用户名: 密码: 验证码:
内燃机进、排气系统声学分析的三维时域脉冲法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进、排气系统是内燃机的重要部件,其声学特性是决定进、排气噪声大小的关键因素。进、排气系统声学特性不仅与本身结构有关,还受贯穿其中的进、排气气流影响。进、排气系统声学特性的分析方法包括频域和时域方法,频域方法在分析气流的声学影响时具有局限性;时域方法,尤其是三维计算流体动力学法(Computational Dynamic Fluid-CFD)能弥补频域方法在这方面的不足,可以直接求解系统受平均流作用时的声学特性。
     本文提出一种以CFD为理论依据,以脉冲为声源输入,以分析进、出口时域脉动信号为手段,通过合理使用无反射边界和反射边界,求解气流管道系统传递损失、消声量和四极子矩阵等声学特性的三维时域脉冲法。在无平均流和有平均流两种条件下,研究三维时域脉冲法的相关问题,包括:边界条件设置、求解器设置、无法兰开口末端的模拟、平均气流和温度场的加载、湍流模型、模型网格等。计算传递损失时,出口设为无反射边界;计算消声量时,通过等效延长管法或直接建模法模拟无法兰开口末端边界。分析各种方法的计算结果,研究与声波传播方向相反或相同的平均流对管道系统声学特性的影响。研究求解管道系统四极子矩阵——散射矩阵和传递矩阵的三维时域脉冲方法,结合进、排气口的频域声学特性,可计算在进、排气气流作用下管道系统的消声量和阻抗,解决了三维时域脉冲法模拟进、排气口声学特性不够准确的问题。进、排气系统内往往含有多孔吸声材料,比如进气空滤器的滤芯和排气消声器内的玻璃纤维。提出一种基于仿真-实验结果拟合的方法,提取多孔材料的声学参数。重点研究了多孔材料的三维CFD模拟方法;与实验测量结果比较,对比了三维时域脉冲法和声学有限元法的特点。
     利用三维时域脉冲法完成了三个工程实例。1,采用三维时域脉冲法研究涡轮增压内燃机的压气机出口消声器在高速气流作用下的声学性能;结合压气机出口噪声的测量实验,评估了消声器对压气机出口高频噪声的衰减能力;依据三维时域脉冲法,对消声器进行声学优化,以提高其声学性能。2,应用三维时域脉冲法计算排气消声器在高温排气作用下的传递矩阵,求解其传递损失和消声量,发现600Hz内排气消声器的消声性能随马赫数和温度的升高降低;根据多负载最小二乘法提取的声源和三维时域脉冲法计算的排气系统传递矩阵,预测排气噪声,预测结果在600Hz内的误差较小,其中2阶、4阶、6阶和8阶成分的计算值与测量值吻合良好。3,结合进气噪声源和三维时域脉冲法计算的进气系统声学特性,预测进气噪声,与测量值对比,分析误差产生的原因和总结工作中需要改进之处;针对进气噪声的突出成分,对进气系统进行声学优化,同时计算了优化后进气系统的消声量和进气噪声,并通过整车定置实验和道路实验,测量了进气噪声和车内噪声;综合进气系统消声量计算值、进气噪声的计算值和实验测量结果,发现优化前后的计算值变化趋势与测量结果相符,且优化后进气系统实现了降低进气噪声的工程目的。
The acoustic characteristics of intake and exhaust systems, as important components of the ICE (internal combustion engine), are key factors to determine the intake and exhaust noise value. The acoustic properties of the intake and the exhaust systems are not only associated with their structure, but also influenced by the airflow there through. Frequency-domain and time-domain methods are adopted to analyze the acoustic properties. The former has limitations in analyzing the acoustic effects of the airflow, while the time-domain methods, especially the3D CFD (Three-dimensional Computational Fluid Dynamics) method, are adequate to directly calculating the acoustic properties of the system considering the mean flow effect.
     In this dissertation, a3D time-domain pulse (TDP) method, which was theoretically based on CFD, by inputting a pulse as sound source, by means of analyzing time-domain fluctuations at the inlet and outlet and fairly using non-reficetive and reflective boundaries, was proposed in order to solve acoustic properties of flow-duct system, i.e. TL (Transmission Loss), NR (Noise Reduction), four-pole matrix, etc. Under the conditions of without and with mean flow, issues were studied related to the3D TDP method, which included boundary setup, solver setup, simulation of the flangless open end, load of the flow-field and temperature-field, setups of the turbulent model, the grid model, and so on. The outlet was set as non-reflective boundary in calculating TL, and the flangeless open end was simulated either by the correction pipe method or by the direct modeling method, while calculating NR. With the results obtained by various methods, the influence of the intake and the exhaust flow on the acoustic properties was analyzed. The3D TDP method of calculating the silencer four-pole matrices including scattering matrix and transfer matrix was studied. Combined with the frequency-domain acoustic characteristics of the intake or the exhaust port, the NR and impedance of silencers could be obtained considering the mean-flow effects. The matrix method has solved the inaccuracy problem of the3D TDP method directly simulating the acoustic character of intake and exhaust ports. As known, intake and exhaust systems often contain a porous sound-absorbing material, such as filter element in the intake air-cleaner and glass fiber in the exhaust muffler. A method based on value fitting between simulated and measured results was proposed to obtain the acoustic parameters of the porous material. Emphasis was made on the3D TDP method of simulating porous material, and features of the acoustic finite element method and the3D TDP method was discussed, based on the comparison of the calculated results to the measured ones.
     The3D TDP method was utilized to fulfill three engineering projects. First, the method was adopted to predict the acoustic performance of the compressor outlet silencer in the influence of high speed flow. According to the compressor outlet noise measurement, the noise attenuation at high frequencies of the silencer was evaluated. Further, the silencer was acoustically optimized to improve its acoustic performance. Second, the3D TDP method was used to calculate the transfer matrix of the exhaust muffler with high-temperature flow. The TL and NR of the muffler were obtained, and it was found that within600Hz, the performance of the muffler decreased with increasing Mach number and temperature. Besides, the exhaust noise was predicted based on the acoustical source obtained by the multi-load least-squares method and the transfer matrix of the exhaust system calculated by the TDP approach. Accepted bias existed within600Hz between the calculated result and the measured one, and values of the2nd,4th,6th,8th order were in good agreement. Third, the intake noise was predicted based on the acoustical source and acoustic properties of the intake system calculated by the TDP method. It was compared with the measurement, in order to analyze the error causes and guide improvement. The intake system was acoustically optimized for reducing the prominent parts of the intake noise. Afterwards, NR and intake noise were calculated, and vehicle stationary and road tests were conducted to measure the intake noise and the vehicle interior noise. According to the calculated and the measured results, it was found that the variation of the calculated results before and after optimization matches well with the measured results, and the optimized intake system achieved the engineering purposes of reducing the intake noise.
引文
[1]翁祖亮.内燃机产业关键技术分析[J].内燃机工程.1999,10(02):1-9.
    [2]Agarwal S K. Automobile pollution, concerns, priorities, and challenges[M]. New Delhi:Ashish Pub. House,1991.
    [3]刘盛强,刘世婧,刘志敏.城市空气质量与汽车保有量的相关性分析[J].现代制造技术与装备.2011(04):28-31.
    [4]陈南.汽车振动与噪声控制[M].北京:人民交通出版社,2005.
    [5]孙林.国内外汽车噪声法规和标准的发展[J].汽车工程.2000,22(03):154-158.
    [6]杨安杰.汽车噪声标准与测试探讨[J].噪声与振动控制.2010,29(04):110-114.
    [7]GB 1495-2002,汽车加速行驶车外噪声限值及测量方法[S].:2002-01-04.
    [8]Harrison M. Vehicle refinement:controlling noise and vibration in road vehicles[M]. Warrendale: SAE International,2004.
    [9]何华,庞剑,谌刚.汽车噪声与振动:理论与应用[M].北京:北京理工大学出版社,2006.
    [10]张振良.发动机进气消声器研究[D].重庆大学,2003.
    [11]康钟绪.发动机排气消声系统仿真技术研究[D].哈尔滨工程大学,2006.
    [12]邵恩坡,程汉华.发动机进气噪声产生的机理及其控制[J].小型内燃机.1994,23(04):44-47.
    [13]杨诚,邓兆祥,阮登芳.进气噪声产生机理分析及其降噪[J].汽车工程.2005(1):68-71.
    [14]郭骅,姜哲.内燃机排气噪声的分析研究[J].江苏工学院学报.1988,9(01):12-22.
    [15]Lu M, Jen M. Intake/exhaust noise reduction with rig test optimization-case studies[J]. SAE Technical.1999, Paper 1999-01-1660.
    [16]小幡辉夫,傅国兰.进排气噪声的预测[J].小型内燃机.1989,3(05):54-60.
    [17]陈家瑞,张建文.汽车构造[M].北京:机械工业出版社,2006.
    [18]马超,赵永娟,刘云岗.车用发动机谐振进气系统[J].内燃机与动力装置.2009,10(05):41-48.
    [19]Ceviz M A, Akin M. Design of a new SI engine intake manifold with variable length plenum[J].
    Energy Conversion and Management.2010,51(11):2239-2244.
    [20]Ceviz M A. Intake plenum volume and its influence on the engine performance, cyclic variability and
    emissions[J]. Energy Conversion and Management.2007,48(3):961-966.
    [21]谭永南.空气滤清器的仿真分析与试验研究[D].浙江大学,2010.
    [22]张惠,富旭光.空气滤清器的CFD分析及空气流动性优化[J].流体传动与控制.2011,4(03):34-37.
    [23]Rusch P A, Dhingra A K. Numerical and experimental investigation of the acoustic and flow performance of intake systems[J], Journal of Vibration and Acoustics.2002,124(3):334-339.
    [24]Zhaochen J, Zhixia H, Qian W, et al. Aerodynamic and Acoustic Numerical Simulation of the Air Filter[C].2012.
    [25]曹培元,杜爱民,杜玉彪.车用空气滤清器总成性能分析与优化[J].车用发动机.2012,22(02):41-45.
    [26]余兀.进气系统阻力对柴油机性能影响的试验研究[J].柴油机设计与制造.2006,14(01):42-44.
    [27]李佳,刘震涛,刘忠民.空气滤清器流动过程仿真与试验分析[J].浙江大学学报(工学版).2012,46(02):327-332.
    [28]刘晨,季振林,郭小林.汽车排气消声器结构形式对压力损失的影响[J].汽车工程.2008,30(12):1113-1116.
    [29]罗虹,王伟戈,邓兆祥.汽车排气消声器内部流场和声场数值分析[J].重庆大学学报(自然科学版).2006,29(08):66-69.
    [30]朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社,1992.
    [31]Rammal H, abom M. Acoustics of turbochargers[J]. SAE Technical.2007, Paper 2007-01-2205.
    [32]Lighthill M J. On Sound Generated Aerodynamically. Ⅰ. General Theory[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1952,211(1107):564-587.
    [33]Lighthill M J. On Sound Generated Aerodynamically. Ⅱ. Turbulence as a Source of Sound[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1954, 222(1148):1-32.
    [34]Powell A. Theory of Vortex Sound[J]. The Journal of the Acoustical Society of America.1964,36(1): 177-195.
    [35]Howe M S. Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute[J]. Journal of Fluid Mechanics.1975,71(04):625-673.
    [36]Hussain A K M F. Coherent structures and turbulence[J]. Journal of Fluid Mechanics.1986,173(12): 303-356.
    [37]Davies P O A L, Yule A J. Coherent structures in turbulence[J]. Journal of Fluid Mechanics.1975, 69(03):513-537.
    [38]Davies P O A L, Hardin J C, Edwards A V J, et al. A potential flow model for calculation of jet noise[J]. AIAA Paper.1975, No.75-441.
    [39]Bridges J, Hussain F. Direct evaluation of aeroacoustic theory in a jet[J]. Journal of Fluid Mechanics. 1992,240:469-501.
    [40]Davies P O A L. Aeroacoustics and time varying systems[J]. Journal of Sound and Vibration.1996, 190(3):345-362.
    [41]Davies H G, Williams J E F. Aerodynamic sound generation in a pipe[J]. Journal of Fluid Mechanics. 1968,32(04):765-778.
    [42]Davies P O A L. Flow-acoustic coupling in ducts[J]. Journal of Sound and Vibration.1981,77(2): 191-209.
    [43]Nelson P A, Morfey C L. Aerodynamic sound production in low speed flow ducts[J]. Journal of Sound and Vibration.1981,79(2):263-289.
    [44]Hourigan K, Welsh M C, Thompson M C, et al. Aerodynamic sources of acoustic resonance in a duct with baffles[J]. Journal of Fluids and Structures.1990,4(4):345-370.
    [45]Agarwal N. Generation and propagation of sound waves in disturbed pipe flow[J]. AIAA Paper 90-0286.1990.
    [46]Kunz F. Semi-empirical model for flow noise prediction on intake and exhaust systems[J]. SAE Technical.1999, Paper 1999-01-1654.
    [47]Davies P O A L, Holland K R. The observed aeroacoustic behaviour of some flow-excited expansion chamber[J]. Journal of Sound and Vibration.2001,239(4):695-708.
    [48]Holmberg A, abom M, Boden H. Accurate experimental two-port analysis of flow generated sound[J]. Journal of Sound and Vibration.2011,330(26):6336-6354.
    [49]Fedorchenko A T. On some fundamental flaws in present aeroacoustic theory [J]. Journal of Sound and Vibration.2000,232(4):719-782.
    [50]Hardin J C, Pope D S. Sound generation by a stenosis in a pipe[J]. AIAA Journal.1992,30(2): 312-317.
    [51]Radavich P M, Selamet A, Novak J M. A computational approach for flow-acoustic coupling in closed side branches[J]. The Journal of the Acoustical Society of America.2001,109(4):1343-1353.
    [52]Gloerfelt X, Lafon P. Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number[J]. Computers & amp; Fluids.2008,37(4):388-401.
    [53]Obikane Y. Aeroacoustic Simulation in Automobile Muffler by Using the Exact Compressible Navier-Stokes Equation[J]. Computational Fluid Dynamics 2008.2009:93-98.
    [54]Lu M, Jen M. Gain and loss of NVH characteristics from naturally aspirated to turbocharged engine[J]. SAE Technical.2007, Paper 2007-01-2282.
    [55]Casalino D. Aeroacoustics research in Europe:The CEAS-ASC report on 2009 highlights[J]. Journal of Sound and Vibration.2010,329(22):4810-4828.
    [56]Balazs Nagy A. Aeroacoustics research in Europe:The CEAS-ASC report on 2010 highlights [J]. Journal of Sound and Vibration.2011,330(21):4955-4980.
    [57]Mcalpine A, Astley R J. Aeroacoustics research in Europe:The CEAS-ASC report on 2011 highlights[J]. Journal of Sound and Vibration.2012,331(21):4609-4628.
    [58]Cattanei A, Ghio R, Bongiovi A. Reduction of the tonal noise annoyance of axial flow fans by means of optimal blade spacing[J]. Applied Acoustics.2007,68(11-12):1323-1345.
    [59]Velarde-Suarez S, Ballesteros-Tajadura R, Santolaria-Morros C, et al. Reduction of the aerodynamic tonal noise of a forward-curved centrifugal fan by modification of the volute tongue geometry[J]. Applied Acoustics.2008,69(3):225-232.
    [60]Rama Krishna S, Rama Krishna A, Ramji K. Reduction of motor fan noise using CFD and CAA simulations[J]. Applied Acoustics.2011,72(12):982-992.
    [61]Stirnemann A, Zogg H, Stocker F. Prediction of turbo compressor noise[J]. InterNoise Proceeding. 1999,106(161):1-6.
    [62]Sun H, Lee S. Numerical prediction of centrifugal compressor noise[J]. Journal of Sound and Vibration.2004,269(1-2):421-430.
    [63]Sun H, Shin H, Lee S. Analysis and optimization of aerodynamic noise in a centrifugal compressor[J]. Journal of Sound and Vibration.2006,289(4-5):999-1018.
    [64]Raitor T, Neise W. Sound generation in centrifugal compressors[J]. Journal of Sound and Vibration. 2008,314(3-5):738-756.
    [65]Li H, Ning M, Hou L, et al. Experimental Study on the Noise Identification of the Turbocharger[J]. Advances in Computer, Communication, Control and Automation.2012,121:1-7.
    [66]Evans D, Ward A. Minimising turbocharger whoosh noise for diesel powertrains[J]. SAE Technical. 2005, Paper 2005-01-2485.
    [67]Teng C, Homco S. Investigation of compressor whoosh noise in automotive turbochargers[J]. SAE Int. J. Passeng. Cars-Mech. Syst.2009,2(1):1345-1351.
    [68]Davies P O A L. Piston engine intake and exhaust system design[J]. Journal of Sound and Vibration. 1996,190(4):677-712.
    [69]Munjal M L. Acoustics of ducts and mufflers with application to exhaust and ventilation system design[M]. New York:Wiley,1987.
    [70]Munjal M L. Analysis and design of mufflers-an overview of research at the Indian institute of science[J]. Journal of Sound and Vibration.1998,211(3):425-433.
    [71]Davies P O A L. Practical flow duct acoustics[J]. Journal of Sound and Vibration.1988,124(1): 91-115.
    [72]Davies P O A L, Harrison M F, Collins H J. Acoustic modelling of multiple path silencers with experimental validations[J]. Journal of Sound and Vibration.1997,200(2):195-225.
    [73]El-Sharkawy A I, Nayfeh A H. Effect of an expansion chamber on the propagation of sound in circular ducts[J]. The Journal of the Acoustical Society of America.1978,63(3):667-674.
    [74]Sullivan J W. A method for modeling perforated tube muffler components. Ⅰ. Theory[J]. The Journal of the Acoustical Society of America.1979,66(3):772-778.
    [75]Sullivan J W. A method for modeling perforated tube muffler components. Ⅱ. Applications[J]. The Journal of the Acoustical Society of America.1979,66(3):779-788.
    [76]Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet:i. Analytical approach[J]. Journal of Sound and Vibration.1998,213(4):601-617.
    [77]Selamet A, Ji Z L. Acoustic attenuation performance of circular flow-reversing chambers[J]. The Journal of the Acoustical Society of America.1998,104(5):2867-2877.
    [78]Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with single-inlet and double-outlet[J]. Journal of Sound and Vibration.2000,229(1):3-19.
    [79]Eriksson L J. Higher order mode effects in circular ducts and expansion chambers[J]. The Journal of the Acoustical Society of America.1980,68(2):545-550.
    [80]Munjal M L, Thawani P T. On the transfer matrix for a uniform tube with a moving medium[J]. Journal of Sound and Vibration.1983,91(4):597-599.
    [81]Peat K. S. The transfer matrix of a uniform duct with a linear temperature gradient[J]. Journal of Sound and Vibration.1988,123(1):43-53.
    [82]Chaitanya P, Munjal M L. Effect of wall thickness on the end corrections of the extended inlet and outlet of a double-tuned expansion chamber[J]. Applied Acoustics.2011,72(1):.65-70.
    [83]Young C J, Crocker M J. Prediction of transmission loss in mufflers by the finite-element method[J]. The Journal of the Acoustical Society of America.1975,57(1):144-148.
    [84]Astley R J, Eversman W. Acoustic transmission in non-uniform ducts with mean flow, part Ⅱ:The finite element method[J]. Journal of Sound and Vibration.1981,74(1):103-121.
    [85]Peat K S. Evaluation of four-pole parameters for ducts with flow by the finite element method[J]. Journal of Sound and Vibration.1982,84(3):389-395.
    [86]Sahasrabudhe A D, Munjal M L, Anantha Ramu S. Analysis of inertance due to the higher order mode effects in a sudden area discontinuity[J]. Journal of Sound and Vibration.1995,185(3):515-529.
    [87]Selamet A, Radavich P M. The effect of length on the acoustic attenuation performance of concentric expansion chambers:an analytical, computational and experimental investigation J]. Journal of Sound and Vibration.1997,201(4):407-426.
    [88]Ji Z L, Ma Q, Zhang Z H. A boundary element scheme for evaluation of four-pole parameters of ducts and mufflers with low mach number non-uniform flow[J]. Journal of Sound and Vibration.1995, 185(1):107-117.
    [89]Cheng C Y R, Seybert A F, Wu T W. A multidomain boundary element solution for silencer and muffler performance prediction[J]. Journal of Sound and Vibration.1991,151(1):119-129.
    [90]Zhenlin J, Qiang M, Zhihua Z. Application of the Boundary Element Method to Predicting Acoustic Performance of Expansion Chamber Mufflers With Mean Flow[J]. Journal of Sound and Vibration.1994, 173(1):57-71.
    [91]Wu T W, Zhang P, Cheng C Y R. Boundary element analysis of mufflers with an improved method for deriving the four-pole parameters[J]. Journal of Sound and Vibration.1998,217(4):767-779.
    [92]Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet[J]. Journal of Sound and Vibration.1999,223(2):197-212.
    [93]Ji Z L. Boundary element acoustic analysis of hybrid expansion chamber silencers with perforated facing[J]. Engineering Analysis with Boundary Elements.2010,34(7):690-696.
    [94]Tsuji T, Tsuchiya T, Kagawa Y. Finite element and boundary element modelling for the acoustic wave transmission in mean flow medium[J]. Journal of Sound and Vibration.2002,255(5):849-866.
    [95]Bilawchuk S, Fyfe K R. Comparison and implementation of the various numerical methods used for calculating transmission loss in silencer systems[J]. Applied Acoustics.2003,64(9):903-916.
    [96]刘树功.边界元方法在发动机进气噪声分析中的应用[J].内燃机工程.1993,14(01):61-66.
    [97]郝志勇,贾维新,方芳.Virtual design and performance prediction of a silencing air cleaner used in an I.C.engine intake system[J]. Journal of Zhejiang University Science A(Science in Engineering). 2005(10):1107-1114.
    [98]贾维新,郝志勇.空滤器声学性能预测及低频噪声控制的研究[J].内燃机工程.2006,27(05):67-70.
    [99]金岩,郝志勇,刘永.空气滤清器声学性能的改进设计[J].内燃机工程.2007,28(06):58-60.
    [100]刘联望,郝志勇,刘迟.空气滤清器流动阻力与噪声特性的仿真和优化[J].汽车工程2011,33(12):1092-1097.
    [101]季振林.直通穿孔管消声器声学性能计算及分析[J].哈尔滨工程大学学报.2005,26(03):302-306.
    [102]徐贝贝,季振林.穿孔管消声器声学特性的有限元分析[J].振动与冲击.2009,28(09):112-115.
    [103]Kang Z X, Zheng S F, Lian X M, et al. Study on the acoustic performance of perforated duct muffler[C].2010.
    [104]Dokumaci E. A note on transmission of sound in a wide pipe with mean flow and viscothermal attenuation[J]. Journal of Sound and Vibration.1997,208(4):653-655.
    [105]Trengrouse G H, Soliman M M. Effect of Sudden Changes in Flow Area on Pressure Waves of Finite Amplitude[J]. Journal of Mechanical Engineering Science.1966,8(2):198-206.
    [106]Ingard U, Singhal V K. Sound attenuation in turbulent pipe flow[J]. Journal of the Acoustical Society of America.1974,55(3):535-538.
    [107]Howe M S. The damping of sound by wall turbulent shear layers[J]. The Journal of the Acoustical Society of America.1995,98(3):1723-1730.
    [108]康钟绪,季振林.热粘性对发动机排气管道中噪声传播的影响[J].应用声学.2008,27(01):24-29.
    [109]Chang I J, Cummings A. A time domain solution for the attenuation, at high amplitudes, of perforated tube silencers and comparison with experiment[J]. Journal of Sound and Vibration.1988,122(2): 243-259.
    [110]Selamet A, Dickey N S, Novak J M. A Time-Domain Computational Simulation of Acoustic Silencers[J]. Journal of Vibration and Acoustics.1995,117(3 A):323-331.
    [111]Dickey N S, Selamet A, Novak J M. Multi-pass perforated tube silencers:a computational approach[J]. Journal of Sound and Vibration.1998,211(3):435-447.
    [112]Desantes J M, Torregrosa A J, Broatch A, et al. Development of time-domain models for automotive exhaust mufflers [J]. Acoustic Technologies.2002,31:21-26.
    [113]Abd El-Rahman A I, Sabry A S, Mobarak A. Non-linear simulation of single pass perforated tube silencers based on the method of characteristics[J]. Journal of Sound and Vibration.2004,278(1-2):63-81.
    [114]Broatch A, Serrano J R, Arnau F J, et al. Time-domain computation of muffler frequency response: Comparison of different numerical schemes[J]. Journal of Sound and Vibration.2007,305(1-2):333-347.
    [115]Ning F, Li X. Numerical simulation of finite amplitude standing waves in acoustic resonators using finite volume method[J]. Wave Motion. (0).
    [116]Shaw C, Moenssen D, Kostun J. A Correlation study of computational techniques to model engine air induction system response including BEM, FEM and ID methods[J]. SAE Technical.2003, Paper 2003-01-1644.
    [117]Kim H D, Kweon Y H, Setoguchi T. A study of the weak shock wave propagating through an engine exhaust silencer system[J]. Journal of Sound and Vibration.2004,275(3-5):893-915.
    [118]Middelberg J M, Barber T J, Leong S S, et al. CFD Analysis of the Acoustic and Mean Flow Performance of Simple Expansion Chamber Mufflers[J]. ASME Conference Proceedings.2004, 2004(47152):151-156.
    [119]徐航手,季振林,康钟绪.抗性消声器传递损失预测的三维时域计算方法[J].振动与冲击.2010,25(4):39-41.
    [120]刘晨,季振林,徐航手.穿孔管消声器声学性能三维时域计算及分析[J].机械工程学报.2012,48(10):7-13.
    [121]石岩,舒歌群,毕凤荣.基于计算流体动力学的内燃机排气消声器声学特性仿真[J].振动工程学报.2011,24(02):205-209.
    [122]Chassaing J C, Gerolymos G A. Time-domain implementation of nonreflecting boundary-conditions for the nonlinear Euler equations[J]. Applied Mathematical Modelling.2007,31(10):2172-2188.
    [123]Piscaglia F, Montorfano A, Onorati A. Development of a non-reflecting boundary condition for multidimensional nonlinear duct acoustic computation[J]. Journal of Sound and Vibration.2013(0).
    [124]Broatch A, Margot X, Gil A, et al. A CFD approach to the computation of the acoustic response of exhaust mufflers[J]. Journal of Computational Acoustics.2005,13(02):301-316.
    [125]Richter, Christoph, Thiele, et al. Comparison of time-domain impedance boundary conditions for lined duct flows[Z]. Cambridge, Massachusetts:2007:45,13.
    [126]Bin J, Hussaini M Y, Lee S. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain[J]. The Journal of the Acoustical Society of America.2009,125(2): 664-675.
    [127]Piscaglia F, Montorfano A, Ferrari G, et al. High resolution central schemes for multi-dimensional non-linear acoustic simulation of silencers in internal combustion engines[J]. Mathematical and Computer Modelling.2011,54(7-8):1720-1724.
    [128]Montenegro G, Onorati A, Della Torre A. The prediction of silencer acoustical performances by 1D, 1D-3D and quasi-3D non-linear approaches[J]. Computers & Fluids.2013,71(0):208-223.
    [129]Kim D, Cheong C, Jeong W B. The use of a hybrid model to compute the nonlinear acoustic performance of silencers for the finite amplitude acoustic wave[J]. Journal of Sound and Vibration.2010, 329(11):2158-2176.
    [130]Polifke W, Poncet A, Paschereit C O, et al. Reconstruction of acoustic transfer matrices by instationary computational fluid dynamics[J]. Journal of Sound and Vibration.2001,245(3):483-510.
    [131]Alexander G, Andreas F, Stephanie E, et al. Acoustic Transfer Matrix Reconstruction and Analysis for Ducts with Sudden Change of Area[Z]. Hilton Head, South Carolina, USA:2003.
    [132]Foller S, Rkaess, Polifke W. Reconstruction of Acoustic Transfer Matrices from Large-Eddy-Simulations of Compressible Turbulent Flows[Z].2008.
    [133]Foller S, Kaess R, Polifke W. Determination of Acoustic Scattering Coefficients via Large Eddy Simulation and System Identification[J]. Garching, Munich:2009243-254.
    [134]Martinez-Lera P, Schram C, Foller S, et al. Identification of the aeroacoustic response of a low Mach number flow through a T-joint[J]. The Journal of the Acoustical Society of America.2009,126(2): 582-586.
    [135]Foller S, Polifke W, Tonon D. Aeroacoustic Characterization of T-Junctions Based on Large Eddy Simulation and System Identification[Z].2010.
    [136]Foller S, Polifke W. Determination of Acoustic Transfer Matrices via Large Eddy Simulation and System Identification[Z].2010.
    [137]Foller S, Polifke W. Identification of aero-acoustic scattering matrices from large eddy simulation. Application to a sudden area expansion of a duct[J]. Journal of Sound and Vibration.2012,331(13): 3096-3113.
    [138]方丹群.空气动力性噪声与消声器[M].科学出版社,1978.
    [139]刘联鋆,郝志勇,钱欣怡.空滤器滤芯声学特性的仿真方法[J].浙江大学学报(工学版).2012(10):1784-1789.
    [140]Beranek L L. Acoustic Impedance of Porous Materials[J]. The Journal of the Acoustical Society of America.1942,13(3):248-260.
    [141]Nichols J R H. Flow-Resistance Characteristics of Fibrous Acoustical Materials[J]. The Journal of the Acoustical Society of America.1947,19(5):866-871.
    [142]Umnova O, Attenborough K, Shin H, et al. Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials[J]. Applied Acoustics. 2005,66(6):607-624.
    [143]Delany M E, Bazley E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics. 1970,3(2):105-116.
    [144]Ingard K U, Dear T A. Measurement of acoustic flow resistance[J]. Journal of Sound and Vibration. 1985,103(4):567-572.
    [145]Ren M, Jacobsen F. A method of measuring the dynamic flow resistance and reactance of porous materials[J]. Applied Acoustics.1993,39(4):265-276.
    [146]VoroninaN. Acoustic properties of fibrous materials[J]. Applied Acoustics.1994,42(2):165-174.
    [147]Payri F, Broatch A, Salavert J M, et al. Acoustic response of fibrous absorbent materials to impulsive transient excitations[J]. Journal of Sound and Vibration.2010,329(7):880-892.
    [148]Park C M,Ih J G, Nakayama Y, et al. Measurement of acoustic impedance and prediction of transmission loss of the porous woven hose in engine intake systems[J]. Applied Acoustics.2002,63(7): 775-794.
    [149]Liu C, Hao Z, Chen X. Optimal design of acoustic performance for automotive air-cleaner[J]. Applied Acoustics.2010,71(5):431-438.
    [150]Kirby R. Simplified techniques for predicting the transmission loss of a circular dissipative silencer[J]. Journal of Sound and Vibration.2001,243(3):403-426.
    [151]Kirby R. A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow[J]. Journal of Sound and Vibration.2009,325(3):565-582.
    [152]Antebas A G, Denia F D, Pedrosa A M, et al. A finite element approach for the acoustic modeling of perforated dissipative mufflers with non-homogeneous properties[J]. Mathematical and Computer Modelling.2012,1(3).
    [153]Peat K S, Rathi K L. A finite element analysis of the convected acoustic wave motion in dissipative silencers[J]. Journal of Sound and Vibration.1995,184(3):529-545.
    [154]Fellah Z E A, Depollier C. Transient acoustic wave propagation in rigid porous media:A time-domain approach[J]. The Journal of the Acoustical Society of America.2000,107(2):683-688.
    [155]Fellah Z E A, Depollier C. On the propagation of acoustic pulses in porous rigid media:a time-domain approach[J]. Journal of Computational Acoustics.2001,09(03):1163-1173.
    [156]Wilson D K, Ostashev V E, Collier S L. Time-domain equations for sound propagation in rigid-frame porous media (L)[J]. The Journal of the Acoustical Society of America.2004,116(4):1889-1892.
    [157]Ju H, Fung K Y. A time-domain method for duct acoustics[J]. Journal of Sound and Vibration.2000, 237(4):667-681.
    [158]Reichert R S, Biringen S. Time-domain simulation of acoustic propagation in a lined duct[J]. Applied Acoustics.2001,62(9):1049-1068.
    [159]Sbardella L, Tester B J, Imregun M. A time-domain method for the prediction of sound attenuation in lined ducts[J]. Journal of Sound and Vibration.2001,239(3):379-396.
    [160]刘丽媛,季振林.涡轮增压发动机进气消声器设计与声学性能数值分析[J].振动与冲击.2011,30(10):193-196.
    [161]Trochon E. A new type of silencers for turbocharger noise control[J]. SAE Technical! 2001, Paper 2001-01-1436.
    [162]Graefenstein A, Wenzel W. "Herschel-Quincke spiral" a new interference silencer[J]. SAE Technical. 2003, Paper 2003-01-1722.
    [163]Karlsson M, Glav R, Abom M. The Herschel-Quincke tube:the attenuation conditions and their sensitivity to mean flow[J]. The Journal of the Acoustical Society of America.2008,124(2):723-732.
    [164]Lee I, Selamet A, Kim H, et al. Design of a multi-chamber silencer for turbocharger noise[J]. SAE Int. J. Passeng. Cars-Mech. Syst.2009,2(1):1339-1344.
    [165]Peat K, Elsari M, Dequand S. A linear acoustic model of the passive effect of the turbine of an automotive turbocharger[C]. Stockholm, Sweden:Institute of Acoustics,2003.
    [166]Peat K S, Torregrosa A J, Broatch A, et al. An investigation into the passive acoustic effect of the turbine in an automotive turbocharger[J]. Journal of Sound and Vibration.2006,295(1-2):60-75.
    [167]Rammal H, abom M. Experimental determination of sound transmission in turbo-compressors[J]. SAE Technical.2009, Paper 2009-01-2045.
    [168]Prasad M G, Crocker M J. A scheme to predict the sound pressure radiated from an automotive exhaust system[J]. The Journal of the Acoustical Society of America.1981,70(5):1345-1352.
    [169]Prasad M G, Crocker M J. Insertion loss studies on models of automotive exhaust systems[J]. The Journal of the Acoustical Society of America.1981,70(5):1339-1344.
    [170]Davies P O A L, Holland K R. I.C. engine intake and exhaust noise assessment J]. Journal of Sound and Vibration.1999,223(3):425-444.
    [171]Boden H, Abom M. Modeling of fluid machines as sources of sound in duct and pipe systems[J]. Acta Aoustica.1995,3(1995):549-560.
    [172]Ross D F, Crocker M J. Measurement of the acoustic internal source impedance of an internal combustion engine[J]. The Journal of the Acoustical Society of America.1983,74(1):18-27.
    [173]Prasad M G, Crocker M J. Acoustical source characterization studies on a multi-cylinder engine exhaust system[J]. Journal of Sound and Vibration.1983,90(4):479-490.
    [174]Kathuriya M L, Munjal M L. A method for the experimental evaluation of the acoustic characteristics of an engine exhaust system in the presence of mean flow[J]. The Journal of the Acoustical Society of America.1976,60(3):745-751.
    [175]Egolf D P, Leonard R G. Experimental scheme for analyzing the dynamic behavior of electroacoustic transducers[J]. The Journal of the Acoustical Society of America.1977,62(4):1013-1023.
    [176]Prasad M G, Crocker M J. Studies of acoustical performance of a multi-cylinder engine exhaust muffler system[J]. Journal of Sound and Vibration.1983,90(4):491-508.
    [177]Doige A G, Alves H S. Experimental Characterization of Noise Sources for Duct Acoustics[J]. Journal of Vibration Acoustics Stress and Reliability in Design.1989,111(1):108-114.
    [178]Alves H S, Doige A G. A three-load method for noise source characterization in ducts[J]. NOISE CON.1987,87:329-334.
    [179]Prasad M G. A four load method for evaluation of acoustical source impedance in a duct[J]. Journal of Sound and Vibration.1987,114(2):347-356.
    [180]Kathuriya M L, Munjal M L. Experimental evaluation of the aeroacoustic characteristics of a source of pulsating gas flow[J]. The Journal of the Acoustical Society of America.1979,65(1):240-248.
    [181]Desmons L, Hardy J. A least squares method for evaluation of characteristics of acoustical sources[J]. Journal of Sound and Vibration.1994,175(3):365-376.
    [182]Boden H. On multi-load methods for determination of the source data of acoustic one-port sources[J]. Journal of Sound and Vibration.1995,180(5):725-743.
    [183]Desmons L, Hardy J, Auregan Y. Determination of the acoustical source characteristics of an internal combustion engine by using several calibrated loads[J]. Journal of Sound and Vibration.1995,179(5): 869-878.
    [184]Jang S, Ih J. Refined multiload method for measuring acoustical source characteristics of an intake or exhaust system[J]. The Journal of the Acoustical Society of America.2000,107(6):3217-3225.
    [185]Jang S, Ih J. On the selection of loads in the multiload method for measuring the acoustic source parameters of duct systems[J]. The Journal of the Acoustical Society of America.2002,111(3):1171-1176.
    [186]Sridhara B S, Crocker M J. Error analysis for the four-load method used to measure the source impedance in ducts[J]. The Journal of the Acoustical Society of America.1992,92(5):2924-2931.
    [187]Ih J, Peat K S. On the causes of negative source impedance in the measurement of intake and exhaust noise sources[J]. Applied Acoustics.2002,63(2):153-171.
    [188]Peat K S, Ih J G. An analytical investigation of the indirect measurement method of estimating the acoustic impedance of a time-varying source[J]. Journal of Sound and Vibration.2001,244(5):821-835.
    [189]Rammal H, Boden H. Modified multi-load method for nonlinear source characterisation[J]. Journal of Sound and Vibration.2007,299(4-5):1094-1113.
    [190]Ih J, Kim H, Lee S, et al. Prediction of intake noise of an automotive engine in run-up condition[J]. Applied Acoustics.2009,70(2):347-355.
    [191]刘海涛,郑四发,康钟绪.基于四负载方法的汽车发动机排气源特性研究[J].振动工程学报.2011,24(05):573-577.
    [192]Torregrosa A J, Broatch A, Bermudez V, et al. Experimental assessment of emission models used for IC engine exhaust noise prediction[J]. Experimental Thermal and Fluid Science.2005,30(2):97-107.
    [193]Benson R S, Horlock J H, Winterbone D E. The Thermodynamics and Gas Dynamics of Internal-Combustion Engines[M]. Clarendon Press,1986.
    [194]Chiavola O. Integrated modelling of internal combustion engine intake and exhaust systems[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy.2001,215(4): 495-506.
    [195]Fyhr C, Dahlberg O. Complete engine modeling using CFD[J]. SAE Technical.2004, Paper 2004-01-0109.
    [196]Jones A D, Brown G L. Determination of two-stroke engine exhaust noise by the method of characteristics[J]. Journal of Sound and Vibration.1982,82(3):305-327.
    [197]Payri F, Torregrosa A J, Chust M D. Application of MacCormack schemes to I.C. engine exhaust noise prediction[J]. Journal of Sound and Vibration.1996,195(5):757-773.
    [198]Biermayer W, Brandl F. Vehicle sound engineering by modifying intake/exhaust orifice noise using simulation software[J]. SAE Technical.2003, Paper 2003-01-1686.
    [199]Ghosh B B, Chaudhury J, Banerjee T K. et al. Development of a muffler for control of noise pollution in a diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1999,213(1):83-90.
    [200]Yasuda T, Wu C, Nakagawa N, et al. Predictions and experimental studies of the tail pipe noise of an automotive muffler using a one dimensional CFD model[J]. Applied Acoustics.2010,71(8):701-707.
    [201]谭建伟,葛蕴珊,毕晔.基于一维/三维模型耦合仿真的汽车进气谐振器设计[J].汽车工程.2007,29(10):859-864.
    [202]Gupta V H, Munjal M L. On numerical prediction of the acoustic source characteristics of an engine exhaust system[J]. The Journal of the Acoustical Society of America.1992,92(5):2716-2725.
    [203]康钟绪,郑四发,连小珉.消声器匹配研究的一维三维混合方法[J].振动工程学报.2010,23(06):596-600.
    [204]Kim Y S, Lee D J. Numerical analysis of internal combustion engine intake noise with a moving piston and a valve[J]. Journal of Sound and Vibration.2001,241(5):895-912.
    [205]Davies P O A L, Harrison M F. Predictive acoustic modeling applied to the control of intake/exhaust noise of internal combustion engines[J]. Journal of Sound and Vibration.1997,202(2):249-274.
    [206]Sathyanarayana Y, Munjal M L. A hybrid approach for aeroacoustic analysis of the engine exhaust system[J]. Applied Acoustics.2000,60(4):425-450.
    [207]Albertson F, Gilbert J. Harmonic balance method used for calculating the steady state oscillations of a simple one-cylinder cold engine[J]. Journal of Sound and Vibration.2001,241(4):541-565.
    [208]Payri F, Desantes J M, Torregrosa A J. Acoustic boundary condition for unsteady one-dimensional flow calculations[J]. Journal of Sound and Vibration.1995,188(1):85-110.
    [209]Chiavola O. Multi-dimensional CFD-transmission matrix modelling of ic engine intake and exhaust systems[J]. Journal of Sound and Vibration.2002,256(5):835-848.
    [210]Harrison M F, Arenas R P. A hybrid boundary for the prediction of intake wave dynamics in IC engines[J]. Journal of Sound and Vibration.2004,270(1-2):111-136.
    [211]Harrison M F, Stanev P T. A linear acoustic model for intake wave dynamics in IC engines[J]. Journal of Sound and Vibration.2004,269(1-2):361-387.
    [212]Harrison M F, Dunkley A. The acoustics of racing engine intake systems[J]. Journal of Sound and Vibration.2004,271(3-5):959-984.
    [213]李增刚,詹福良.Virtual. Lab Acoustics声学仿真计算高级应用实例[M].北京:国防工业出版社,2010.
    [214]Davies P O A L, Bento Coelho J L, Bhattacharya M. Reflection coefficients for an unflanged pipe with flow[J]. Journal of Sound and Vibration.1980,72(4):543-546.
    [215]Davies P O A L. Plane wave reflection at flow intakes[J]. Journal of Sound and Vibration.1987, 115(3):560-564.
    [216]Tao Z, Seybert A. A review of current techniques for measuring muffler transmission loss[J]. SAE Technical.2003, Paper 2003-01-1653.
    [217]GT-SUITE Flow Theory Manual Version 7.0, Gamma Technologies,2009.
    [218]林建忠.流体力学[M].北京:清华大学出版社,2005.
    [219]ANSYS FLUENT Theory Guide Release 14.0. ANSYS Inc.,2011.
    [220]ANSYS FLUENT User's Guide Release 14.0. ANSYS Inc.,2011.
    [221]李以农,路明,郑蕾.汽车排气消声器内部流场及温度场的数值计算[J].重庆大学学报.2008,31(10):1094-1097.
    [222]刘联望,郝志勇,郑旭.基于计算流体动力学的内燃机进气空滤器消声量计算[J].振动与冲击.2013,32(7):141-145.
    [223]刘联鋆,郝志勇,郑旭.复杂腔体四极子矩阵的三维CFD计算方法[J].振动工程学报.2013,26(2):298-302.
    [224]Allard J F, Atalla N. Propagation of sound in porous media:modelling sound absorbing materials[M]. Hoboken, N.J.:Wiley,2009.
    [225]贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].浙江大学,2008.
    [226]赵明.汽车排气消声器声学特性的研究[D].华中科技大学,2005.
    [227]刘联鋆,郝志勇,钱欣怡.涡轮增压器出口消声器的性能预测和评估[J].哈尔滨工程大学学报.2013,34(02):197-201.
    [228]徐航手,康钟绪,季振林.排气消声器传递损失的实验测量与分析[J].噪声与振动控制.2009,8(04):128-131.
    [229]Ashcroft G B, Takeda K, Zhang X. A numerical investigation of the noise radiated by a turbulent flow over a cavity[J]. Journal of Sound and Vibration.2003,265(1):43-60.
    [230]Boden H, Albertson F. Linearity tests for in-duct acoustic one-port sources[J]. Journal of Sound and Vibration.2000,237(1):45-65.
    [231]Liu L, Hao Z, Liu C. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise[J]. Journal of Zhejiang University-SCIENCE A.2012,13(9):709-716.
    [232]刘联鋆,郝志勇,钱欣怡.增压发动机的进气噪声源提取和进气噪声的预测[J].内燃机学报.2013,31(2):651-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700