Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution. Environmental science & technology,46(10),5455-5462.
    202. Kamiya, M.,& Kameyama, K. (1998). Photochemical effects of humic substances on the degradation of organophosphorus pesticides. Chemosphere,36(10),2337-2344.
    203. Richard, C.,& Canonica, S. (2005). Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. In Environmental Photochemistry Part Ⅱ (pp.299-323). Springer Berlin Heidelberg.
    204. Canonica, S.,& Laubscher, H. U. (2008). Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants. Photochemical & Photobiological Sciences, 7(5),547-551.
    205. Wenk, J., von Gunten, U.,& Canonica, S. (2011). Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environmental science & technology,45(4),1334-1340.
    206. Bonvin, F., Omlin, J., Rutler, R., Schweizer, W. B., Alaimo, P. J., Strathmann, T. J.,...& Kohn, T. (2012). Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environmental science & technology., Article ASAP,
    207.刘天晴,& 高小刚.(2010).胶体及界面化学,物理化学学报,26(01),66-72
    208.208Kamiya, M.,& Kameyama, K. (1998). Photochemical effects of humic substances on the degradation of organophosphorus pesticides. Chemosphere,36(10),2337-2344.
    209.王柏臣,黄玉东,& 刘丽.(2006).溶剂对RTM石英/酚醛复合材料溶液浸润过程影响研究.航空材料学报,26(1),46-50.
    210.王连生,有机污染化学,高等教育出版社,2006,75-185
    211. Dilling, W. L., Lickly, L. C., Lickly, T. D., Murphy, P. G.,& McKellar, R. L. (1984). Organic photochemistry.19. Quantum yields for O, O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphorothioate (chlorpyrifos) and 3,5,6-trichloro-2-pyridinol in dilute aqueous solutions and their environmental phototransformation rates. Environmental science & technology, 18(7),540-543.
    212.Sojic, D. V., Anderluh, V. B., Orcid, D. Z.,& Abramovic, B. F. (2009). Photodegradation of clopyralid in TiO< sub> 2 suspensions:Identification of intermediates and reaction pathways. Journal of hazardous materials,168(1),94-101.
    213. Canle, L. M., Fernandez, M. I.,& Santaballa, J. A. (2005). Developments in the mechanism of photodegradation of triazine-based pesticides. Journal of physical organic chemistry, 18(2),148-155.
    214. Wu, J., Lan, C.,& Chan, G. Y. S. (2009). Organophosphorus pesticide ozonation and formation of oxon intermediates. Chemosphere,76(9),1308-1314.
    215. Chelme-Ayala, P., El-Din, M. G.,& Smith, D. W. (2010). Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation. Chemosphere,78(5), 557-562.
    216. Oancea, P.,& Oncescu, T. (2008). The photocatalytic degradation of dichlorvos under solar irradiation. Journal of Photochemistry and Photobiology A:Chemistry,199(1),8-13.
    217. von Gunten, U. (2013). Chemical oxidation processes. Source Separation and Decentralization for Wastewater Management,383.
    218. Jasper, J. T.,& Sedlak, D. L. (2013). Phototransformation of Wastewater-Derived Trace Organic Contaminants in Open-Water Unit Process Treatment Wetlands. Environmental Science & Technology.
    219. Zhou, B., Miao, Q., Yang, L.,& Liu, Z. L. (2005). Antioxidative Effects of Flavonols and Their Glycosides against the Free-Radical-Induced Peroxidation of Linoleic Acid in Solution and in Micelles. Chemistry-A European Journal,11(2),680-691.
    220. Takeuchi, Y., Hirama, M., Yoshioka, H.,& Yoshioka, H. QUANTUM-CHEMICAL ANALYSIS OF THE REACTION RATE CONSTANTS OF POLYPHENOLS WITH HYDROXYL RADICAL. http://www.o-cha.net/english/conference2/pdf/2004/files/PROC/HB-P-02.pdf]
    221. Cardoso, D. R., Libardi, S. H.,& Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food& Function.3(5),487-502.
    222.陆长元,韩镇辉,蔡喜臣,陈雨玲,& 姚思德.(2000).核黄素(维生素B2)的光物理和光化学性质.中国科学:B辑,30(5),428-435.
    223. Becker, E. M., Cardoso, D. R.,& Skibsted, L. H. (2005). Deactivation of riboflavin triplet-excited state by phenolic antioxidants:mechanism behind protective effects in photooxidation of milk-based beverages. European Food Research and Technology,221(3-4), 382-386.
    224. Grebel, J. E., Pignatello, J. J.,& Mitch, W. A. (2011). Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water research,45(19),6535-6544.
    225. Zhang, Y., Liu, C. Z., Li, X. J., Wang, Z. L., Zhang, H. T.,& Miao, Z. G. (2010). Structures and energies of the radicals and anions generated from chlorpyrifos. Journal of molecular modeling,16(8),1369-1376.
    226. Lee, J. Y., Jeong, K. W.,& Kim, Y. (2011). Epigallocatechin 3-gallate Binds to Human Salivary a-Amylase with Complex Hydrogen Bonding Interactions. Bull. Korean Chem. Soc, 32(7),2223.
    227. Banerjee, T., Sharma, S. K., Surolia, N.,& Surolia, A. (2008). Epigallocatechin gallate is a slow-tight binding inhibitor of enoyl-ACP reductase from< i> Plasmodium falciparum. Biochemical and biophysical research communications,377(4),1238-1242
    228. Huvaere, K., Olsen, K.,& Skibsted, L. H. (2009). Quenching of triplet-excited flavins by flavonoids. Structural assessment of antioxidative activity. The Journal of organic chemistry, 74(19),7283-7293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700