用户名: 密码: 验证码:
基于功率流分析与重构的直流变换器拓扑衍生理论和方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以航天器电源为代表的可再生能源独立供电系统一般配有蓄能电池,形成了具有输入、输出和中间双向三类端口的系统结构。随着我国航天载人事业的迅速发展,采用多个两端口变换器实现此类三端口功率系统功率管理控制的传统解决方案将难以适应未来供电系统的要求,必须研究采用新的理论、方法和技术有效提高功率变换能效。本文研究新型集成直流三端口变换器(Three-Port Converter,TPC),旨在揭示TPC拓扑族的本质规律和内在联系,形成一般性拓扑衍生理论和方法,以推动TPC系统设计和应用发展,并为复杂功率接口变换器拓扑的研究提供理论和方法参考,为高能效、高功率密度可再生能源供电系统提供解决方案。
     提出了基于功率流分析与重构的直流变换器拓扑衍生的整体思想和方法。在工作原理分析的基础上,归纳总结并提取典型TPC拓扑所共有的端口特性及端口间功率流特性,给出了TPC拓扑内在机理描述,明确了TPC拓扑的构成要素即端口、功率传输路径和功率控制变量;揭示了TPC与传统两端口变换器的内在联系,建立了两端口变换器拓扑向三端口变换器拓扑转化的桥梁;将变换器拓扑构造过程分解为端口、功率传输路径及其控制变量的重构过程,形成了研究TPC等复杂变换器拓扑本质规律和内在联系、进而获得其拓扑衍生的一般原则。
     提出了TPC拓扑合理有效的物理构造和优化方法。(1)组合-优化构造法。首先由两端口变换器组合构造出基本三端口拓扑,然后以器件复用和功率传输路径集成为拓扑优化准则,去除冗余部件,实现高功率密度TPC。以非隔离TPC拓扑族为例,分别给出了两端口变换器经由双输入变换器、双输出变换器和双向变换器生成TPC的原理、方法和过程。(2)控制变量重构法。发掘并利用现有两端口变换器中潜在的第三端口及功率路径,补充构造TPC功率控制所需要的控制变量、满足功率控制要求,得到TPC拓扑。以半桥式TPC拓扑族为例,给出了拓扑构造方法和过程。(3)功率路径重构法。发掘并利用现有两端口变换器中潜在的功率控制变量,补充构造第三端口及相应的功率传输路径,构造出TPC拓扑。以全桥式TPC拓扑为例给出了拓扑衍生方法,并将该方法延伸推广于含多个双向端口的多端口变换器拓扑族的生成。(4)直接构造法。发掘并利用现有两端口变换器中潜在的端口、功率传输路径和功率控制变量,将其直接升级为TPC拓扑。以Z源变换器为例分析,并给出了Z源TPC拓扑实例。
     应用所提出的拓扑构造原理和方法,推导并得到了一系列具有高集成度且任意两个端口之间均为单级功率变换的TPC拓扑族和多端口变换器拓扑族,包括非隔离TPC拓扑族、半桥式TPC拓扑族、全桥式多端口变换器拓扑族以及双有源桥多端口双向变换器拓扑族等。提出了兼顾实现输入最大功率点跟踪、输出稳定及蓄电池充放电控制等要求的多目标优化功率控制和能量管理策略,以及脉宽调制等关键技术的解决方案。
     将功率流分析与重构的新方法拓展应用于复杂两端口变换器的拓扑描述和系统化衍生研究。以功率流概念诠释正激变换器的工作机理,提出了二极管磁复位正激直流变换器拓扑族的正单元、负单元和复合单元三种基本开关单元及其构造思想,以及二极管磁复位正激直流变换器拓扑族的衍生规则和优化方法,得到了一系列新型正激变换器拓扑,验证了方法的适用性。
     对所提出的典型变换器进行了深入的理论分析和全面的实验验证。详细论述了其基本原理、工作模态、调制方法、软开关特性和设计要点的分析,给出了原理样机在各种工作模式下的稳态和动态实验结果,验证了理论和方法的正确性以及有效性。
Three-port power systems, which consist of an input, an output and a bidirectional port interface,are widely found in stand-alone renewable power systems with storage batteries such as power systemin a satellite or space station. The conventional solutions, emploing multiple two-port converterts toimplement power management of those three-port power systems, can not satisfy the requirement ofefficiency and power density. The conversion efficiency and performance can be significantlyenhanced by introduction of novel integrated Three-Port Converter (TPC) technology. A systematicresearch on the DC-DC converters’ topology derivationtheory and methodology for TPCs is presentedin this thesis, in order to investigate and reveal the inherent laws and inner connections of thetopology families, leading to guiding principles for TPC system design and application, and providingtheoretic and methodology reference for topology research on power conversion system with complexinterfaces.
     The basic idea and method oftopology derivation for DC-DC converters, via the analysis andrebuilding of power flows, are proposed. Based upon the operational analysis of the typical TPCtopologies, the characteristics of the power flows are extracted andthe mechanism of the topologiesare discovered, functioning with the basic elements of interface ports, power transmission routes andcontrol. The inherent relationship between the TPC and conventional two-port converters are revealed,providing bridge between them. The generation of TPC topologies is degraded into the rebuilding ofthe ports, the transmission routes and the control for the power flows. General principles areestablished for the topology family derivation of complicated converter, such as a TPC, via inherentcharacteristics analysis.
     Circuit construction and optimization methods for TPC topologiesare proposed.(1) Combineconventional two port power converters to build a preliminary TPC topology. And then merge thepower branches with devices shared as much as possible to get an integrated and optimized TPCtopology. Non-isolated TPCs are introduced to indicatethe generation of TPC topologies viadual-input converters, dual-output converters and bidirectional converters, respectively.(2) Build TPCtopologies from a two-port converter by locating the third port and accompanying power flow routeparasitized, addingan additional control device to satisfy the power management requirements.Half-bridge TPC examples illustrate the principle and process of the method.(3)Build TPC topologiesfrom a two-port converterwith employing the parasitized power control variables found, and along with constructing the power transmission routes required. Families of Full-bridge three-port andmulti-port converters are built in this way as examples.(4) Upgrade a special two-port converter to aTPC directly via discovering and utilizing the three ports and associate power flows hidden. SomeZ-Source TPCs exhibit good examples.
     Plenty of new topologies are harvested with the proposed methods validated, includingthe family ofnon-isolated TPC topologies, the family of half-bridge TPC topologies, the family of full-bridge TPCtopologies, the family of full-bridge multi-port converter topologies and the familyofdual-active-bridge multi-port topologies. And all of the topologiesare highly integrated withsingle-stage power conversion between any two of the ports, leading to higher power efficiency andpower density. A multi-objective optimized power control and energy management strategyisproposed for the TPC applications, with the realization of the maximum power point tracking for thesource, output control and battery charging management at the same time. The solutions to keytechniques, such as pulse width modulation, are also given.
     The concept of power flow analysis and rebuilding for TPCs are extended to the topologydescription and generation of complicated two port converters. The operational principle is given newexplanation for the forward converters. And three basic forward cells, named as positive cell, negativecell and composite cell, are categorized for the family of diode-magnetizing-reset forward converters(DMR-FC). The rules for topology derivation and optimization are also analyzed and given. A familyof DMR-FC topologies is created, with the adaptability of the new method well indicated.
     Further theoretical analysis and fully experimental verification have been conducted for the typicalconverters proposed. The operation principles, working modes, modulations, soft-switchingcharacteristics and design considerations have been analyzed in-depth. The experimental results forstatic, dynamic and seamless-switching properties under different modes are given in detail, validatingthe theory and method.
引文
[1]陈坚.电力电子学——电力电子变换和控制技术.北京:高等教育出版社,2004.
    [2]钱照明,张军明,吕征宇,等.我国电力电子与电力传动面临的挑战与机遇.电工技术学报,2004,19(8):10-22.
    [3] Lee F C, Xu M, Wang S, Lu B. Design challenges for distributed power systems. AsianPower Electronics Journal,2007,1(1):1-14.
    [4] Blackburn K, Lessard B, Kirchner D, Kurth W. Controlling low frequency interference fromdirect energy transfer spacecraft power systems.2011IEEE International Symposium onElectromagnetic Compatibility,2011:840-845.
    [5]戚发轫,朱仁璋,李颐黎.载人航天器技术.北京:国防工业出版社,2003.
    [6]褚桂柏.空间飞行器设计.北京:航空工业出版社,1996.
    [7]李国欣.航天器电源系统技术概论.北京:中国宇航出版社,2008.
    [8] Mukund R P. Spacecraft power systems. USA: CRC Press,2005.
    [9]中华人民共和国可再生能源法.2006.
    [10] Bragard M, Soltau N, Thomas S, Doncker R W. The balance of renewable sources and userdemands in grids: power electronics for modular battery energy storage systems. IEEETrans. on Power Electronics,2010,25(10):3049-3056.
    [11]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用.中国电机工程学报,2010,30(4):1-7.
    [12] Rocabert J, Luna A, Blaabjerg F, Rodriguez P. Control of power converters in AC microgrids.IEEE Trans. on Power Electronics,2012,27(11):4734-4749.
    [13]钱照明,高明志,张宇儒,等.未来可持续型住宅用直流极微型电网系统[J].大功率变流技术,2011(5):1-5.
    [14] Liu B, Duan S, Cai T. Photovoltaic DC-building-module-based BIPV system—concept anddesign considerations. IEEE Trans. on Power Electronics,2011,26(5):1418-1429.
    [15] Saber A Y, Venayagamoorthy G K. Plug-in vehicles and renewable energy sources for costand emission reductios. IEEE Trans. on Industrial Electronics,2011,58(4):1229-1238.
    [16] Pahlevaninezhad M, Drobnik J, Jain P K, Bakhshai A. A load adaptive control approach for azero-voltage-switching DC/DC converter used for electric vehicles. IEEE Trans. on PowerElectronics,2012,59(2):920-933.
    [17] Li Y C, Chen C L. A novel single-stage high-power-factor AC-to DC LED driving circuitwith leakage inductance energy recycling. IEEE Trans. on Industrial Electronics,2012,59(2):793-802.
    [18] Hui S Y, Li S, Tao X, Ng W M. A novel passive offline LED driver with long lifetime. IEEETrans. on Power Electronics,2010,25(10):2665-2672.
    [19]王成山,于波,肖峻,郭力.平滑可再生能源发电系统输出波动的储能系统容量优化方法.中国电机工程学报,2012,32(16):1-8.
    [20]廖怀庆,刘东,黄玉辉,等.考虑新能源发电与储能装置接入的智能电网转供能力分析.中国电机工程学报,2012,32(16):9-15.
    [21] Brandhorst H W, Neill M J, Eskenazi M. Photovoltaic options for increased satellite power atlower cost. In Proc.3rd World Conference on Photovoltaic Energy Conversion,2003, pp.849-852.
    [22] Capel A. The power system of the multimedia constellation satellite for the skybridgemissions. IEEE Power Electronics Specialists Conference,1998, pp.1913-1930.
    [23] Gietl E B, Gholdston E W, Cohen F, et al. The architecture of the electric power system of theinternational space station and its application as a platform for power technologydevelopment.35thIntersociety Energy Conversion Engineering Conference and Exhibit,2000:855-864.
    [24] Garrigos A, Carrasco J A, Blanes J M, Sanchis-kilders E. A power conditioning unit for highpower GEO satellites based on the sequential switching shunt series regulator. IEEEElectrotechnical Conference,2006, pp.1186-1189.
    [25]廖志凌.太阳能独立光伏发电系统关键技术研究.[博士学位论文],南京:南京航空航天大学,2008.
    [26] Ongaro F, Saggini S, Mattavelli P. Li-ion battery-supercapacitor hybrid storage system for along lifetime, photovoltaic-based wireless sensor network. IEEE Trans. on PowerElectronics,2012,27(9):3944-3952.
    [27] Locment F, Sechilariu M, Houssamo I. DC load and batteries control limitations forphotovoltaic systems, experimental validation. IEEE Trans. on Power Electronics,2012,27(9):4030-4038.
    [28]孙超.独立运行的光伏系统的研究.[硕士学位论文],南京:南京航空航天大学,2009.
    [29] Al-Atrash H, Reese J, Batarseh I. Tri-modal half-bridge converter for three-port interface.IEEE PESC2007,2007:1702-1708.
    [30] Al-Atrash H, Tian T, Batarseh I. Tri-modal half-bridge converter topology for three-portinterface. IEEE Trans. on Power Electronics,2007,22(1):341-345.
    [31] Qian Z, Abdel-Rahman O, Reese J, et al. Dynamic analysis of three-port DC/DC converterfor space applications. IEEE APEC2009,2009:28-34.
    [32] Al-atrash H, Batarseh I. Boost-integrated phase-shift full-bridge converter for three-portinterface. IEEE PESC2007,2007:2313-2321.
    [33] Tao H, Kotsopoulos A, Duarte J L, Hendrix M A M. Family of multiport bidirectionalDC-DC converters. IEE Proceedings of Electric Power Applications,2006,153(3):451-458.
    [34] Kwasinski A. Quantitative evaluation of DC microgrids availability: effects of systemarchitecture and converter topology design choices. IEEE Trans. on Power Electronics,2011,26(3):835-851.
    [35] Tao H, Duarte J L and Hendrix M A M. Multiport converters for hybrid power sources. IEEEPESC2008,2008:3412-3418.
    [36] Qian Z, Osama A., Elmes J, et al. Fault-tolerant current sharing for integrated three-portDC/DC converters. International Journal of Integrated Energy Systems,2009,1(1):71-77.
    [37] Qian Z, Abdel-Rahman O, Pepper M, Batarseh I. Analysis and design for paralleledthree-port DC/DC converters with democratic current sharing control. IEEE ECCE2009,2009:20-24.
    [38] Qian Z, Abdel-Rahman O, Hu H, Batarseh I. Multi-channel three-port DC/DC converters asmaximum power tracker, battery charger and bus regulator. IEEE APEC2010,2010:2073-2079.
    [39] Kato K, Itoh J. An investigation of high efficiency operation conditions for a three-portenergy source system using an indirect matrix converter. IEEE ECCE2011,2011:230-237.
    [40] Qian Z, Abdel-Rahman O, Batarseh I. An integrated four-port DC/DC converter forrenewable energy applications. IEEE Trans. on Power Electronics,2010,25(7):1877-1887.
    [41]吴理博,赵争鸣,刘建政,等.独立光伏照明系统中的能量管理控制.中国电机工程学报,2005,25(22):68-72.
    [42]侯世英,房勇,孙韬,彭文雄.混合储能系统在独立光伏发电系统功率平衡中的应用.电网技术,2011,35(5):183-187.
    [43]石京,陈天琦,孟杰,林红.能源稳定型风光互补发电系统在道路照明中的应用.清华大学学报(自然科学版),2012,52(2):139-143.
    [44]黄伟,孙昶辉,吴子平,张建华.含分布式发电系统的微网技术研究综述.电网技术,2009,33(9):14-18.
    [45] Lu X, Sun K, Guerrero J M, Vasquez J C, et al. SoC-based droop method for distributedenergy storage in DC microgrid applications. IEEE ISIE2012:1640-1645.
    [46] Zhou H, Bhattacharya T, Tran D, et al. Composite energy storage system involving batteryand ultracapacitor with dynamic energy management in microgrid applications. IEEETransactions on Power Electronics,2011,26(3):923-930.
    [47] Kyritsis A C, Papanikolaou N P, Tatakis E C. A novel ParallelActive Filter for CurrentPulsation Smoothing on Single Stage Grid connected AC-PV Modules. EuropeanConference on Power Electronics and Applications (EPE),2007:1-10.
    [48] Hu H, Harb S, Kutkut N, et al. Power decoupling techniques for micro-inverters in PVsystems–a review. IEEE ECCE2010,2010:3235-3240.
    [49] Wang S, Ruan X, Yao K, et al. A flicker-free electrolytic capacitor-less AC-DC LED driver.IEEE Trans. on Power Electronics,2012,27(11):4540-4548.
    [50] Nge C L, Midtgard O M, Norum L. Power management of grid-connected photovoltaicinverter with storage battery. IEEE Trondheim Power Tech,2011:1-6.
    [51] Braun M, Budenbender K, Magnor D, Jossen A. Photovoltaci self-consumption in germanyusing lithium-ion storage to increase self-consumed photovoltaic energy. The24th EuropeanPhotovoltaci Solar Energy Conference,2009:3121-3127.
    [52]朱选才.燃料电池发电系统功率变换及能量管理.[博士学位论文],杭州:浙江大学,2009.
    [53] Vu T, Le Pivert X, Schaeffer C. Distributed energy storage for rural electrification bymicrogrid.2ndInternational Conference on Engineeering Optimization,2010:1-7.
    [54] Ari A M, Li L, Wasynczuk O. Modeling and analysis of N-port DC-DC converters using thecyclic average current. IEEE APEC2012,2012:863-869.
    [55] Qian Z, Abdel-Rahman O, Al-Atrash H, Batarseh I. Modeling and control of three-portDC/DC converter interface for satellite applications. IEEE Trans. on Power Electronics,2010,25(3):637-649.
    [56] Li W, Xiao J, Zhao Y, He X. PWM plus phase angle shift (PPAS) control scheme forcombined multiport DC-DC converters. IEEE Trans. on Power Electronics,2012,27(3):1479-1489.
    [57] Zhao C, Round S D, Kolar J W. An isolated three-port bidirectional DC-DC converter withdecoupled power flow management. IEEE Trans. on Power Electronics,2008,23(5):2443-2453.
    [58] Napoli A D, Crescimbini F, Rodo S, Solero L. Multiple input DC-DC power converter forfuel-cell powered hybrid vehicles. IEEE Power Electronics Specialists Conference,2002:1685-1690.
    [59] Solero L, Lidozzi A, Pomilio J A. Design of multiple-input power converter for hybridvehicles. IEEE Trans. on Power Electronics,2005,20(5):1007-1016
    [60] Jiang W, Fahimi B. Multi-port power electric interface for renewable energy sources—concept, modeling and design. IEEE Trans. on Power Electronics,2011,26(7):1890-1900.
    [61] Marchesoni M, Vacca C. New DC-DC converter for energy storage system interfacing in fuelcell hybrid electric vehicles. IEEE Trans. on Power Electronics,2007,22(1):301-308.
    [62] Mourra O, Fernandez A, Landstroem S. Multiple port DC DC converter for spacecraft powerconditioning unit. IEEE APEC2012,2012:1278-1285.
    [63] Peng F Z, Shen M. Application of Z-source inverter for traction drive of fuel cell-batteryhubyrid electric vehicles. IEEE Trans. on Power Electronics,2007,22(3):1054-1061.
    [64] Su G, Tang L. A multiphase, modular, bidirectional, triple-voltage DC-DC converter forhybrid and fuel cell vehicle power systems. IEEE Trans. on Power Electronics,2008,23(6):3035-3046.
    [65] Peng F Z, Li H, Su G, Lwaler J S. A new ZVS bidirectional DC-DC converter for fuel celland battery application. IEEE Trans. on Power Electronics,19(1):54-65.
    [66]张兴,唐杰.高频无极灯独立光伏照明系统设计.太阳能学报,2009,30(2):211-216.
    [67] Su G J, Tang L. A reduced-part, triple-voltage DC-DC converter for EV/HEV powermanagement. IEEE Trans. on Power Electronics,2009,24(10):2406-2410.
    [68] Wang Z, Li H. Integrated MPPT and bidirectional battery charger for PV application usingone multiphase interleaved three-port DC-DC converter. IEEE APEC2011,2011:295-300.
    [69] Ding Z, Wang C, Yang C, Xie S. A novel soft-switching “3+1”-port bidirectional DC-DCconverter for hybrid energy storage system. IEEE APEC2012,2012:1198-1123.
    [70] Chen W, Hui S Y. Elimination of an electrolytic capacitor in AC/DC light-emitting diode(LED) driver with high input power factor and constant output current. IEEE Trans. onPower Electronics,2012,27(3):1598-1607.
    [71]罗全明,邾玢鑫,周雒维,汪洋.一种多路输入高升压Boost变换器.中国电机工程学报,2012,32(3):9-15.
    [72] Kwasinski A. Identification of feasible topologies for multiple-input DC-DC converters.IEEE Trans. on Power Electronics,2009,24(3):856-861.
    [73] Dobbs B G, Chapman P L. A multiple-input DC-DC converter topology. IEEE Trans. onPower Electronics,2003,1(1):6-9.
    [74] Kwon D, Rincon-Mora G A. Single-inductor-multiple-output switching DC-DC converters.IEEE Trans. on Circuits and Systems-II: Express Briefs,2009,56(8):614-618.
    [75] Huang C S, Chen D, Chen C J, Liu K H. Mix-voltage conversion for single-inductordual-output buck converters. IEEE Trans. on Power Electronics,2010,25(8):2106-2114.
    [76] Jia J, Leung K N. Digital-control single-inductor triple-output DC-DC converter withpre-sub-period inductor-current control. IEEE Trans. on Power Electronics,2012,27(4):2028-2042.
    [77] Hu H, Zhang Q, Fang X, et al. A single stage micro-inverter based on a three-port flybackwith power decoupling capability. IEEE ECCE2011,2011:1411-1416.
    [78] Hu H, Harb S, Fang X, et al. A three-port flyback for PV microinverter applications withpower pulsation decoupling capability. IEEE Trans. on Power Electronics,2012,27(9):3953-3964.
    [79] Tao H, Duarte J L, Hendrix M A M. Three-port triple-half-bridge bidirectional converter withzero-voltage switching. IEEE Trans. on Power Electronics,2008,23(2):782-792.
    [80] Oggier G G, Garcia G O. Switching control strategy to minimize dual active bridge converterlosses. IEEE Trans. on Power Electronics,2009,24(7):1826-1838.
    [81] Zhao B, Song Q, Liu W. Power characterization of isolated bidirectional dual-active-bridgeDC-DC converter with dual-phase-shift control. IEEE Trans. on Power Electronics,2012,27(9):4172-4176.
    [82] Michon M, Duarte J L, Hendrix M, Simoes M G. A three-port bi-directional converter forhybrid fuel cell systems. IEEE35th PESC,2004:4736-4742.
    [83] Duarte J L, Hendrix M, Simoes M G. Three-port bidirectional converter for hybrid fuel cellsystems. IEEE Trans. on Power Electronics,2007,22(2):480-487.
    [84] Tao H, Kotsopoulos A, Duarte J L, Hendrix M A M. Transformer-coupled multiport ZVSbidirectional DC-DC converter with wide input range. IEEE Trans. on Power Electronics,2008,23(2):771-781.
    [85] Phattanasak M, Gavagsaz-Ghoachani R, Martin J P, Pierfederici S. Flatness based control ofan isolated three-port bidirectional DC-DC converter for a fuel cell hybrid source. IEEEECCE2011,2011:977-984.
    [86] Falcones S, Ayyanar R. Simple control design for a three-port DC-DC converter based PVsystem with energy storage. IEEE APEC2010,2010:2149-2153.
    [87]王成悦.用于混合储能系统的三半桥隔离式双向DC/DC变换器的研究,[硕士学位论文].合肥:合肥工业大学,2009.
    [88] Liu D, Li H. A ZVS bi-directional DC-DC converter for multiple energy storage elements.IEEE Trans. on Power Electronics,2006,21(5):1513-1517.
    [89]杨海峰.独立太阳能燃料电池联合发电系统的多端口双向DC-DC变换器研究,[硕士学位论文].呼和浩特:内蒙古工业大学,2009.
    [90] Krishnaswami K, Mohan H. A current-fed three-port bi-directional DC-DC converter.INTELEC2007,2007:523-526.
    [91] Zhang Z, Ouyang Z, Thomsen O C, Andersen M A. Analysis and design of a bidirectionalisolated DC-DC converter for fuel cells and supercapacitors hybrid system. IEEE Trans. onPower Electronics,2012,27(2):848-859.
    [92] Krishnaswami H, Mohan N. Three-port series-resonant DC-DC converter to interfacerenewable energy sources with bidirectional load and energy storage ports. IEEE Trans. onPower Electronics,2009,24(10):2289-2297.
    [93] Krishnaswami H, Mohan N. Constant switching frequency series resonant three-portbi-directional DC-DC converter. IEEE PESC,2008:1640-1645.
    [94] Tao H, Duarte J L, Hendrix M A M. High-power three-port three-phase bidirectional DC-DCconverter. IEEE IAS2007,2007:2022-2029.
    [95] Chen Y M, Liao C Y. Three-port flyback-type single-phase micro-inverter with active powerdecoupling circuit. IEEE ECCE2011,2011:501-506.
    [96] Chen Y M, Liu Y C. Development of multi-port converters for hybrid wind-photovoltaicpower system. IEEE Region10International Conference on Electrical and ElectronicTechnology,2001:804-808.
    [97] Peng F Z, Tolbert L M, Khan F. Power Electronics’ Circuit Topology–the Basic SwitchingCells. IEEE Power Electronics Educational Workshop,2005:52-57.
    [98] Landsman E E. A Unifying Derivation of Switching DC-DC Converter Topologies. InProceedings of IEEE PESC,1979:239-243.
    [99] Guo Y, Morcos M M, Lucas M S P. On the Canonical Switching Cell for DC-DC Converters.North American Power Symposium Proceedings,1993:672-681.
    [100] Peng F Z. A generalized multilevel inverter topology with self voltage balancing. IEEETrans. on Power Electronics,2001,37(2):611-618.
    [101]何湘宁,陈阿莲.多电平变换器的理论和应用技术.北京:机械工业出版社,2006.
    [102]陈阿莲,何湘宁,吴洪洋,赵荣祥.基于基本单元串-并(并-串)思想生成多电平变换器拓扑的方法.电工技术学报,2004,19(2):41-46.
    [103]阮新波.三电平直流变换器及其软开关技术.北京:科学出版社,2006.
    [104] Liu Y, Chen Y. A Systematic Approach to Synthesizing Multi-Input DC-DCConverters.IEEE Tran. on Power Electronics,2009,24(1):116-127.
    [105] Li Y, Ruan X, Yang D, Liu F, Tse C K. Synthesis of Multiple-Input DC/DC Converters.IEEE Trans. on Power Electronics,2010,25(9):2372-2385.
    [106] Balestero J P R, Tofoli F L, Torrico-Bascope G V, Seixas F J M. A DC-DC converter basedon the three-state switching cell for high current and voltage step-down applications. IEEETrans. on Power Electronics,2013,28(1):398-407.
    [107] Chen G, Liu Q, Wang F, Boroyevich D. A flexible loss-minimizing and stress-sharing switchcell for power converters. IEEE Trans. on Power Electronics,2008,23(1):60-74.
    [108] Li W, He X. A family of interleaved DC-DC converters deduced from a basic cell withwinding-cross-coupled inductors(WCCIs) for high step-up or step-down conversions. IEEETrans. on Power Electronics,2008,23(4):1791-1801.
    [109] Cuk. General topological properties of switching structures. IEEE PESC,1979:109-130.
    [110]蔡宣三,龚邵文.高频功率电子学:直流-直流变换部分.北京:科学出版社,1993.
    [111] Yao K, Ren Y, Wei J, et al. A family of buck-type DC-DC converters with autotransformers.IEEE APEC,2003:114-120.
    [112]刘福鑫,阮洁,阮新波.一种多端口直流变换器的系统生成方法——采用单极性脉冲电源单元.中国电机工程学报,2012,32(6):72-80.
    [113] Kwon D. Rincon-Mora G A. Single-inductor-multiple-output switching DC-DC converters.IEEE Trans. on Circuit and Systems-II: Express Briefs,2009,56(8):614-618.
    [114] Ma D, Ki W H, Tsui C, Mok P K T. Single-inductor multiple-output switching converterswith time-multiplexing control in discontinuous conduction mode. IEEE Journal ofSolid-State Circuit,2003,38(1):89-100.
    [115]吴红飞,陆珏晶,石巍,邢岩.一族非隔离双向直流变换器.中国电机工程学报,2012,32(9):65-71.
    [116]严仰光.双向直流变换器.南京:江苏科学技术出版社,2004.
    [117]张国驹,唐西胜,周龙,等.基于互补PWM控制的Buck/Boost双向变换器在超级电容器储能中的应用.中国电机工程学报,2011,31(6):15-21.
    [118] Arias M, Lamar D G, Linera F F, et al. Design of a soft-switching asymmetrical half-bridgeconverter as second stage of an LED driver for stret lighting application. IEEE Trans. onPower Elctronics,2012,27(3):1608-1621.
    [119] Peng F Z. Z-Source inverter. IEEE Trans. on Industry Applications,2003,39(2):504-510.
    [120] Amodeo S J, Chiacchiarini H G, Oliva A, et al. Enhanced-performance control of a DC-DCZ-Source converter. IEEE IEMDC,2009:363-368.
    [121] Cha H, Peng F Z, Yoo D. Z-Source resonant DC-DC converter for wide input voltage andload variation. International Power Electronics Conference,2010:995-1000.
    [122] Wang X, Tian F, Batarseh I. High efficiency parallel post regulator for wide range inputDC-DC converter. IEEE Trans. on Power Electronics,2008,23(2):852-858.
    [123] Ayyanar R, Mohan N. A novel full-bridge DC-DC converter for battery charging usingsecondary-side control combines soft switching over the full load range and low magneticrequirement. IEEE Trans. on Industry Applications,2001,27(2):559-565.
    [124]阮新波,严仰光.脉宽调制DC/DC全桥变换器的软开关技术.北京:科学出版社,1999.
    [125] Pahlevaninezhad M, Drobnik J, Jain P K, Bakhshai A. A load adaptive control approach fora zero-voltage-switching DC/DC converter used for electric vehicles. IEEE Trans. onIndustrial Electronics,2012,59(2):920-933.
    [126] Tan F D. The forward converte: from the classic to the contemporary. in Proc.17thIEEEAPEC,2002:857-863.
    [127] Park K B, Kim C E, Moon G W, Youn M J. Three-switch active-clamp forward converterwith low switch voltage stress and wide ZVS range for high-input-voltage applications.IEEE Trans. on Power Electronics,2010,25(4):889-898.
    [128] Jin T, Zhang K, Zhang K, Smedley K. A New Interleaved Series Input Parallel Output(ISIPO) Forward Converter With Inherent Demagnetizing Features. IEEE Trans. on PowerElectronics,2008,23(2):888-895.
    [129] KimHS, Seong H W, Park K B, et al. Zero-voltage-switching interleaved two-switchforward converter with phase-shift control. IEEE ECCE,2010:3727-3732.
    [130]顾亦磊,顾晓明,吕征宇,等.一种新颖的宽范围双管正激型DC/DC变换器.中国电机工程学报,2005,25(2):44-48.
    [131] Park K B, Moon G W, Youn M J. Two switch active-clamp forward converter with oneclamp diode and delayed turnoff gate signal. IEEE Trans. on Industrial Electronics,2011,58(10):4768-4772.
    [132] Adib E, Farzanehfard H. Analysis and design of a zero-current switching forward converterwith simple auxiliary circuit. IEEE Trans. on Power Electronics,2012,27(1):144-150.
    [133] Wu H, Lu J, Shi W, Xing Y. Nonisolated bidirectional DC-DC converters withnegative-coupled inductor. IEEE Trans. on Power Electronics,2012,27(5):2231-2235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700