用户名: 密码: 验证码:
湍流有旋流冷态流场及扩散火焰的大涡模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋流可以产生回流区以及增强燃料和氧化剂的混合,常用在实际燃烧器中以稳定火焰。旋流场常存在涡旋破碎、进动涡核等低频振动的大尺度拟序结构,会对燃烧场产生复杂的影响。随着计算机技术的发展,数值计算已经成为湍流流动及燃烧研究的重要工具。大涡模拟(LES)可以直接求解湍流场中含有大部分能量的大尺度湍流运动,在研究旋流冷态流动和燃烧场的流场结构、火焰结构以及湍流与火焰相互作用中发挥着越来越重要的作用。
     分层旋流燃烧器和悉尼旋流燃烧器已有详细冷态和燃烧场的实验数据,非常适合研究旋流的流场特征及其对燃烧过程的影响。本文先采用大涡模拟方法计算了分层旋流燃烧器和悉尼旋流燃烧器的冷态流场,使用模拟结果详细分析了两种旋流器的冷态流场结构。然后结合化学热力学建表的火焰面/进度变量(FPV)亚格子燃烧模型,开展悉尼旋流燃烧器中的两个典型燃烧过程的大涡模拟,分析火焰结构及不稳定性等特征。
     分层旋流燃烧器的冷态流场中主要有钝体回流区和旋流剪切层等流场结构,并产生了螺旋涡的脱落与破碎、进动涡核等不稳定现象。钝体回流区由内侧的环形射流流经钝体后形成。螺旋涡产生于环形旋流出口的剪切层内,然后发生脱落,并在下游发生破碎;增大旋流强度,涡旋破碎发生的位置向上游移动。进动涡核存在于钝体回流区下游中轴线附近,剪切层的Kelvin-Helmholtz不稳定性形成了上述两种涡旋结构。本文数值研究旋流数为0.00、0.25、0.45和0.79时四个工况下的流场特征。四个旋流数下钝体回流区的大小没有明显改变,轴向长度都约为20mm。涡旋脱落现象存在于低旋流数0.25的流动。有旋条件下,下游流场存在着进动涡核;旋流数增大后,功率谱的结果表明进动特征明显增强,但进动频率没有明显变化;随着流场的发展,进动特征沿流向逐渐衰减。旋流数较大时(0.45和0.79)钝体回流区末端出现低频进动,表明了回流区的不稳定性。冷态流场的POD分析结果表明,涡旋脱落形成了相互平行的大尺度环形拟序结构,而进动涡核形成了螺旋形的拟序结构,两种拟序结构都在下游发生破碎。利用POD结果对涡量和雷诺应力做三次分解,结果表明流场的拉伸是造成涡旋破碎的主要原因。
     悉尼旋流燃烧器的钝体中心多了一股燃料射流,流场的参数组合更加丰富。流场中存在着钝体回流区、二次回流区(涡旋破碎泡)和“颈圈状”结构等,并伴有涡旋破碎、中心射流和“颈圈状”区域的进动涡核以及二次回流区的周期性收缩与膨胀等不稳定性现象。本文分别开展无旋(旋流数为零,雷诺数为32400、41900和59000)、高雷诺数(雷诺数为59000,而旋流数为0.40、0.45和0.54)和低雷诺数(雷诺数为32400,旋流数为0.57、0.68、0.91和1.59)三大类工况的大涡模拟。结果表明钝体回流区的长度与雷诺数的关系不大,而旋流强度明显影响回流区的长度。下游二次回流区主要存在于高雷诺数的工况下。中心射流和“颈圈状”结构附近分别存在着两个独立的进动涡核,使得附近流场产生明显的低频进动。二次回流区(涡旋破碎泡)具有较弱的周期性收缩/崩塌与膨胀的不稳定特征。冷态流场的POD分析结果表明,中心射流和“颈圈状”区域的进动涡核分别在它们对应的流场位置形成了圆柱状拟序结构,随着流场向下游发展,圆柱形涡旋结构逐渐分裂成若干相互缠绕的螺旋涡结构:二次回流区(涡旋破碎泡)的周期性收缩与膨胀则形成了围绕在回流区周围的多个螺旋形的拟序结构。涡量和雷诺应力的三次分解结果表明,旋流和中心射流出口处的涡旋破碎是流场拉伸的结果。
     本文采用LES结合FPV方法计算了悉尼旋流燃烧器的扩散火焰SM1和部分预混火焰SMA2。结果表明,采用充分发展的管流作为中心燃料射流的进口条件后,燃烧场的湍流混合过程、温度以及燃烧产物的分布计算得更好。火焰SM1的颈部区域和火焰SMA2的钝体回流区末端具有很高的标量耗散率,导致了局部熄火,增加了数值计算的困难程度。火焰SM1的中心射流存在着不规则进动,这增强了燃料与外侧空气的混合效果;下游二次回流区存在着较弱的周期性收缩/崩塌与膨胀现象。燃烧放热使得SMA2的钝体回流区膨胀变长,钝体回流区存在着周期性收缩/崩塌与膨胀现象。钝体回流区和二次回流区在火焰驻定中起到重要作用,特别是下游二次回流区的存在能明显增强燃烧的稳定性。
     本文的工作为研究和设计性能良好的实际燃烧器提供了一些有益的参考信
Swirling flow is commonly used in the practical burner to stabilize the flame, due to the recirculation zone induced by swirl flow and ability to enhance fuel/oxidizer mixing. Swirl flow contains a variety of large-scale coherent structures, such as vortex breakdown (VB) and precessing vortex core (PVC), which have complex influence on flame. With the rapid development of computer resource and computational fluid dynamics, numerical simulation has become one of the most important approaches in research of turbulent flow and combustion. Large eddy simulation (LES) can directly solve the large-scale motion, which contains the most energy in turbulent flow fields. Nowadays, the LES approach plays a more and more important role to study the turbulent flow structures, flame structures and the interaction between turbulence and chemical reactions.
     Stratified swirl burner and Sydney swirl burner, which have the detail experimental data for non-reactive flow and combustion, are suitable to study the characteristics of swirl flow fields and the impact on combustion process. LES were performed to study the non-reactive flow of two types of swirl burners. Combined with the flamelet/progress variables (FPV) subgrid combustion model based on the thermo-chemical table, LES were also performed on two typical combustion process of Sydney swirl burner to investigate the turbulence/chemistry interactions.
     The flow field of stratified swirl burner contains bluff-body stabilized recirculation zone and swirl shear layers, and exists some kinds of instability phenomena, such as spiral vortex shedding and breakdown, PVC et al. Bluff-body recirculation zone is formed by inner annular jet. Spiral vortex generates in the swirl shear layers, which sheds from the swirling flow exit and then breaks down downstream. With the increasing of swirl number, the vortex breakdown occurs more upstream. PVC exists near the central axis behind bluff-body stabilized recirculation zone. Both of the spiral vortex and PVC are formed as the result of the Kelvin-Helmholtz instability of swirl shear layers. The flow features under four swirl numbers0.00,0.25,0.45and0.79were numerical studied. The results show that, the axial lengths of bluff-body recirculation zone are approximately20mm under four swirl numbers. The vortex shedding occurs under lower swirl number0.25. In swirling flow, PVC exists in downstream region. The power spectrum results show that the strengthen of procession motion increase obviously, while the frequencies keep unchanged under higher swirl numbers, but decays along the flow direction. The terminal of bluff-body stabilized recirculation zone appears precession motion under higher swirl numbers0.45and0.79, which indicates the instability of recirculation zone. The results of proper orthogonal decomposition (POD) show that, the vortex shedding forms the large-scale parallel annular coherent structures, and the PVC forms the spiral coherent structures. The vorticity and Reynolds stress distributions given by triple decomposition (TD) based on the data of POD indicate that the flow stretch is the main reason of vortex breakdown.
     A extra fuel jet in the central of bluff-body of the Sydney swirl burner will lead to more operating conditions. The flow field contains bluff-body stabilized recirculation zone, second recirculation zone (vortex breakdown bubble, VBB) and "collar-like" structure, and some kinds of instability phenomena such as vortex breakdown, PVC in central jet and "collar-like" structure region, cyclic collapse/contraction and expansion of VBB et al. The LES was carried out under three categories of operating conditions:non-swirling (Sg=0, Res=32400,41900and59000), higher Reynolds number (Res=59000, Sg=0.40,0.45and0.54) and lower Reynolds number (Res=32400, Sg=0.57,0.68,0.91and1.59). The predicted length of bluff-body stabilized recirculation zone is sensitivity to swirl numbers, but not to Reynolds numbers. The large VBB are formed in downstream region under higher Reynolds numbers. Two independent PVCs, leading to the low frequency precession of flow fields, exist in the regions of central jet and "collar-like" structure respectively. Comparing with PVC, the predicted cyclic collapse/contraction and expansion of VBB is a type of weak instability. The POD results of non-reactive flow shows that the PVCs of central jet and "collar-like" structure forms the large-scale columned coherent structures respectively, which divides into several intertwine spiral vortex structures downstream. The instability of VBB forms several spiral coherent structures around the recirculation zone. The coherent vorticity and Reynolds stress given by triple decomposition (TD) using POD data indicate that the flow stretch is main reason of vortex breakdown.
     Large eddy simulation combined with FPV subgrid combustion model were applied to study the diffusion flame SM1and partial premixed flame SMA2respectively in Sydney swirl burner. Good results of turbulent mixing, mean temperature and species mass fractions can be obtained by using the outlet instantaneous velocity of developed turbulent piped flow as turbulent inlet velocity of central fuel jet. The results show that, much higher scalar dissipation rate, causing the partial quenching, appears in the neck region of SM1and the terminal of bluff-body stabilized recirculation zone of SMA2, which increases the difficulty of numerical calculation in swirling combustion. In the flame SM1, the irregular precession of central jet can strengthen the mixing effect of fuel/air; the VBB presents a weak unstable phenomenon called cyclic contraction/collapse and expansion. In flame SMA2, the combustion heat release causes the expansion and elongation of bluff-body stabilized recirculation zone, which presents the cyclic contraction/collapse and expansion. The bluff-body stabilized recirculation zone and VBB play an important role on flame stabilization. Especially, the existence of VBB can enhance the stability of combustion.
     The work of this paper can provide some useful reference information for research and design the practical combustor with good performance.
引文
Al-Abdeli YM, Masri AR,2003a. Recirculalion and flowfield regimes of unconfined non-reacting swirling flows[J]. Exp Therm Fluid Sci,27:655-665.
    Al-Abdeli YM, Masri AR,2003b. Stability characteristics and flowfields of turbulent non-premixed swirling flames[J]. Combust Theor Model,7:721-766.
    Al-Abdeli YM, Masri AR,2004. Precession and recirculation in turbulent swirling isothermal jets[J]. Combust Sci Technol,176:645-665.
    Al-Abdeli YM, Masri AR,2007. Turbulent swirling natural gas flames:Stability characteristics, unsteady behavior and vortex breakdown[J]. Combust Sci Technol,179:207-225。
    Al-Abdeli YM, Masri AR, Marquez GR et al,2006. Time-varying behavior of turbulent swirling nonpremixed flames[J]. Combust Flame,146:200-214.
    Alkidas, AC,2007. Combustion advancements in gasoline engines[J]. Energy Convers Manage, 48(11):2751-2761.
    Althaus W, Krause E,1990. Flow visualization of flow with concentrated vorticity[C]. EC Contract SCI-0212. Progress Report Dec.
    Anacleto PM, Fernandes EC, Heitor MV,2003. Swirl flow characteristics and flame characteristics in a model lean premixed combustor[J]. Combust Sci Technol,175: 1369-1388.
    Ayache S, Mastorakos E,2013. Investigation of the "TECFLAM" non-pemixed flame using large eddy simulation and proper orthogonal decomposition[J]. Flow Tur Combust,90(2): 219-241.
    Barths H, Hasse C, Bikas G, et al,2000. Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model. Proceedings of the Combustion Institute, 28:1161-1168.
    Bauer HJ,2004. New low emission strategies and combustor designs for civil aeroengine applications[J]. Prog Comput Fluid Dyn,4:130-142.
    Bilger RW,1993. Conditional moment closure for turbulent reacting flow[J]. Phy Fluids A,5(2): 436-444.
    Bruecker CH, Althaus W,1995. Study of vortex breakdown by particle tracking velocimetry (PTV), part 3:Time-dependent structure and development of breakdown modes[J]. Exps Fluids,18:174-186.
    Cala CE, Fernandes EC, Heitor MV et al,2006. Coherent structures in unsteady swirling jet flow[J]. Exp Fluids,40:267-276.
    Cassidy JJ, Falvey HT,1970. observations of unsteady flow arising after vortex breakdown[J]. J Fluid Mech,1970,41:727-736.
    Chigier BJ, Cherinsky A,1965. Experimental and theoretical study of turbulent swirling jets issuing from a round orifice[J]. Isr J Technol,4:44-54.
    Choi H, Moin P, Kin J,1993. Direct numerical simulation of turbulent flow over riblets[J]. J Fluid Mech,225:503-539.
    Choi H, Jeon WP, Kim J,2008. Control of flow over a bluff body[J]. Annu Rev Fluid Mech,40: 113-139.
    Culick FEC, Yang V,1995. Overview of combustion instabilities in liquid-propellant rocket engines[J]. Prog Astronaut Aeronaut,169:3-37.
    Deardorff JW,1970. A numerical study of three-dimensional turbulent channel flow at large eddy Reynolds numbers[J]. J Fluid Mech,41:453-480.
    Deilenback PA, Metzger DE, Neitzel GP,1988. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion[J]. AIAA J,26:669-681.
    DiMare F, Jones W, Menzies K,2004. Large eddy simulation of a model gas turbine combustor[J]. Combust Flame,137:278-294.
    Dimitropoulos CD, DubiefEric Y, Shaqfeh SG,2005. Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow[J]. Phys Fluids,17(1), 011705.
    Erlebacher G, Hussaini MY, Speziale CG et al,1992. Toward the large eddy imulation of compressible turbulent flows[J]. J Fluid Mech,238:155-158.
    Esquva-Dano I, Nguyen HT, Escudie D,2001. Influence of a bluff-body's shape on the stabilization regime of non-premixed flames[J]. Combust Flame,127(4):2167-2180.
    Escudier MP,1988. Vortex breakdown:observation and explanations [J]. Prog Aerospace Sci,25: 189-229.
    Esquiva-Dano I, Nguyen HT, Escudie D,2001. Influence of a bluff-body's shape on the stabilization regime of non-premixed flames[J]. Combust Flame,127:2167-2180.
    Escudier MP, Keller JJ,1985. Recirculation in swirling flow:a manifestation of vortex breakdown[J].AIAAJ,23:111-116.
    Fiorina B, Baron R, Gicquel O, et al,2003. Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust Theor Model,7(3):449-470.
    Fiorina B, Gicquel O, Veynante D,2009. Turbulent flame simulation taking advantage of tabulated chemistry self-similar properties. Proc Combust Inst,32:1687-1694.
    Freitag M, Klein M, Gregor M, et al,2006. Mixing analysis of a swirling recirculating flow using DNS and experimental data[J]. Int J Heat Fluid Flow,27(4):636-643.
    Froud DY, Beale AJ, O'Doherty T et al,1996. Studies of Helmholtz resonance in a swirl burner furnacesystem[C].26th International Symposium on Combustion:355-3362.
    Fujimoto Y, Yamasaki N,2006. Large eddy simulation of swirling jet in a bluff-body burner[J]. JSME Int J, Ser. B 49:1125-1132.
    Garcia-Villalba M, Frohlich J, Rodi W,2006. Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation[J]. Phys Fluids,18:055103.
    Ge B, Zang SS,2012. Experimental study on the interactions for bluff-body and swirl in stabilized flame process[J]. J Therm Sci,21(1):88-96.
    Germano M,1992. Turbulence:the filtering approach[J]. J Fluid Mech,238:325-336.
    Germano M, Piomelli U, Moin P et al,1991. A dynamic subgrid-scale eddy viscosity model[J]. Phys Fluids,3:1760-1765.
    Ghosal S, Lund T, Moin P et al,1995.A dynamic localization model for large eddy simulation for turbulent flows[J]. J Fluid Mech,286:229-255.
    Gicquel O, Darabiha N,Thevenin D,2000. Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusioa Proc Combust Inst,28:1901-1908.
    Graftieaux L, Michard M, Grosjean N,2001. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows[J]. Meas Sci Technol,12: 1422-1429.
    Guo B, Fletcher DF, Marquez G et al,2003. RANS calculations and measurement of instabilities in swirl stabilized jets and flames[C]. Australian symposium on combustion and eighth Australian flame day,8-9th December, Australia Monash University.
    Guo BY, Langrish TAG, Fletcher DF,1999. Simulation of precession in a axisymmetric sudden expansion flows[C]. Second International conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 329-334.
    Guo BY, Langrish TAG, Fletcher DF,2001. Simulation of turbulent swirl flow in an axisymmetric sudden expansion[J]. AIAA J,39:96-102.
    Guo BY, Langrish TAG, Fletcher DF,2002. CFD simulation of precession in sudden pipe expansion flows with low inlet swirl[J]. Appl Math Model,26:1-15.
    Gupta AK, Liliy DJ, Syred N,1984. Swirl flows[M]. Tunbridge Wells, UK:Abscus Press.
    Huang Y,2003. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines[D]. PhD Thesis. Pennsylvania State University.
    Huang Y, Sung HG, Hsieh SY, et al,2003. Large eddy simulations of combustion dynamics of lean-premixed swirl-stabilized combustor[J]. J Prop Power,19(5):782-794.
    胡瓅元,罗永浩,周力行,2007.两种亚网格湍流模型的旋流扩散火焰大涡模拟[J].清华大学学报(自然科学版),47(5):742-745.
    Hussain A K M F 1986. Coherent structures and turbulence[J]. J Fluid Mech,173:303-356.
    Hussain A K M F, Reynolds W C,1970. The mechanics of an organized wave in turbulent shear flow[J]. J Fluid Mech,41:241-258.
    Ihme M, Pitsch H,2008a. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 1. A priori study and presumed PDF closure. Combust Flame,155(1-2):70-89.
    Ihme M, Pitsch H,2008b. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 2. Application in LES of Sandia flames D and E. Combust Flame,155(1-2):90-107.
    Ihme M, Schmitt C, Pitsch H,2009. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame[J]. Proc Combust Instt,32(1):1527-1535.
    Ihme M, See YC,2010. Prediction of auto-ignition in a lifted methane air flame using an unsteady flamelet progress variable model[J]. Combust Flame,157:1850-1862
    Issa RI,1986. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. J Comput Phys,62(1):40-65.
    Iungo GV, Lombardi E,2011. A procedure based on proper orthogonal decomposition for time-frequency analysis of time series[J]. Exp Fluids,51:969-985.
    Jeong J, Hussain F,1995. On the identification of a vortex[J]. J Fluid Mech,285:69-94.
    Jones WP, Lyra S, Navarro-Martinez S,2012. Large eddy simulation of turbulent confined. highly swirling annular flows[J]. Flow Turb Combust,89:361-384.
    James S, Zhu J, Anand MS,2007. Large eddy simulations of turbulent flames using the filtered density function model[J]. Proc Combust Inst,31(2):1737-1745.
    Kalt PAM, Al-Abdell YM, Masri AR et al,2002. Swirling turbulent nonpremixed flames of methane:flow field and compositional structure[J]. Proc Combust Inst,29:1913-1919.
    Kempf A, Malalasekera W, Ranga-Dinesh KKJ et al,2008. Large eddy simulations of swirling non-premixed flames with flamelet models:a comparison of numerical methods. Flow Turb Combust,81:523-561.
    Kim W, Menon S, Mongia H,1999. Large eddy simulation of a gas turbine combustor flow[J]. Combust Sci Tech,143:1-25.
    Klimenko AY,1990. Multicomponent diffusion of various scalars in turbulent flows[J]. Fluid Dyn,25:327-334.
    Kollmann W, Ooi ASH, Chong MS et al,2001. Direct numerical simulation of vortex breakdown in swirling jets[J]. J Turbulence,2:1-17.
    Leibovich S,1978. The structure of vortex breakdown[J]. Annu Rev Fluid Mech,10:221-246.
    Leibovich S,1984. Vortex stability and breakdown:survey and extension[J]. AIAA J,22: 1192-1206.
    Lilley DG,1977. Swirl flows in combustion:a review[J]. AIAA J,15:1063-1078.
    刘奕,郭印诚,2004.不可压缩湍流燃烧大涡模拟的分步投影方法.科学通报,49(7):611-617.
    Lu XX, Wang SW, Sung HG, et al,2005. Large-eddy simulations of turbuluent swirling flows injected into a dump chamber[J]. J Fluids Mech,527,171-195.
    Lucca-Negro O,1999. Modelling of swirl flow instabilities[D]. PhD thesis, University of Wales, UK.
    Lucca-Negro, O, O'Doherty, T,2001. Vortex breakdown a review[J]. Prog Energy Combust Sci, 27:431-481.
    Lumley JL,1970. Stochastic Tools in Turbulence[M]. New York:Academic Press.
    Lumley JL, Yaglom AM,2001. A century of turbulence[J]. Flow Turbul Combust,66:241-286.
    罗坤,王海鸥,樊建人等,2012.旋流燃烧器复合小火焰模型的大涡模拟[J].工程热物理学报,33(1):146-150.
    Maas U, Pope SB,1992a. Simplifying Chemical-Kinetics-Intrinsic Low-Dimensional Manifolds in Composition Space. Combust Flame,88(3-4):239-264.
    Maas U, Pope SB,1992b. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Twenty-forth Symposium (International) on Combustion, 103-112.
    Mahesh K,1996. A model for the onset of breakdown in an axisymmetric compressible vortex[J]. Phys Fluids,8:3338-3345.
    Malalasekera W, Ranga Dinesh KKJ, Ibrahim SS, et al,2007. Large eddy simulation of isothermal turbulent swirling jets[J]. Combust Sci Technol,179:1481-1525.
    Malalasekera W, Ranga-Dinesh KKJ, Ibrahim SS et al,2008. LES of recirculation and vortex breakdown in swirling flames[J]. Combust Sci Technol,180:809-832.
    Mansour A,2005. Gas turbine fuel injection technology[C]. Proc ASME Turbo Expo,2: 141-149.
    Marshall JS,1991. A general theory of curved vortices with circular cross-section and variable core area[J]. J Fluid Mech,229:311-338.
    Masri AR, Dibble RW, Barlow RS,1996. The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements[J]. Prog Energy Combust Sci,22(4): 307-362.
    Masri AR, Kalt PAM, Al-Abdeli YM, et al,2007. Turbulent-chemistry interactions in non-premixed swirling flames[J]. Combust Theor Model,11(5):653-673.
    Masri AR, Kalt PAM, Barlow RS,2004. The compositional structure of swirl-stabilized turbulent nonpremixed flames[J]. Combust Flame,137(1-2):1-37.
    Michel JB, Colin O, Angelberger C, et al,2009. Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane-air jet flame. Combust Flame,156(7):1318-1331.
    Michel JB, Colin O,Veynante D,2008. Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combust Flame,152(1-2):80-99.
    Midgley M, Spencer A, McGuirk JJ,2005. Unsteady flow structures in radial swirler fed fuel injectors[J]. J Eng Gas Turb Power,127:755.
    Moin P, Mahesh K,1998. Direct numerical simulation:a tool in turbulence research[J]. Annu Rev Fluid Mech,30:539-578.
    Oberleithner K, Sieber M, Nayeri CN et al,2011. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown stability analysis and empirical mode construction[J]. J Fluid Mech,679:383-414.
    Oefelein JC,2006. Large eddy simulation of turbulent combustion processes in propulsion and power systems[J]. Prog Aero Sci,42:2-37.
    Olbricht C, Hahn F, Janicka J,2008. LES of vortex breakdown in swirled bluff-body flows.[C] Proc ASME Turbo Expo 2008:Power for Land, Sea and Air, Berlin, Germany.
    Olbricht C, Ketelheun A, Hahn F, et al,2010. Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series[J]. Flow Turbulence Combust, 85(3-4):513-547.
    O'Doherty T, Griffiths AJ, Syred N, et al,1998. Experimental analysis of rotating instabilities in swirling and cyclonic flows[J]. DCEMP,7:245-268.
    Paik J, Sotiropoulos F,2010. Numerical simulation of strongly swirling turbulent flows through an abrupt expansion[J]. Int J Heat Fluid Flow,31:390-400.
    PandaJ, Mclaughlin, DK,1994 Experiments on the instailities of swirling jets[J]. Phys Fluids,6: 263-276.
    Parente A, Sutherland JC, Tognotti L, et al,2009. Identification of low-dimensional manifolds in turbulent flames. Proc Combust Inst,32:1579-1586.
    Paschereit CO, Gutmark E, Weisenstein W,1999. Coherent structures in swirling flows and their role in acoustic combustion control[J]. Phys Fluids,11(9):2667-2678.
    Peters N,1984. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Prog Energy Combust Sci,10:319-339.
    Pierce CD, Moin P,2004. Progress-variable approach for large eddy simulation of non-premixed turbulent combustion[J]. J Fluid Mech,504:73-97.
    Pierce CD, Moin P,1998. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar[J]. Phys Fluids,10(12):3041-3044.
    Piomelli U, Liu J,1995. Large eddy simulation of rotating channel flows using a localized dynamic model[J]. Phys Fluids,7:839-848.
    Pitsch H., Chen M,Peters N,1998. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames. Twenty-Seventh Symposium (International) on Combustion,1-2: 1057-1064.
    Pitsch H, Steiner H,2000. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)[J]. Phys Fluids,12(10):2541-2554.
    Poinsot T, Veynante D,2001. Theoretical and Numerical Combustion[M]. Edwards, Philadelphia, PA.
    Pope SB,2000.Turbulent Flows[M]. Cambridge University Press.
    Pope SB,1985. Pdf method for turbulent reacting flows.[J]. Prog Energy Combust Sci,11(2): 119-192.
    邱翔,刘宇陆,2004.湍流的相干结构[J].自然杂志,26(4):187-193.
    Rajaatnam N,1976. Turbulent Jets (Developments in water science)[M]. Elsevier.
    Raman V, Pitsch H,2005. Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure[J]. Combust Flame,142,329-347.
    Ranga Dinesh KKJ, Jenkins KW, Kirkpatrick MP et al,2009. Identification and analysis of instability in non-premixed swirling flames using LES[J]. Combust Theor Model,13: 947-971.
    Ranga Dinesh KKJ, Jenkins KW, Kirkpatrick MP et al,2010. Modelling of instabilities in turbulent swirling flames[J]. Fuel,89:10-18.
    Ranga Dinesh KKJ, Kirkpatrick MP,2009. Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES[J]. Comput Fluids,38:1232-1242.
    Reddy AP, Sujith RJ, Chakravarthy SR,2005. Swirler flow field characteristics in a sudden expansion combustor geometry using PⅣ[J]. AiAA J,217:10-13.
    Reynolds O,1894. On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion[J]. Phil Trans Soc London, A186:123-161.
    Ribert G, Gicquel O, Darabiha N, et al,2006. Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames. Combust Flame,146(4):649-664.
    Roux A, Gicquel LYM, Sommerer Y et al,2008. Large eddy simulation of mean and oscillating flow in a side-dump ramjet combustor[J]. Combust Flame,152:154-176.
    Roux S, Lartigue G, Poinsot T, et al,2005. Studies of mean and unsteady flow in s a swirled combustor using experiments, acoustic analysis and large eddy simulations[J]. Combust Flame,141(1-2):40-54.
    Sagaut P,2002. Large eddy simulation for incompressible flows:an introduction[M].2nd Edition, Springer.
    Sankaran V, Menon S,2002. LES of spray combustion in swirling flows[J]. J Turbulence,3: 11-23.
    Sarpkaya T,1971. On stationary and travelling vortex breakdowns[J]. J Fluid Mech,45: 545-559.
    Sarpkaya T,1995a. Turbulent vortex breakdown[J]. Phys Fluids,7:2301-2303.
    Sarpkaya T,1995b. Vortex breakdown and turbulence[J]. AIAA paper,95-0433.
    Selle L, Lartigue G, Poinsot T, et al,2004. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes[J]. Combust Flame,137(4): 489-505.
    Serre E, Bontux P,2002. Vortex breakdown in a three-dimensional swirling flow[J]. J Fluid Mech,459:347-370.
    Shtork SI, Cala CE, Fernandes EC et al,2005. Coherent helical structures in swirl flows[J]. Tech Phys Lett,31:660-662.
    Sirovich L,1987. Turbulence and the dynamics of coherent structures, Part Ⅰ[J]. Q Appl Math, 45:561-590.
    Smagorinsky J,1963. General circulation experiments with the primitive equations [J]. Mon Weather Rev,91:99-164.
    Smith GP, Golden DM, Frenklach M, et al,1999. GRI-Mech-an optimized detailed chemical reaction mechanism for methane combustion[R]. Technical Report http://www. me. berkeley. edu/gri mech, Gas Research Institute.
    Spencer A, McGuirk JJ, Midgley K,2008. Vortex breakdown in swirling fuel injector fiows[J]. J Eng Gas Turb Power,130:021503.
    Stein O, Kempf A,2007. LES of the Sydney swirl flame series:a study of vortex breakdown in isothermal and reacting flows[J]. Proc Combust Inst,31:1755-1763.
    Sweeney MS,2011. Measurements of the structure of turbulent premixed and stratified methane air flames[D]. PhD Thesis, University of Cambridge.
    Sweeney MS, Hochgreb S, Dunn MJ et al,2011. A comparative analysis of flame surface density metrics in premixed and stratified flames[J]. Proc Combust Inst,33:1419-1427.
    Sweeney MS, Hochgreb S, Dunn MJ et al,2012a. The structure of turbulent stratified and premixed methane/air flames Ⅰ:non-swirling flows[J]. Combust Flame,159:2896-2911.
    Sweeney MS, Hochgreb S, Dunn MJ et al,2012b. The structure of turbulent stratified and premixed methane/air flames Ⅱ:swirling flows[J]. Combust Flame,159:2912-2929.
    Sweeney MS, Hochgreb S, Dunn MJ et al,2013. Multiply conditioned analyses of stratification in highly swirling methane/air flames[J]. Combust Flame,160:322-334.
    Syred, N,2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems[J]. Prog Energy Combust Sci,32:93-161.
    Syred N, Fick W, O'Doherty T et al,1997. The effect of the precessing vortex core on combustion in a swirl burner[J]. Conbust Sci Tech,125:139-157.
    Syred N, Gupta AK, Beer JM,1975. Temperature and density gradients arising with the precessing vortex core and vortex breakdown in swirl burners[J]. Proceedings of the 15th Int Symp Combust,587-597.
    Syred N, O'Doherty T,1994. The interaction of the precessing vortex core and reverse flow zone in the exhaust of a swirl burner[J]. Proc Inst Mech Eng Part A J Power Energy,208:27-36.
    Tutkun, M, Johansson, PBV, George, WK,2008. Three component vectorial proper orthogonal decomposition of axisymmetric wake behind a disk[J]. AIAA Journal,46:1118-1134.
    Valera-Median A, Syred N, Griffiths A,2009. Characterization of Large Coherent Structures in a Swirl Burner under Combustion Conditions[C]. In 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. American Institute of Aeronautics and Astronautics,1801 Alexander Bell Drive, Suite 500, Reston, USA.
    Wang P, Bai XS,2005. Large eddy simulation of turbulent swirling flows in a dump combustor: a sensitivity study[J]. Int J Nume Meth Flu,47:99-120.
    Wang P, Bai XS, Wessman M et al,2004. Large eddy simulation and experimental studies of a confined turbulent swirling flow[J]. Phys Fluids,16:3306.
    Wang S, Rusak Z,1997a. The effect of slight viscosity on a near-critical swirling flow in a pipe[J]. Phys Fluids,9:1914-1927.
    Wang S, Rusak Z,1997b. The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown[J]. J Fluid Mech,340:177-223.
    Wang S, Rusak Z, Whiting CH,1998. The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown[J]. J Fluid Mech,366:211-237.
    Wang S, Yang V, Hsiao G et al,2007. Mongia. Large-eddy simulations of gas-turbine injector flow dynamics[J]. J Fluid Mech,583:99-122.
    Wall C, Pierce CD, Moin P,2002. A Semi-implicit method for resultion of acoustic waves in low Mach number flows. J Comput Phys,181:545-563.
    Wegner B, Maltsev A, Schneider C et al,2004. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments[J]. Int J Heat Fluid Flow,25:528-536.
    Weller HG, Tabor G, Jasak H et al,1998. A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Comput Phys,12:620-631.
    颜应文,赵坚行,张靖周,刘勇,2008.大涡模拟模型环形燃烧室污染特性,航空动力学报,23(5):1161-1167.
    Yang Y, Kaer SK,2012. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner[J]. Int J Heat Fluid Flow,36:47-57.
    张兆顺,崔桂香,许春晓,2008.湍流大涡数值模拟的理论和应用[M].清华大学出版社.
    郑韫哲,朱民,姜羲,2012.旋流预混燃烧室流动混合的大涡模拟[J].航空动力学报,27(1):33-40.
    Zhou LX, Hu LY, Wang F,2008. Large-eddy simulation of turbulent combustion using different combustion models. Fuel,87:3123-3131.
    朱旻明,2004.有限容积/Monte Carlo混合算法求解湍流燃烧的PDF方程[D]:中国科学技术大学.
    邹春,郑楚光,周力行,2002.条件矩模型模拟湍流扩散燃烧[J].力学学报,34(6):969-976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700