用户名: 密码: 验证码:
铌酸盐无铅压电陶瓷烧结特性及压电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用X射线衍射(XRD)、扫描电镜(SEM)、差式量热分析(DSC)、透射电镜(TEM)、拉曼光谱分析等实验手段系统地研究了(K, Na)NbO_3基无铅压电陶瓷的成分、制备工艺、组织结构和性能等之间的关系。
     首先计算了不同成分K_xNa_(1-x)NbO_3固溶体的价电子结构,并研究了价电子结构与压电性能的关系。计算结果指出:当x在0.4和0.5之间变化时,压电常数几乎不变。压电常数在所谓的准同型相界附近没有出现显著的增加。实验结果和计算结果也符合的相当好。与典型的准同型相界不同,该体系的准同型相界并未使压电和介电性能显著提高。这意味着传统准同型相界在铌酸钾钠体系中是不存在的。
     研究了ZnO、CuO和K_(5.7)0Li_(4.07)Nb_(10.23)O_(30)作为烧结助剂对陶瓷组织和性能的影响。研究表明,由于ZnO的掺杂,陶瓷的密度、压电和介电性能得到显著的提高。在K_(5.7)0Li_(4.07)Nb_(10.23)O_(30)含量低于1mol%时,晶粒出现异常长大。适量的KLN可以减少缺陷的数量,因此可以显著地提高剩余极化强度以及降低矫顽场。陶瓷的烧结特性和压电性能同时提高。CuO掺杂可以大大提高其机械品质因数。当添加量为1.5moL%时,获得了具有最佳性能的压电陶瓷。
     通过添加Bi_2O_3和Li_2CO_3研究(K)(0.5)Na_(0.5))NbO_3压电陶瓷的低温烧结技术。在900oC烧结5h可以制备压电性能良好的陶瓷,其介电常数ε、压电常数d33和机电耦合系数kp分别为877、92pC/N和0.27。综合性能可以与高温烧结的(K)(0.5)Na_(0.5))NbO_3压电陶瓷相媲美。
     研究了(K, Na)NbO_3基固溶体的烧结过程和机理。研究表明,(K, Na)NbO_3基固溶体在400-800℃范围内通过A_2CO_3(A: K、Na、Li)和B2O5(B: Nb、Ta、Sb)固相反应生成。根据固相反应机理,此过程由扩散机制控制。(K, Na)NbO_3基陶瓷的烧结动力学为晶界扩散。
     研究了烧结温度对(K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.8925)Sb_(0.07)Ta_(0.0375))O_3压电陶瓷的显微组织相结构的变化和电性能的影响。当温度低于1130℃时,材料为正交结构,温度继续升高时,其结构为四方相。由于处在类似准同型相界的相界附近,在1120℃烧结无铅压电陶瓷的压电性能最高。
     对(K, Na)NbO_3基无铅压电陶瓷两步烧结进行研究。实验表明,在最佳的烧结条件下,陶瓷组织致密,晶粒尺寸为5μm,并且陶瓷具有良好的介电和压电性能。此外,随着温度的变化,压电陶瓷具有低的介电损耗。
     研究了Ta和Sb含量对(K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.9625-x)Sb_xTa_(0.0375))O_3压电陶瓷的相结构、显微组织、介电、压电及铁电性能的影响。随着Sb的量从5mol%逐渐增加到9mol%,所有试样为钙钛矿结构,并且晶粒尺寸逐渐增大。成分为(K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.8925)Sb_(0.07)Ta_(0.0375))O_3陶瓷的压电性能最优。随着Ta掺杂量的提高,压电常数d33和平面机电耦合系数kp增大,机械品质因数Q_m减小。Ta含量的增加同时会降低居里温度,减弱铁电性。当x=0.0375时,获得了具有最佳性能的压电陶瓷。
In this dissertation, the relationship among composition, manufacturing process, microstructureand properties of fine grained (K, Na)NbO_3-based piezoelectric ceramics have been systematicallyinvestigated by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM andTEM), differential scanning calorimeter(DSC), and Raman Spectroscopic Analysis.
     The valence-electron structures (VES) of sodium-potassium niobat(eK_xNa_(1-x)NbO_3)were calculated,and the relationship between the VES and the piezoelectric properties was determined. The resultsindicate that the piezoelectric constants are continuous and equal in the composition range of0.4≤x≤0.5. The piezoelectric properties do not dramatically improved at the so-called MPB. Theexperimental results show that the change trend of the piezoelectric constants is in good agreementwith the calculation results. Contrary to traditional MPB, the so-called morphotropic phase boundaryof sodium-potassium niobate has no significant influence on the piezoelectric and ferroelectricproperties. In other words, it was speculated that the existence of the traditional morphotropic phaseboundary was possibly controvertible in the KNN system.
     The influence of the ZnO, CuO, and K_(5.7)0Li_(4.07)Nb_(10.23)O_(30)(KLN) as sintering aids on themicrostructure and properties has been studied. Our results reveal that a small amount of ZnO canimprove the density of the ceramics effectively. Because of the high density and ZnO doping effects,the piezoelectric and dielectric properties of the ceramics are improved considerably. Some abnormalcoarse grains were formed in a matrix when the content of KLN was relatively low1mol%. Propercontent of KLN decreased the amount of defects, thus the remnant polarization increased and thecoercive field decreased markedly, and the sinterability of the KNN ceramics was simultaneouslyimproved with significant increase of piezoelectric properties. The mechanical quality factor Qmcouldsignificantly be improved for “hardening” effect of the Cu2+-doped. For the ceramics with1.5mol%,the best performance of piezoelectric ceramic was obtained.
     Low temperature sintering of (K)(0.5)Na_(0.5))NbO_3was investigated using Bi_2O_3and Li_2CO_3assintering aids. The optimal piezoelectric properties are obtained for the ceramics sintered at900oC for5h. The dielectric constant (ε), piezoelectric coefficient (d33), and electromechanical couplingcoefficient (kp) show peak values of877,92pC/N, and0.27, respectively. These values arecomparable to the values obtained for (K)(0.5)Na_(0.5))NbO_3ceramics sintered above1100oC.
     The sintering process and mechanism of (K, Na, Li)(Nb, Ta, Sb)O3(KNLNTS) solid solution were investigated. The results show that the KNLNTS forms via the reaction of A_2CO_3(A: K、Na、Li) andB2O5(B: Nb、Ta、Sb) at400-800℃. Based on the reaction kinetic isothermal analysis, KNLNTSformation is corroborated as being controlled by diffusion mechanism. The sintering process in theKNLNTS solid solutions may be explained by the grain boundary diffusion model.
     Microstructure characteristics, phase transition, and electrical properties of (K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.8925)Sb_(0.07)Ta_(0.0375))O_3(KNLNST) lead-free piezoelectric ceramics were investigated with anemphasis on the influence of sintering temperature. Orthorhombic phases mainly exist in the ceramicssintered at1100–1130℃, whereas the tetragonal phase becomes dominant when sintering temperatureis above1130℃. Because of the existence of MPB-like transitional behavior, the piezoelectricproperties show peak values at1120℃.
     Two-step sintering was investigated to manufacture (K_(0.5)Na_(0.5))NbO_3-based lead-free piezoelectricceramics. Under the optimal condition, dense specimens have an average grain size of approximately5μm, and show good dielectric and piezoelectric properties. Furthermore, the (K_(0.5)Na_(0.5))NbO_3-basedceramics maintain relatively low dielectric loss over wide temperature ranges.
     The effects of the Ta and Sb content on the phase structure, microstructure, dielectric, piezoelectric,and ferroelectric properties of the (K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.9625-x)Sb_xTa_(0.0375))O_3ceramics wereinvestigated. By increasing x from0.05to0.09, all samples exhibit a single perovskite structure withan orthorhombic phase over the whole compositional range. The grain growth of the ceramics wasimproved by substituting Sb5+for Nb5+. The (K_(0.4425)Na_(0.52)Li_(0.0375))(Nb_(0.8925)Sb_(0.07)Ta_(0.0375))O_3ceramicsshow the peak values of the piezoelectric properties. By increasing x from0.03to0.0675, thepiezoelectric performance appears regular change over the whole compositional range, owing toimprovements in d33, kpand a decease in Q_m. Curie temperature TCshift toward lower-temperatureregions by increasing the content of Ta, and Ta would weaken the ferroelectricity of the ceramics. Theoptimal performance of piezoelectric ceramic was obtained at x=0.0375.
引文
[1] B.贾菲.压电陶瓷[M].北京:科学出版社,1979.1~298.
    [2]田中哲朗.压电陶瓷材料[M].北京:科学出版社,1982.1~263.
    [3]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社,2002.1~328.
    [4] J.范兰德拉特, R.E.塞德林顿.压电陶瓷[M].北京:科学出版社,1981.1~217.
    [5]王春雷,李吉超,赵明磊.压电铁电物理[M].北京:科学出版社,1981.1~314.
    [6]张福学,孙康.压电学(下册)[M].北京:国防工业出版社,1984.1~676.
    [7]张福学.压电铁电应用[M].北京:国防工业出版社,1987.1~493.
    [8]廖梅松,陈文,徐庆. NBT基无铅压电陶瓷的研究进展[J].陶瓷学报,2003,24(4):235~238.
    [9] Yu Z, Ang C, Guo R, Bhalla A S. Piezoelectric and strain properties of Ba (Ti1-xZrx)O3ceramics[J].Journal of applied physics,2002,92(3):1489~1493.
    [10] Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics of lead-freeBi0.5(Na0.84K0.16)0.5TiO3ceramics substituted with Sr[J]. Materials Letters,2004,58(29):3831~3835.
    [11] R del J, Jo W, Seifert K, et al. Perspective on the development of lead-free piezoceramics[J].Journal of the American Ceramic Society,2009,92(6):1153~1177.
    [12] Takahashi H, Numamoto Y, Tani J, et al. Lead-free barium titanate ceramics with largepiezoelectric constant fabricated by microwave sintering[J]. Japanese Journal of Applied Physics,2006,45(1):30~32.
    [13] Takahashi H, Numamoto Y, Tani J, et al. Piezoelectric properties of BaTiO3ceramics with highperformance fabricated by microwave sintering [J]. Japanese Journal of Applied Physics,2006,45(9):7405.
    [14] Karaki T, Yan K, Miyamoto T, et al. Lead-free piezoelectric ceramics with large dielectric andpiezoelectric constants manufactured from BaTiO3nano-powder[J]. Japanese Journal of AppliedPhysics,2007,46(4A):97~98.
    [15] Wada S, Takeda K, Muraishi T, et al. Preparation of [110] grain oriented BaTiO3ceramiacs bytemplated grain growth method and their piezoelectric properties[J]. Japanese Journal of AppliedPhysics,2007,46(10A):7039~7043.
    [16]张家良,邵守福.钛酸钡基压电陶瓷材料及其制备方法与应用[P],中国,发明专利,申请号200710114644.3,2007.
    [17] Nagata H, Yoshida M, Makiuchi Y et al. Large piezoelectric constant and high Curie temperatureof lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuthpotassium titanate-barium titanate near the morphotropic phase boundary[J]. Japanese Journal ofApplied Physics,2003,42(12A):7401~7403.
    [18] Hao J J, Wang X H, Gui Z L,et al. Effect of MnO2on the property of bismuth sodium titanatepiezoelectric ceramics[J]. Rare Metal Materials and Engineering,2003,32(1):438~440.
    [19] Lin D M, Xiao D Q, Zhu J G, et al. Studies on the properties and microstructures of
    [(Bi1-x-yLax)Na1-y]0.5BayTiO3lead-free piezoelectric ceramics[J]. Electronic Components&Materials,2004.23(11):1~3.
    [20] Yuan Y, Zhang S R, Zhou X H, et al. Phase transition and temperature dependences of electricalproperties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3ceramics[J]. Japanese Journal of Applied Physics,2006,45(2A):831~834.
    [21] Lin D M, Xiao D Q, Zhu J G, et al. Synthesis and piezoelectric properties of lead-freepiezoelectric [Bi0.5(Na1-x-yKxLiy)0.5]TiO3ceramics[J]. Materials Letters,2004,58(5):615~618.
    [22] Li Y M, Chen W, Xu Q, et al. Dielectric and piezoelectric properties ofNa0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3lead-free ceramics[J]. Journal of Electroceramics,2005,14(1):53~58.
    [23] Xu Y H, Chen H C, Cross L E. Pyroelectric properties of the ferroelectric single crystal series(KxNa1x)0.4(SryBa1-y)0.8Nb2O6[J]. Ferroelectrics,1984,54(1):123~134.
    [24] Umakantham K, Narayana Murty S, Sambasiva Rao K. Effect of rare-earth ions on the propertiesof modified (SrBa)Nb2O6ceramics [J]. Journal of Materials Science Letters,1987,6(5):565~567.
    [25] Robin A I, Prasadar A V and Sabasiv A R Effect of rare earth substitution on the dielectric andpiezoelectric properties of Ba2AgNb5O15[J]. Ferroelectrics,1994,153(1):285~290.
    [26] Stachiotti M, Dobry A, Migoni R, et al. Particle dynamics in the vicinity of a ferroelectric phasetransition [J]. Ferroelectrics,1994,153(1):195~200.
    [27] Robin A I, Prasada Rao A V, Sambasiva Rao, K. Ferroelectric and piezoelectric studies oflanthanum and presodymium modified Ba2AgNb5O15ceramics[J] Journal of Materials ScienceLetters,1994,13(19):1381~1383.
    [28] Spinola D U P, Moreira E N, Bassora L A, et al. Pyroelectric and piezoelectric properties of SBNceramics[J]. Ultrasonics Symposium,1996,15:523~526.
    [29] Kimura M, Minamikawa T, Ando A et al. Temperature Characteristics of (Ba1-xSrx)2NaNb5O15Ceramics[J]. Japanese Journal of Applied Physics,1997,36(9B):6051~6054.
    [30] Frit B, Mercurio J P. The crystal chemistry and dielectric properties of the Aurivillius family ofcomplex bismuth oxides with perovskite-like layered structures [J]. Journal of Alloy andCompounds,1992,88(44):27~53.
    [31]晏海学,李承恩,周家光,等.高TC铋层状压电陶瓷结构与性能[J].无机材料学报,2000,15(2):209~220.
    [32] Michael H, Newnhan R E. Cross L E. Grain-oriented Ferroelectric Ceramics[J]. AmericanCeramic Society Bulletin,1979,58(9):872~877.
    [33] Dungan R H, Golding R D. Polarization of NaNbO3-KNbO3ceramic solid solutions [J]. Journalof the American Ceramic Society,1965,48(11):601~601.
    [34] Egerton L, Dillon D M. Piezoelectric and dielectric properties of ceramics in the systempotassium-sodium niobate[J]. Journal of the American Ceramic Society,1959,42(9):438~442.
    [35] Birol H, Damjanovic D, Setter N. Preparation and characterization of (K0.5Na0.5)NbO3ceramics[J]. Journal of European Ceramic Society,2006,26(6):861~866.
    [36] Jaeger R E, Egerton L. Hot pressing of potassium-sodium niobate[J]. Journal of the AmericanCeramic Society,1962,45(5):209~213.
    [37] Haertling G H. Properties of hot-pressed ferroelectric alkali niobate ceramics[J]. Journal of theAmerican Ceramic Society,1967,50(6):329~330.
    [38] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature,2004,432(7013):84~87.
    [39]沈宗洋,李敬锋.(Na, K)NbO3基无铅压电陶瓷的研究进展[J].硅酸盐学报,2010,38(3):510~520.
    [40] Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of(Na0.5K0.5)NbO3–LiNbO3ceramics[J]. Applied Physics Letters,2004,85(18):4121.
    [41] Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li-and Ta-modified(K0.5Na0.5)NbO3ceramics[J]. Applied Physics Letters,2005,87(18):182905.
    [42] Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29ceramics[J]. Journal of Applied Physics,2005,97(11):114105.
    [43] Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectric properties of lead‐free (K,Na)(Nb,Ta)O3ceramics[J]. Journal of the American Ceramic Society,2005,88(5):1190~1196.
    [44] Matsubara M, Yamaguchi T, Kikuta K, et al. Sintering and piezoelectric properties of potassiumsodium niobate ceramics with newly developed sintering aid [J]. Japanese Journal of AppliedPhysics,2005,44(1A):258.
    [45] Chen Q, Chen L, Li Q S. Piezoelectric properties of K4CuNb8O23modified (Na0.5K0.5)NbO3lead-free piezoceramics[J]. Journal of Applied Physics,2007,102(10):104109.
    [46] Dawson W. Hydrothermal synthesis of advanced ceramic powders[J]. American Ceramic SocietyBulletin,1988,67(10):1673~1678.
    [47] Tanaka K, Kakimoto K, Ohsato H, et al. Effects of Pt bottom electrode layers and thermalprocess on crystallinity of alkoxy-derived (Na, K)NbO3thin films[J]. Japanese Journal ofApplied Physics,2007,46(3A):1094~1099.
    [48] Joshkin V, Dovidenko K, Oktyabrsky S, et al. New methods for fabricating patterned lithiumniobate for photonic applications[J]. Journal of Crystal Growth,2003,259(3):273~278.
    [49] Karaki T, Yan K, Adachi M. Subgrain microstructure in high-performance BaTiO3piezoelectricceramics [J]. Applied Physics Express,2008(1):111402.
    [50] Vousden P. A study of the unit-cell dimensions and symmetry of certain ferroelectric compoundsof niobium and tantalum at room temperature[J]. Acta Crystallographica,1951,4:373~376.
    [51] Kinomura N, Kumata N, Muto F. A new allotropic form with ilmenite-type structure ofNaNbO3[J]. Materials Research Bulletin,1984,19(3):299~304.
    [52] Santos I, Loureiro L, Silva M, et al. Studies on the hydrothermal synthesis of niobium oxides[J].Polyhedron,2002,21(20):2009~2015.
    [53] Wang S P, Miao H Y, Tan G Q. Hydrothermal synthesis of sodium-potassium niobatenanopowders [J]. Key Engineering Materials,2008,368-372:579~581
    [54] Dovid W, Richerson. Modern Ceramic Engineering[M]. New York: Marcel Dekker,1992.125~128
    [55]金志浩.工程陶瓷材料[M].西安:西安交通大学出版社,2005.79~118.
    [56] Tani T. Highly Textured piezoelectric ceramics by RTGG method[J]. R&D Review of ToyotaCRDL,2001,36(3):19~26.
    [57] Tani T. Processing design of single crystals and textured polycrystals for advanced electronicdevies[J]. R&D Review of Toyota CRDL,2006,41(2):11~18.
    [58] Shiyane G, Newhamr R, Perinsky R. Dielectric properties and phase transitions of NaNbO3[J].Physical Review,1954,96:581~588.
    [59] Tennery V, High temperature phase transitions in NaNbO3[J]. Journal of the American CeramicSociety,1965,48(10):537~539.
    [60] Fisher J G, Rout D, Moon K S et al. Structural changes in potassium sodium niobate ceramicssintered in different atmospheres[J]. Journal of Alloys and Compounds,2009,479(1):467~472
    [61]王道利.两步烧结法制备KNN系无铅压电陶瓷及其性能研究[D].南京:南京航空航天大学学位论文,2009.
    [62]吉亚明,蒋丹宇,冯涛等.透明陶瓷材料现状与发展[J].无机材料学报,2004,19(2):275~282.
    [63] Karaki T, Yan K, Adachi M. Subgrain microstructure in high-performance BaTiO3piezoelectricceramics[J]. Applied Physics Express,2008,(1):111402.1~3.
    [64] Takahashi H, Numamoto Y, Tani J, et al. Lead-free barium titanate ceramics with largepiezoelectric constant fabricated by microwave sintering[J]. Japanese Journal of AppliedPhysics,2006,45(1): L30~L32.
    [65] Zhu K J, Qiu J H, Kajiyoshi K, et al. Effect of washing of barium titanate powders synthesizedby hydrothermal method on their sinterability and piezoelectric properties[J]. CeramicsInternational,2009,35(5):1947~1951.
    [66] Qiu J H, Tani J, Orikasa K, et al. Fabrication of a lead-free BNT piezoelectric material using ahybrid sintering process[J]. International Journal of Applied Electromagnetics and Mechanics,2005,21(3-4):171~181.
    [67] Qiu J H, Tani J, Orikasa K, et al. Fabrication of Lead-free BNBT piezoelectric materials using ahybrid sintering Process[J]. Journal of the Japan Institute Metals,2005,69(8):676~679.
    [68] Jiang D, Dustin M, Joshua D, et al. Spark plasma sintering: A high strain rate low temperatureforming tool for ceramics[J]. Material Science and Engineering A,2007,463(1-2):89~93.
    [69] Wang R, Xie R, Tadashi S, et al. Fabrication and characterization of potassium-sodium niobatepiezoelectric ceramics by spark-plasma-sintering method[J]. Material Research Bulletin,2004,39(11):1709~1715.
    [70] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grainedNa0.5K0.5NbO3lead-free piezoelectric ceramics prepared by spark plasma sintering[J]. Journal ofthe American Ceramic Society,2006,89(2):706~709.
    [71] Zhang B P, Zhang L M, Li J F, et al. SPS sintering of NaNbO3-KNbO3piezoelectric ceramics[J].Materials Science Forum,2004,475-479:1165~1168.
    [72] Wada T, Tsuji K, Saito T, et al. Ferroelectric NaNbO3ceramics fabricated by spark plasmasintering[J]. Japanese Journal of Applied Physics,2003,142(9B):6110~6114.
    [73]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.310~311.
    [74] Exner H E, Petzow G. Shrinkage and rearrangement during sintering of glass spheres[M]. NewYork: Plenum Press,1975.278~294
    [75] Olevsky E A. Theory of sintering: from discrete to continuum[J]. Materials Science andEngineering: R: Report,1998,23(2):41~100
    [76] Upadhyaya G S. Sintering2000consolidates progress[J]. Metal Powder Report,2000,55(10):33~34
    [77] Thummler F, Thomma W. The sintering process[J]. Metallurgical Reviews,1967,12(115):69~108.
    [78] Johnson D L. New methods of obtaining volume, grain-boundary, and surface diffusioncoefficients from sintering data[J]. Journal of Applied Physics.1969,40(1):192~200.
    [79]张利民,张波萍,李敬锋,等. Na0.5K0.5NbO3无铅压电陶瓷放电等离子烧结的制备工艺[J].稀有金属材料与工程,2005,34(1):994~997.
    [80]曲远方.功能陶瓷及应用[M].北京:化学工业出版社,2003.217~219.
    [81]高濂.纳米陶瓷[M].北京:化学工业出版社,2002.83~86.
    [82] Zhu W D, Sheikh A A, Reza A, et al. Sintering and dielectric properties of hydrothermallysynthesized cubic and tetragonal BaTiO3powders [J]. Japanese Journal of Applied Physics,1997,36(1A):214~221.
    [83] Shrout T R., Zhang S J. Lead-free piezoelectric ceramics: alternatives for PZT?[J]. Journal ofElectroceramics,2007,19(1):111~124.
    [84] Tennery V J, Hang K W. Thermal and X‐ray diffraction studies of the NaNbO3-KNbO3system[J]. Journal of Applied Physics,1968,39(10):4749~4753.
    [85] Wu L, Zhang J L, Wang C L, et al. Influence of compositional ratio K/Na on physical propertiesin (KxNa1x)NbO3ceramics[J]. Journal of Applied Physics,2008,103(8):084116.
    [86] Takao H, Saito Y, Aoki Y. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3piezoelectric ceramics with a sintering aid of CuO[J]. Journal of the American Ceramic Society,1981,89(8):1951~1956.
    [87]郑立梅,王矜奉,臧国忠,等.无铅无铋压电陶(Na0.5K0.44Li0.06)Nb0.95Sb0.05O3-Na5.6Cu1.2Sb10O29研究[J].科学通报,2006,51(16):1955~1957.
    [88]鄢洪建,赁敦敏,肖定全,朱建国,余萍.铌酸盐系无铅压电陶瓷的研究与进展—无铅压电陶瓷20年专利分析之四[J].功能材料,2003,6(34):615~618.
    [89] Barbara M, Janez B, Janez H, et al. Alkaline-earth doping in (K, Na)NbO3based piezoceramics[J]. Journal of the European Ceramic Society,2005,25(12):2707~2711.
    [90] Tashiro S, Nagata K. Influence of mixing condition and nonstoichiometry on piezoelectricproperties of (K, Na, Pb)NbO3ceramics [J]. Japanese journal of applied physics,2004,43(9B):6711~6715.
    [91] Tashiro S, Ishii K, Wada T. Fabrication of (SrxK0.5-xNa0.5-x) NbO3pizoelectric ceramics andeffects of MnO addition on their piezoelectric properties[J]. Japanese Journal of Applied Physics,2006,45(9B):7449~7454.
    [92] Zeng J T, Zhang Y H, Zheng L Y, et al. Enhanced ferroelectric properties of potassium Sodiumniobate ceramics modified by small amount of K3Li2Nb5O15[J]. Journal of the AmericanCeramic Society,2009,92(3):752~754.
    [93]董敦灼,陈旭明,熊茂仁.低温烧结PZT压电陶瓷材料[J].电子元件与材料,1989,8(1):58~60.
    [94]姚熹.精细功能陶瓷动态与展望[M].西安:西安交通大学出版社,1991.8~10.
    [95] Takahashi S. Sintering Pb(Zr,Ti)O3ceramics at low temperature[J]. Japanese Journal of AppliedPhysics,1980,19(4):771~772.
    [96] Wittmer D E, Buchanan R C. Low-temperature densification of lead zirconate titanate withvanadium pentoxide addtitive [J]. Journal of the American Ceramic Society,1981,64(8):485~490.
    [97] Cheng S Y, Fu S L,Wei C C, et al. The properties of low-temperature fired piezoelectricceramics[J]. Journal of Materials Science,1986,21(2):571~576.
    [98]柴京鹤,李龙土,张孝文.低温烧结PZT压电陶瓷的研究[J].清华大学学报(自然科学版),1988,28(3):1~8.
    [99] Gui Z L, Li L T, Gao S H, et al. Low-temperature sintering of lead-based piezoelectricceramics[J]. Journal of the American Ceramic Society,1989,72(3):486~491.
    [100] Gui Z L, Li L T, Lin H Q,et al. Low temperature sintering of lead magnesium nickel niobatezirconate titanate (PMN-PNN-PZT) piezoelectric ceramic with high performances[J].Ferroelectrics,1990,101(1):93~99.
    [101]李龙土,张孝文,柴京鹤,等.低温烧结独石压电陶瓷变压器[P].中国,发明专利,86201450,1987.
    [102]江迎鸿,熊茂仁,陈旭明,等. PZT-BF-MCX系压电陶瓷的烧结和电性能[J].电子元件与材料,1992,11(3):19~22.
    [103]苗君.低温烧结PZT压电陶瓷材料的研究[D].武汉:湖北大学,1999.
    [104] Guo Y P, Kakimoto K I, Ohsato H. Phase transitional behavior and piezoelectric properties of(Na0.5K0.5)NbO3-LiNbO3ceramics[J]. Applied Physics Letters,2004,85(18):4121~4123.
    [105] Guo Y P, Kakimoto K I, Ohsato H.(Na0.5K0.5)NbO3-LiTaO3lead-free piezoelectric ceramics[J].Materials Letters,2005,59(2-3):241~244.
    [106] Zang G Z, Wang J F, Chen H C, et al. Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3lead-freepiezoceramics[J]. Applied Physics Letters,2006,88(21):212908.
    [107] Yang Z P, Chang Y F, Wei L L. Phase transitional behavior and electrical properties of lead-free(K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3piezoelectric ceramics[J]. Applied Physics Letters,2007,90(4):042911.
    [108] Wang Y. Y, Wu J. G, Xiao D. Q. Microstructure, dielectric, and piezoelectric properties of (Li,Ag, Ta) modified (K0.5Na0.5)NbO3lead-free ceramics with high Curie temperature[J]. Journal ofApplied Physics,2007,102:054101.
    [109] Klein N, Hollenstein E, Damjanovic D, et al. A study of the phase diagram of (K, Na, Li)NbO3determined by dielectric and piezoelectric measurements and Raman spectroscopy[J]. Journalof Applied Physics,2007,102(1):014112.
    [110] Ming B Q, Wang J F, Qi P, et al. Piezoelectric properties of (Li, Sb, Ta) modified (Na, K)NbO3lead free ceramics[J]. Journal of Applied Physics,2007,101(5):054103.
    [111] Zhao P, Zhang B P. High piezoelectric d33coefficient in Li/Ta/Sb-codoped lead-free (Na,K)NbO3ceramics sintered at optimal temperature[J]. Journal of the American Ceramic Society,2008,91(9):3078~3081.
    [112] Wu L, Zhang J L, Shao S. F, et al. Phase coexistence and high piezoelectric properties in(K0.40Na0.60)0.96Li0.04Nb0.80Ta0.2O3ceramics[J]. Journal of Physics D: Applied Physics,2008,41(3):035402.
    [113] Chang Y F, Yang Z P, Xiong L R, et al. Phase structure, microstructure, and electrical propertiesof Sb-modified (K, Na, Li)(Nb, Ta)O3piezoelectric ceramics[J]. Journal of the AmericanCeramic Society,2008,91(7):2211~2216.
    [113] Fu J, Zuo R Z, Wu Y P, et al. Phase transition and electrical properties of Li-and Ta-substituted(Na0.52K0.48)(Nb0.96Sb0.04)O3piezoelectric ceramics[J]. Journal of the American Ceramic Society,2008,91(11):3771~3773.
    [114] Akdo an E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity in ferroelectric(K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3ceramics[J]. Applied Physics Letters,2008,92(11):112908.
    [115] Zuo R Z, Fu J, Lv D. Phase transformation and tunable piezoelectric properties of lead-free(Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3System[J]. Journal of the American Ceramic Society,2009,92(1):283~285.
    [116] Guo Y P, Kakimoto K I, Ohsato H, et al. Dielectric and piezoelectric properties of lead-free(Na0.5K0.5)NbO3-SrTiO3ceramics[J]. Solid State Communications,2004,129(5):279~284.
    [117] Ahn C W, Park C S, Viehland D, et al. Correlation between phase transitions and piezoelectricproperties in Lead-Free (K, Na, Li)NbO3-BaTiO3ceramics[J]. Japanese Journal of AppliedPhysics,2008,47(12):8880~8883.
    [118] Du H L, Zhou W C, Luo F, et al. Polymorphic phase transition dependence of piezoelectricproperties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3lead-free ceramics[J]. Journal of Physics D:Applied Physics,2008,41(11):115413.
    [119] Chen Z W, He X H Yu Y, et al. Piezoelectric and dielectric properties of(Na0.5K0.5)NbO3-(Bi0.5Na0.5)0.94Ba0.06TiO3lead-free piezoelectric ceramics[J]. Japanese Journalof Applied Physics,2009,48(3):030204.
    [120] Wang C H, Wang J J. Structural and electrical properties of lead-freeBa(Sn,Ti)O3-(Na0.5K0.5)NbO3ceramics[J]. Japanese Journal of Applied Physics,2009,48(4):041403
    [121] Wang Y Y, Liu Q B, Wu J G, et al. Piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xAgSbO3lead-free ceramics[J]. Journal of the American Ceramic Society,2009,92(3):755~757.
    [122] Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3ceramics[J]. Applied Physics Letters,2007,90(26):262903.
    [123]刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,1990.1~291.
    [124] Bhalla A S, Guo R Y, Roy R. The perovskite structure-a review of its role in ceramics scienceand technology [J]. Materials Research Innovations,2000,4(1):3~26.
    [125]吴玲.碱金属妮酸盐无铅压电陶瓷的物性研究[D].济南:山东大学,2008.
    [126] Malie B, Bernard J, Hole J, et al. Alkaline-earth doping in (K0.5Na0.5)NbO3basedpiezeoceramics[J]. Journal of the European Ceramic Society,2005,25(12):2707.
    [127]郑伟涛.γ-Fe-Ni固溶体的价电子结构与α-χ,α-T曲线[J].吉林大学自然科学学报,1990,(02):39~42
    [128]郑伟涛,张瑞林,姜汉成等.填隙碳、氮原子所引起的Fe-Cr-Ni-Mn合金膨胀的研究[J].吉林大学自然科学学报,1990,(01):80~84
    [129]王旭,余瑞璜,姜汉成等.铁铬体心立方结构无序固溶体的经验电子理论研究[J].吉林大学自然科学学报,1990,(01):85~88
    [130]姜汉成,李伟光.经验电子理论对P-S曲线的分析[J].吉林大学自然科学学报.1984,(02):67~75
    [131] Ghosez P H, Michenaud J P, Gonze X. Dynamical atomic charges: The case of ABO3compounds. Physical Review B,1998,58(10):6224~6240.
    [132] Yang X J, Li S C, Li H. Valence-electron structure and spontaneous polarization of KNbO3intetragonal ferroelectric phase[J]. Materials Chemistry and Physics,2009,114(2-3):728~731
    [133]钟维烈.铁电体物理学[M].北京:科学出版社,2000.45~46.
    [134] Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach[J]Reviews of Modern Physics,1994,66(3):899~915.
    [135] King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids[J]. Physical ReviewB: Condensed Matter and materials Physics,1993,47(3):1651~1654.
    [136] Liu Z R, Wu J, Duan W H. Electronic-structure theory of crystalline insulators under ahomogeneous electric field[J]. Physical Review B: Condensed Matter and materials Physics,2004,69(8):85117.
    [137] Hewat A W. Soft modes and the structure, spontaneous polarization and curie constants ofperovskite ferroelectrics: tetragonal potassium niobate[J].1973, Journal of Physics C: SolidState Physics,6(6):1074.
    [138] Sun X Y, Deng J X, Chen J, et al. Effects of Li substitution on the structure and ferroelectricityof (Na, K)NbO3[J]. Journal of the American Ceramic Society,2009,92(12):3033~3036.
    [139] Maeder M D, Damjanovic D, Setter N. Lead free piezoelectric materials[J]. Journal ofElectroceramics,2004,13(1-3):385~392.
    [140]田中哲郎.压电陶瓷材料[M].北京:科学出版社,1982.1~263.
    [141]肖定全,万征.环境协调型压电铁电陶瓷[J].压电与声光,1999,21(5):363~366.
    [142]肖定全.关于无铅压电陶瓷及其应用的几个问题[J].电子元件与材料,2004,23(11):62~65.
    [143] Cross E. Materials science: Lead-free at last[J]. Nature,2004,432(7013):24~25.
    [144] Lin D M, Guo M S, Lam K H, et al. Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3withMnO2and K5.4Cu1.3Ta10O29doping for piezoelectric transformer application[J]. Smart Materials&Structures,2008,17(3):35002.
    [145] Pan H Y, Jin D G, Chan J R, et al. Effect of V2O5on the sintering behavior, microstructure, andelectrical properties of (K0.5Na0.5)NbO3ceramics. ISAF2007sixteenth IEEE InternationalSymposium on Applications of ferroelectrics [C]. Nara, Japan: IEEE,2007:679.
    [146] Yang W, Jin D R, Wang T T, et al. Effect of oxide dopants on the structure and electricalproperties of (Na0.5K0.5)NbO3-LiSbO3lead-free piezoelectric ceramics[J]. Physica B:Condensed Matter.2010,405(7):1918~1921.
    [147] Pang X M, Qiu J H, Zhu K J, et al. Study on the sintering mechanism of KNN-based lead-freepiezoelectric ceramics[J]. Journal of Materials Science,2011,46(7),2345~2349
    [148]李月明,刘虎,沈宗洋,洪燕,王竹梅,李润润. ZnO和CuO烧结助剂对KNN压电陶瓷性能的影响[J].中国陶瓷,2011,47(10):28~31.
    [149] Choi S W, Shrout T R, Jang S J, et al. Morphotropic phase boundary in Pb(Mg1/3Nb1/3)O3-PbTiO3system[J]. Materials Letters,1989,8(6-7):253~255.
    [150] Park C W, Yoon Y. Abnormal grain growth in alumina with anorthite liquid and the effect ofMgO addition[J]. Journal of the American Ceramic Society,2002,85(6):1585~1593.
    [151] Kim M S, Fisher J G, Kang S J L, et al. Grain Growth Control and Solid‐State Crystal Growthby Li2O/PbO Addition and Dislocation Introduction in the PMN–35PT System[J]. Journal of theAmerican Ceramic Society,2006,89(4):1237~1243.
    [152] Zhao P, Zhang B. High piezoelectric d33coefficient in Li-modified lead-free (Na, K) NbO3ceramics sintered at optimal temperature[J]. Applied Physics Letters,2007,90(24):242909.
    [153]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998.124~126.
    [154] Zeng J T, Zhang Y H, Zheng L Y, et al. Enhanced ferroelectric properties of potassium sodiumniobate ceramics modified by small amount of K3Li2Nb5O15[J]. Journal of the American CeramicSociety,92(3):752~754.
    [155] Okazaki K, Nagata K. Effects of density and grain size on the elastic and piezoelectricproperties of Pb (Zr-Ti)O3ceramics[J]. Journal of Society Material Science Japan,1972,4:404.
    [156] Chen Z W, He X H, Y Y, et al. Piezoelectric and dielectric properties of(Na0.5K0.5)NbO3–(Bi0.5Na0.5)0.94Ba0.06TiO3lead-free piezoelectric ceramics[J].2009, JapaneseJournal of Applied Physics,48(3):030204.
    [157] Liu J, Zhu J L, Li X H, et al. Effects of CuO doping on the electrical properties of0.98K0.5Na0.5NbO3–0.02BiScO3lead-free piezoelectric ceramics[J]. Materials Letters,2011,65(6):948~950.
    [158] Arlt G, Hennings D, With G de. Dielectric properties of fine‐grained barium titanateceramics[J]. Journal of Applied Physics,1985,58(4):1619~1625.
    [159] Buessem W R,Cross L E. Phenomenological theory of high permittivity in fine‐grainedbarium titanate[J]. Journal of the American Ceramic Society,1966,49(4):36~39.
    [160] Zhu M K, Lu P X, Hou Y D, et al. Analysis of phase coexistence in Fe2O3‐doped0.2PZN–0.8PZT ferroelectric ceramics by raman scattering spectra[J]. Journal of the AmericanCeramic Society,2006,89(12):3739~3744.
    [161] Lin D M, Kwok K W, Chan H L W. Microstructure, phase transition, and electrical propertiesof (K0.5Na0.5)1-xLix(Nb1-yTay)O3lead-free piezoelectric ceramics[J]. Journal of Applied Physics,2007,102(3):034102.
    [162] Lu C H, Wu P C. Reaction mechanism and kinetic analysis of the formation of Sr2SiO4viasolid-state reaction [J]. Journal of Alloys and Compounds,2008,466(1-2):457~462.
    [163]罗世永,张家芸,周土平,等.固/固相反应动力学模型及其应用[J].材料导报,2000,14(4):6~40
    [164] Kingery W D, Berg M. Study of the initial stages of sintering solids by viscous flow,evaporation‐condensation, and self‐diffusion[J]. Journal of Applied Physics,1955,26(10):1205~1212.
    [165]Lynn Johnson D, Cutler Ivan B. Diffusion sintering: II, Initial sintering kinetics of alumina[J]Journal of the American Ceramic Society,1963,46(11):545~550
    [166] Coble R L. Initial sintering of alumina and hematite[J]. Journal of the American CeramicSociety,1958,41(2):55~62.
    [167] Coble R L. Sintering crystalline solids. I. Intermediate and final state diffusion models[J].Journal of Applied Physics,1961,32(5):787~792.
    [168] Kingery W D. Metal-ceramic interactions:iv, absolute measurement of metal-ceramicinterfacial energy and the interfacial adsorption of silicon from iron-silicon alloys[J]. Journalof the American Ceramic Society,1954,35(2):42~45.
    [169] Chang R C, Chu S Y, Lin Y F, et al. The effects of sintering temperature on the properties of(Na0.5K0.5)NbO3–CaTiO3based lead-free ceramics[J]. Sensors and Actuators A,2007,138(2):355~360.
    [170] Sheng Y C, Walter W, Juang Y D, et al. Properties of (Na, K) NbO3and (Li, Na, K)NbO3ceramic mixed systems[J]. Ferroelectrics,2003,287(1),23~33.
    [171] Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage graingrowth[J]. Nature,2000,404(6774):168~171.
    [172] Park HY, Seo IT, Choi JH, et al. Low-temperature sintering and piezoelectric properties of(Na0.5K0.5)NbO3lead-Free piezoelectric ceramics [J]. Journal of the American Ceramic Society,2010,93(1):36~39.
    [173] Alkoy EM, Papila M. Microstructural features and electrical properties of copper oxide addedpotassium sodium niobate ceramics [J]. Ceramics International,2010,36(6):1921~1927.
    [174] Randall M. German, Liquid phase sintering[M]. New York: Plenum Press,1985.164~170.
    [175] Ichiki M, Zhang L, Tanaka M, et al. Electrical properties of piezoelectric sodium-potassiumniobate [J]. Journal of the European Ceramic Society,2004,24(6):1693~1697.
    [176] Fu J, Zuo R, WangX, et al. Polymorphic phase transition and enhanced piezoelectric propertiesof LiTaO3-modified (Na0.52K0.48)(Nb0.93Sb0.07)O3lead-free ceramics [J]. Journal of Physics D:Applied Physics,2009:42:012006.
    [177] Chang Y, Yang Z, Wei L. Microstructure, Density and dielectric properties of lead-free(K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3piezoelectric ceramics [J]. Journal of the AmericanCeramic Society,2007,90(5):1656~1658.
    [178] Wu L, Zhang JL, Zheng P, et al. Influences of morphotropic phase boundaries on physicalproperties in (K, Na, Li)Nb0.80Ta0.20O3ceramics [J]. Journal of Physics D: Applied Physics,2007,40(11):3527~3530.
    [179] Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3solid solution system [J]. Ferroelectrics,2006,338(1):17~32.
    [180]周昌荣,刘心宇. Ce掺杂(Na0.5Bi0.5)0.94Ba0.06TiO3压电陶瓷的介电弛豫特性[J].压电与声光,2008,30(4):480~482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700