用户名: 密码: 验证码:
船舶减摇航迹舵的简捷鲁棒优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶减摇控制是船舶运动控制领域的一个重要研究方向,其中舵减摇控制系统是在传统航向自动舵基础上发展起来的一种特殊减摇装置,它能在确保航向保持控制满足性能要求的情况下取得较好的减摇率,并克服了减摇鳍的缺点,从而提高了舰船在恶劣海况条件下的适航性、安全性以及乘员舒适性。
     本文针对船舶减摇航迹保持控制系统进行了较为深入的研究,首先分析了船舶的欠驱动性和横摇对舵响应运动的非最小相位性,并进一步对船舶在大幅度动舵时首摇和横摇的耦合机制进行了定性分析和定量仿真研究,数值仿真试验结果显示在大舵角转向时,船舶的首摇和横摇运动存在较强的耦合作用,横摇幅度和首摇幅度存在较强的正相关性。
     在分析船舶首摇和横摇耦合机制的基础上,为了建立更加准确的响应型船舶运动模型,综合考虑横摇对舵响应运动的非最小相位性、振荡性和惯性横倾,提出一种横摇响应运动模型,其参数具有典型的物理意义且估值简单。在此基础上,以某海军多功能运输船的非线性运动模型的对舵响应输出为样本数据,应用一种自适应遗传算法对响应型船舶运动模型参数进行辨识,得到该船的首摇与横摇响应模型,仿真对比试验结果显示所得响应模型能够以较高的精度逼近样本数据,验证了响应型船舶运动模型及其参数辨识方法的有效性和可靠性。
     闭环增益成形算法以鲁棒控制理论作为理论基础,利用了混合灵敏度算法的结果,是一种简捷鲁棒控制算法。为了更好地满足船舶转向和航向保持对舵机设备的不同控制要求,基于一阶闭环增益成形对船舶转向操纵过程分3段进行设计航向控制器,按照每个阶段的典型特征设计对应的模糊隶属度函数,然后对3个控制器的输出进行T-S模糊综合。以某海军多功能运输船的非线性模型为控制对象,考虑了平均风和脉动风干扰后进行了仿真模拟试验。结果显示控制系统具有超调幅度小、响应速度快的动态控制特性,以及较好的航向保持性能。
     基于船舶横摇运动对波浪干扰的响应具有高频带通特性,在经典闭环增益成形算法的基础上提出一种频带干扰抑制控制算法,其控制器设计具有过程简单、参数物理意义明显以及频域解耦的特点。针对船舶横摇运动的非最小相位特性,采用其镜像映射设计非稳定过程的控制器。以某海军运输船的非线性数学模型为受控对象,分别设计了舵减摇控制器和航向保持控制器。考虑不同遭遇周期的海浪干扰并进行了仿真试验。结果显示该控制系统在船舶横摇自然频率附近频带内减摇效果显著,并具有良好转向和航向保持性能。
     为了消除舵机中存在的间隙非线性给船舶航向保持带来的不良影响,采用一阶和二阶闭环增益成形算法混合控制策略,充分发挥二阶算法的动态控制性能良好和一阶算法能消除静差的优势。以某海军运输船的非线性数学模型为控制对象进行了仿真实验,结果显示在恶劣海况下,控制器能够消除舵机间隙非线性带来的不良影响,混合控制策略能降低航向超调量且具有良好的鲁棒性能。
     为进一步实现鲁棒航向保持控制器的参数自适应调整和优化,将基于闭环增益成形算法的二阶航向保持控制器参数分成模型参数和干扰带宽参数两部分。针对由于航速等变化引起的模型参数摄动,提出在利用遗传算法实现响应型船舶运动模型参数在线辨识的前提下对控制器模型参数进行适应性调整,同时针对海况变化引起航向保持性能的下降,以航向保持误差最小和舵机损耗最小作为适应度函数优化干扰带宽参数,从而实现控制器模型参数的适应性调整与干扰带宽参数的在线优化。仿真结果表明,与固定参数控制器相比该控制系统具有更高的航向保持精度、较小的航向调节时间和超调幅度。该系统对于模型摄动和外界干扰具有较好的适应能力,具有明显的工程应用意义。
     针对减摇航迹保持控制中存在的多目标优化问题,应用非支配排序遗传算法提出了舵减摇与航迹保持控制的鲁棒协同优化方法。本研究首先在非线性船舶运动模型线性化的基础上提出了一种响应型简化线性模型,然后基于闭环增益成形算法建立了航迹保持与舵减摇的简捷鲁棒控制器,进而针对航迹跟踪精度、舵减摇率和舵机能耗3个目标函数,利用NSGA-II实现了控制系统参数的鲁棒协同优化。最后对某海军运输船的非线性模型进行了仿真试验,结果显示Pareto优化解集能充分反映多目标函数之间的制约性,性能最优解参数方案与经验参数方案相比能够实现更好的航迹跟踪精度和减摇效果。
Ship roll stabilization is a very important research trend in ship motion control field. Rudder roll stabilization (RRS) is a new ship roll stabilization device based on the traditional course autopilot system. The autopilot with RRS can achieve good roll reduction rate and satisfactory course-keeping performance, and overcome the disadvantages of stabilizing fins, and then improve the ship's seaworthiness, navigational safety and personnel comfort in rough sea conditions.
     The thesis has made an intensive study of track keeping autopilot with RRS. Firstly, analysis is done on the underactuation of ship motion and the non-minimum phase characteristic of roll responding, and the coupling mechanism between yaw and roll in case of big amplitude rudder is determinated qualitatively and quantitatively by simulations. The results indicate that the coupling mechanism between yaw and roll is obvious, and the amplitudes of yaw and roll have strong positive correlation property.
     Based on above analysis, to establish a more precise ship responding motion model, a roll responding model is brought up based on the full consideration of non-minimum phase, damped oscillation and inertial heeling of the roll responding to rudder motion. The model parameters have obvious physical meanings, which can be estimated simply according to the responding curve. The rudder responding outputs of a nonlinear multifunctional naval vessel model are set as the test data. The parameters of the ship responding motion model are identified by adaptive GA algorithm, and then the yaw and roll responding models are constructed. Simulation tests results indicate that the ship responding motion model can approach the test data with little error, which verifies the validity and reliability of the ship responding motion modeling.
     The closed-loop gain shaping algorithm is a simplified H∞robust control theory, which constructs the controller using four parameters with obvious engineering significance. To satisfy the different requirements of course-changing and course-keeping, a fuzzy ship steering control system is developed according to three turning stages based on closed-loop gain shaping algorithm. Three subsystems are integrated by T-S fuzzy model, whose fuzzy membership functions are designed for each controller in accordance with the features of three turning stages. The proposed methodology is verified by simulation tests on nonlinear model of a multifunctional navy ship considering wind disturbances. Simulation results indicate that the system has swifter responding, less overshoot and better course-keeping performance.
     Considering the frequency-domain characteristic of ship roll motion response to wave disturbance is high and band-pass, a new band interference suppression method is proposed based on the closed loop gain shaping algorithm. The controllers designed by proposed method are concise and decoupling with several obvious physical significance parameters. Because the ship roll motion is an unstable non-minimum phase system, a mirror-injection method is used to design controller. Both the RRS controller and course-keeping controller are designed on a nonlinear naval ship model. Simulation tests are done in the condition of wave disturbance with different periods. The results show the controllers achieve good disturbance rejection in the ship's natural roll frequency band, and stable performance of course keeping and changing.
     In order to eliminate the blight of the backlash nonlinearity in the rudder servo system to course-keeping for ships, the hybrid control strategy of the first and second order closed-loop gain shaping algorithms is used to make the best of its fine dynamic performance of the second order closed-loop gain shaping algorithm and the static error banishing of the first order closed-loop gain shaping algorithm. The simulation experiments are carried out on a nonlinear naval ship model. The simulation results show that the controller can eliminate the blight of the backlash nonlinearity under heavy sea state and reduce the peak overshoot with satisfactory robustness.
     In order to solve the uncertainty in ship motion control and optimize the robust course controllers, the parameters of a second order course controller based on closed-loop gain shaping algorithm is divided into model parameters and the disturbance bandwidth parameter. For the ship model perturbation, the parameters are adaptively adjusted when the responding ship model is identified online by genetic algorithm. Moreover, the bandwidth parameter is optimized to the minimize course keeping error and steering gear consumption under the influence of the sea state. The simulation tests indicate that the control system achieves higher course keeping precision, shorter setting time, smaller overshoot and better adaptivity to model perturbation and disturbance, which shows obvious significance of engineering.
     A concise robust collaborative optimization control system of track-keeping autopilot with RRS is brought up to solve the multi-objective optimization problem in it. Firstly, the linear responding equivalent model is advanced to replace the nonlinear ship model in controller design. The track-keeping and RRD controllers are designed based on closed loop gain shaping algorithm, and the parameters of above controller are collaboratively optimized by fast and elitist non-dominated sorting genetic algorithm (NSGA-II) with3objectives, such as the track-keeping accuracy, rudder roll reduction rate and the energy consumption of steering gear. Finally, simulation tests are done on non-linear model of a naval carrier. The results indicate that the Pareto optimal set can represent the conditionality among the objectives. And the simulations based on the optimum solution achieve better track-keeping accuracy and roll reduction rate than empirical parameters.
引文
[1]Tristan P. Ship Motion Control-Course Keeping and Roll Stabilization Using Rudder and Fins[M]. Springer,2005.
    [2]Cowley W E, Lambert T H. The Use of Rudder as a Roll Stabilizer[C]. Proceeding of SCSS'72, 2, Bath, UK,1972, (Ⅶ):C-1.
    [3]Carley J.B., Duberley. A Design considerations for optimum ship motion[C].3rd Ship Control System Symposium, Bath, UK,1972.
    [4]Carley J B. Feasibility Study of Steering and Stabilizing by Rudder[C]. Proceeding of SCSS'75, 2, The Hague, The Netherlands,1975:172-194.
    [5]Lloyd A R JM. Roll Stabilization by Rudder[C]. Proceeding of SCSS'75,2, The Hague, The Netherlands,1975:195-213.
    [6]Baitis A E. The Development and Evaluation of a Rudder Roll Stabilization System for the WHEC Hamilton Class[R]. Report DTNSRDC/SPD-0930-02, Bethesda, Md, USA,1980.
    [7]Baitis A E, Woolaver D A, Beck T A. Rudder Roll Stabilization for Coast Guards Cutters and Frigates[J]. Naval Engineers Journal,1983:267-282.
    [8]Van der Klugt P G M. Rudder Roll Stabilization. PhD Thesis[D]. Netherlands:Delft University of Technology, the,1987.
    [9]Van Amerongen J, Van der Klugt P G M, Van Nauta Lempke H R. Rudder Roll Stabilization for Ships[J]. Automatic AUT,1990(4):679-690.
    [10]Lauvdal T, Fossen T I. Rudder Roll Stabilization of Ship Subject to Input Rate Saturation Using a Gain Scheduled Control Law [C]. Proceeding of CAMS 98, Fukuoka, Japan,1998:121-126.
    [11]Blanke M, Haals P, Andreasen K K. Rudder Roll Damping Experience in Denmark [C]. Proceeding of CAMS 89, Lyngby, Denmark,1989:149-160.
    [12]Kallstrom C G. Control of Yaw and Roll by Rudder/Fin Stabilization System[C]. Proceeding of SCSS 81,2, Ottawa, Canada,1981:1-3.
    [13]Kallstrom C G, Schultz W L. An Integrated Rudder Control System for Roll Damping and Maintenance[C]. Proceeding of the 9thInternationalShip Control Systems Symposium(SCSS 90), Bethesda, MD,1990:3278-3296.
    [14]Blanke M, Christen A C. Rudder Roll Damping Autopilot Robustness to Sway-Yaw-Roll Couplings[C]. Proceeding of SCSS 93,VoIA, Ottawa, Canada.1993:93-119.
    [15]G.N. Roberts, A note on the applicability of rudder roll stabilization for ships[C], Proceedings of the American Control Conference, San Francisco, California,1993:2403-2407.
    [16]Stoustrup J, Niemann H H, Blanke M. A Multi-Objective H∞ Solution to the Rudder Roll Damping Problem. Proceeding of the 3rd IFAC Workshop on Control Applications in Marine Systems(CAMS 95), Trondheim, Norway,1995:238-246.
    [17]Yang C E, and Blanke M. A Robust Roll Damping Controller [C]. Proceeding of MCMC 97, Brijuni Croatia,1997:60-64.
    [18]Christiansen J. Rudder Roll Damping for Vesthysten[D]. Denmark, Aalborg University, Master Thesis.1995.
    [19]Blanke M. Uncertainty Models for Rudder Roll Damping Control Proceeding of the 13th World Congress of IFAC[C]. San Francisco, USA,1996:285-290.
    [20]Hearns G, Blanke M. Quantitative Analysis and Design of a Rudder Roll Damping Controller [C]. Proceeding of CAMS 98, Fukuoka, Japan,1998:127-132.
    [21]Yang C E, Blanke M. Rudder-Roll Damping Controller Design Using μ Synthesis [C]. Proceeding of CAMS 98, Fukuoka, Japan,1998.
    [22]Lauvdal T, Fossen T I. Nonlinear Rudder Roll Damping ofNon-Minimum Phase Ships Using Sliding Mode Control [C]. Proceeding of the European Control Conference, Brussels, Belgium,1997.
    [23]Oda H, Ohtsu K,Hotta T. Statistical Analysis and Design of Rudder Roll Stabilization System [C]. Proceeding of CAMS 95,Trondheim, Norway,1995:194-201.
    [24]Tiano A, Mort N, Derradji D A, et al. Rudder Roll Stabilization by Neural Network-Based Control Systems[C]. Proceeding of the 3rdConference on Marine Craft Maneuvering and Control (MCMC 94), Southampton, UK,1994:33-44.
    [25]Tiano A, Zhou W W. Application of Networks to Rudder Roll Stabilization. Proceeding of IFAC Workshop on Artificial Intelligence Control and Advanced Technology in Marine Automation, Genova, Italy,1992:109-110.
    [26]Zacharias V, Pfister G. An Adaptive Hierarchical Fuzzy Controller for Rudder roll Stabilization with an Integrated Course Controller[C]. The Proceeding of the 3 rd IFAC Workshop on Control Applications in Marine Systems(CAMS 95),Trondheim, Norway,1995:187-193.
    [27]H. Oda, K. Ohtsu, T. Hotta, Statistical analysis and design of a rudder roll stabilization system[J]. Control Engineering Practice,1996,4(3):351-358.
    [28]Blanke M, et al. Rudder Roll Damping in Coastal Region Sea Conditions [C]. Proceeding of MCMC 2000, Aalborg, Denmark,2000.45-50.
    [29]Perez T, Tzeng C Y, Goodwin G C. Model Predictive Rudder Roll Stabilization Control for Ships [C]. Proceeding of MCMC 2000,Aalborg,Denmark,2000:39-44.
    [30]Ching-Yaw Tzeng, Chung-Yi Wu and Yu-Lung Chu. A Sensitivity Function Approach to the Design of Rudder Roll Stabilization Controlled[J]. Journal of Marine Science and Technology,2001, (9)2:100-112.
    [31]Alarcin, F. Internal model control using neural network for ship roll stabilization[J]. Journal of Marine Science and Technology,2007,15(2):141-147.
    [32]P. Raspa, E. Torta, Ippoliti, M. Blanke, Longhi. Optimized Output Sensitivity Loop Shaping Controller for ship Rudder Roll Damping[C]. Preprints of the 18th IFAC World Congress, Milano, 2011:13660-13665.
    [33]Lozowicka, Tiano A, Lozowicki A. On a Ship Track Keeping Controller with Roll Damping Capacity [C]. Proceeding of CAMS 2001,Glasgow,UK,2001.
    [34]Nicolau V, Ceanga. Wave Spectrum Correction with the Ship s Speed and the Incidence Angle[C]. Proceeding of IFAC Conference CAMS 2001, Glasgow, UK,2001:331-336.
    [35]Nicolau V. The Influence of the Ship s Steering Machine over Yaw and Roll Motion[C].The Annals of "DUNAREA DEJOS"University of GALATI FASCICLEIII,2003:76-82.
    [36]G.C. Goodwin, T. Perez, Maria Seron and Ching Yaw Tzeng, On fundamental limitations for rudder roll stabilization of ships[C], Proceedings of the 39th IEEE Conference on Decision and Control,2000:4705-4710.
    [37]P. Crossland, The effect of roll-stabilization controllers on warship operational performance[J]. Control Engineering Practice,2003,11(4):423-431.
    [38]K Klaka, J Krokstad, M.R Renilson, Prediction and measurement of the roll motion of a sailing yacht at zero forward speed[J]. Experimental Thermal and Fluid Science,2003,27(5):611-617.
    [39]Fuat Alarcin, Kayhan Gulez, Rudder roll stabilization for fishing vessel using neural network approach[J]. Ocean Engineering,2007,34(13):1811-1817.
    [40]E.Lopez et al. Mathematical models of ships for maneuvering simulation and control[J]. Journal of Maritime Research,2004,1(2):5-20.
    [41]Tanguy H., Lebret G., Doucy O. Multi-objective optimization of PID and H∞ fin/rudder roll controllers[C].5th Conference on Maneuvering and Control of Marine Craft, Girona, Spain,2003.
    [42]Chereau V., Tanguy H., Lebret G. Interpolated versus polytic gain scheduling control laws for fin/rudder roll stabilisation of ships[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain,2005:22-28.
    [43]Roberts G.N.,Cournou V., Vinsonneau B., Burnham K.J. Parallel multi-model switched control for ship roll stabilization[C]. Proceedings of the Institution of Mechanical Engineers Part M:Journal of Engineering for the Maritime Environment,2006,220(2):53-65.
    [44]John F. O'Brien, Multi-path nonlinear dynamic compensation for rudder roll stabilization[J]. Control Engineering Practice,2009,17(12):1405-1414.
    [45]T.M. Ahmed, D.A. Hudson, P. Temarel, An investigation into parametric roll resonance in regular waves using a partly non-linear numerical model[J]. Ocean Engineering,2010,37(14-15):
    [46]Ali J. Koshkouei, Lukas Nowak, Stabilisation of ship roll motion via switched controllers[J]. Ocean Engineering,2012,49:66-75.
    [47]Ming-Chung Fang, Jhih-Hong Luo, On the track keeping and roll reduction of the ship in random waves using different sliding mode controllers[J]. Ocean Engineering,2007, 34(3-4):479-488.
    [48]Ming-Chung Fang, Young-Zoung Zhuo, Zi-Yi Lee, The application of the self-tuning neural network PID controller on the ship roll reduction in random waves[J]. Ocean Engineering,2010, 37(7):529-538.
    [49]Ming-Chung Fang, Yu-Hsien Lin, Bo-Jhe Wang, Applying the PD controller on the roll reduction and track keeping for the ship advancing in waves[J]. Ocean Engineering,2012,54(1): 13-25.
    [50]Tristan Perez, Mogens Blanke, Ship roll damping control, Annual Reviews in Control[J].2012, 36(1):129-147.
    [51]Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. Trondheim: WILEY,2012.
    [52]杨承恩.舵减摇鲁棒控制[D].大连:大连海事大学,1998.
    [53]杨承恩,贾欣乐,毕英君.一种用于舵减摇的多变量自动舵控制器[J].船舶工程,1998(5):38-41.
    [54]Rudder Roll Stabilization[EB/OL]. http://www.beckermarinesystems.com/03_ products_content/03_products_pdf/rrs_imagefolder.pdf.2006.06.05.
    [55]Rudder Roll Stabilization System for Korean Navy[EB/OL]. http://www. hme. nl/companies/ news, adp? Ne-wsID=761.2006.05.18.
    [56]Rotary Vane Steering Gear Systems[EB/OL]. http://pdf.nauticexpo.com/pdf/blohm-voss-industries/bvi-steering-gear-7-2012/30804-44607.html.2013.6.15.
    [57]缪国平.关于舵在尾斜浪和横浪中横摇衰减效果的理论研究[J].中国造船,1982(1):35-43.
    [58]缪国平,朱文蔚等.舵减摇的试验研究[J].中国造船,1991(1):39-46.
    [59]朱文蔚,缪国平等.舵减摇仿真研究[J].中国造船,1997(1):33-42.
    [60]胡启庸,汪石真,魏纳新.舵减横摇技术研究[J].中国造船,1996(5):25-31.
    [61]费乃振等.遥控自航船模舵减摇试验研究[J].中国造船,1998(2):49-52.
    [62]沈建清,陈家和,赖延辉.自适应准则的舵减横摇控制系统的仿真研究[J].海军工程学院学报,1994(6):44-51.
    [63]郑明辉,杨松林,王志东.一种采用模糊控制的舵减摇系统的仿真研究[J].船电技术,1997(1):17-20.
    [64]孔金彪,钱国梁.新型舵减摇系统[J].船舶性能研究,1992(66):73-84.
    [65]罗凯,李俊,许汉珍.舵减摇系统的滑动控制[J].交通部上海船舶运输科学研究所学报,1999(2):130-134.
    [66]陈建平,朱越健.舵减摇应用中液压舵机系统的改造[J].液压与传动,2000(1):16-18.
    [67]Yang Yansheng, Zhou Changjiu, Ren Junsheng. Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems[J]. Applied Soft Computing Journal, 2003,3(4):305-316.
    [68]Li Tieshan, Yang Yansheng, Hong Biguang, et al. A robust adaptive nonlinear control approach to ship straight-path tracking design.[C] Proceedings of the American Control Conference,2005,6: 4016-4021.
    [69]杨承恩,贾欣乐,毕英君.船舶舵减横摇及其鲁棒控制[M].大连,大连海事大学出版社,2001: 1-12.
    [70]杨承恩,贾欣乐,毕英君.一种用分析设计的舵减摇鲁棒控制器[J].中国造船,1999(4):28-34.
    [71]杨承恩,贾欣乐.舵减摇H。控制器设计[J].中国造船,1999(1):37-45.
    [72]杨承恩,贾欣乐,毕英君.几种舵减摇控制模式的比较[J].中国造船,1999,25(增刊):8-14.
    [73]杨承恩,田园,毕英君.船舶舵减摇技术的回顾与展望[J].世界海运,2002,25(4):4-7.
    [74]王先洲.船舶及潜艇操纵中的鲁棒控制研究[D].:华中科技大学,2006.
    [75]刘胜,于萍,方亮,翁震平.船舶舵减横摇H。鲁棒控制系统[J].中国造船,2007,03:35-43.
    [76]刘彦文,刘胜,王毅.基于H。的船舶多变量控制系统设计[J].自动化技术与应用,2008,12:1-4.
    [77]刘彦文,苗秋妍,刘胜等.舵/鲭联合减摇的H。控制方法[J].控制工程,2010,05:595-598.
    [78]张显库.基于Lyapunov稳定性的船舶航向保持非线性控制[J].西南交通大学学报,2010,45(1):140-143.
    [79]张鹏,冉景洪.舵面系统间隙非线性气动弹性研究[J].航空兵器,2010,(5):3-7.
    [80]涂建军,何汉林.反步鲁棒镇定及其在舵减横摇中的应用[J].华中科技大学学报(自然科学版),2012,07:19-23.
    [81]刘胜,宋佳,李高云.航向保持鲁棒最小二乘支持向量机控制[J].控制与决策,2010,25(4):551-556.
    [82]马亮.船舶舵鳍联合减摇控制策略研究[D].:大连海事大学,2012..
    [83]张丽坤.闭环增益成形算法及其在舵减摇系统中的应用[D].大连:大连海事大学,2003.
    [84]田园.臼适应神经模糊推理系统及其在船舶舵阻横摇中的应用[D].大连:大连海事大学,2004.
    [85]田园,马孜.自适应神经模糊推理系统在船舶舵阻横摇中的应用[A].中国自动化学会控制理论专业委员会.第二十四届中国控制会议论文集(下册)[C].中国自动化学会控制理论专业委员会:,2005:4.
    [86]田园,杨承恩.基于ANFIS的舵阻横摇系统[J].南京航空航天大学学报,2006,S1:112-115.
    [87]徐言民,汪彭胤.基于混合遗传算法优化的舵减摇模糊控制系统[J].武汉理工大学学报(交通科学与工程版),2003,27(2):264-266.
    [88]王先洲,许汉珍.遗传算法在舵减摇控制参数优化中的应用[J].华中科技大学学报(自然科学版),2003,31(2):111-113.
    [89]赵伟.基于混合遗传算法的船舶减横摇模糊神经网络控制研究[D].:哈尔滨工程大学,2007.
    [90]赵希人,唐慧妍,彭秀艳,等.利用航向舵减横摇控制研究[J].系统仿真学报,2005,17(1):174-177.
    [91]魏纳新,赵希人,顾民.基于斜舵的船舶运动姿态控制研究[J].船舶工程,2007,02:10-14.
    [92]汪洋,郭晨.建模参数不确定的欠驱动船舶路径跟踪控制[J].计算机工程与应用,2009,33:186-188+239.
    [93]许可建,刘维亭,朱志宇,张冰.船舶减摇控制方法综述[J].船舶,2004,05:14-17.
    [94]葛德宏,高启孝,陈永冰,李安.舰船舵阻摇技术的研究现状及展望[J].舰船科学技术,2007,04:22-26.
    [95]魏纳新,赵希人.舵减横摇技术实船应用研究[J].船舶工程,2007,04:1-4.
    [96]高扬.船舶舵减摇系统的研究[D].:哈尔滨工程大学,2008,.
    [97]董美华,马汝建,赵东.船舶减摇技术研究进展[J].济南大学学报(自然科学版),2008,02:183-188.
    [98]葛德宏,高启孝,李安,陈永冰,周岗.基于遭遇角决策的并行双模切换舵减摇控制[J].海军工程大学学报,2008,03:1-4+10.
    [99]黄昊.抗纵摇舵对船舶在波浪中减摇效果研究[D].:上海交通大学,2008.
    [100]李为,黄吴,缪国平,朱仁传.抗纵摇舵对船舶纵摇减摇效果影响的研究[J].水动力学研究与进展A辑.2008,05:585-591.
    [101]李纪端.基于VC的舵鳍联合简捷鲁棒控制原型机研制[D].大连海事大学,2011.
    [102]张显库,金一丞.基于信息对称的简捷控制[J].控制与决策,2007,11:1255-1258.
    [103]Zhang Xianku and Jia Xinle. Simplification of H∞ mixed sensitivity algorithm and its application[J], Automatic Control and Computer Sciences,2002,36 (3):28-33.
    [104]张显库,贾欣乐.用镜像映射方法求非稳定过程的鲁棒控制器[J].系统工程与电子技术,2000,04:10-12+41.
    [105]张显库.用镜像映射方法求纯不稳定过程的鲁棒控制器[J].系统工程与电子技术,2004,10:1466-1467.
    [106]张显库.具有对偶极点的不稳定过程的鲁棒控制[J].系统工程与电子技术,2008,05:898-900.
    [107]张显库,贾欣乐.基于闭环增益成形的鲁棒PID算法及在液位控制中的应用[J].中国造船,2000,03:37-41.
    [108]张显库,贾欣乐.求PID参数新方法[J].系统工程与电子技术,2000,22(8):4-6.
    [109]张显库,贾欣乐,毕英君,刘淑玲.鲁棒PID算法在船舶柴油机控制中的应用[J].自动化与仪器仪表,2001,02:10-12.
    [110]张显库,贾欣乐.用闭环增益成形算法的精馏塔鲁棒控制[J].系统工程与电子技术,2001,05:15-17+64.
    [I11]张显库,郭晨,杨盐生.两种非线性鲁棒PID控制器[J].黑龙江大学自然科学学报,2005,05:605-609.
    [112]张显库,杨盐生.不对称信息理论与非线性鲁棒控制算法[J].控制与决策,2005,11:43-46+52.
    [113]张显库.不对称信息理论在船舶运动控制中的应用[J].中国造船,2006,01:55-59.
    [114]张显库,郭晨,杜佳璐.船舶航向不对称信息理论与非线性逆推鲁棒控制算法[J].交通运输工程学报,2006,02:47-50.
    [115]张显库,宫永超,杨盐生.一种基于精确反馈线性化的非线性鲁棒控制器[J].应用基础与工程科学学报,2005,04:417-423.
    [116]王新屏,张显库,毕宁宁.精确反馈线性化中虚拟输出函数的求解与应用[J].应用基础与工程科学学报,2010,02:321-329.
    [117]王新屏,张显库,关巍.船舶舵鳍联合控制的综述[J].中国航海,2009,02:20-25+29.
    [118]王新屏.舵鳍联合系统的简捷非线性鲁棒控制[D].大连海事大学,2009.
    [119]关巍.基于Backstepping的船舶运动非线性自适应鲁棒控制[D].大连海事大学,2010.
    [120]张显库,郭晨,贾欣乐.闭环增益成形算法用于船舶非线性模型控制[J].系统工程与电子技术,2004,01:77-78.
    [121]王新屏,张显库.具有航向保持非线性的舵鳍非线性鲁棒控制[J].系统工程与电子技术,2008,08:1549-1552.
    [122]赵林坤,樊绍胜.基于闭环增益成形的风力发电转速鲁棒控制[A].中国自动化学会控制理论专业委员会(Technical Committee on Control Theory,Chinese Association of Automation)第二十七届中国控制会议论文集[C].中国自动化学会控制理论专业委员会(Technical Committee on Control Theory,Chinese Association of Automation):,2008:5.
    [123]赵林坤.变速恒频风力发电系统转速鲁棒控制方法研究[D]长沙理工大学,2009.
    [124]李述清,张胜修,张煜东,胡波.连续搅拌反应釜过程的闭环增茄成形PID控制器设计[J].计算机应用,2011,02:483-484.
    [125]李述清,詹济民,李明,杜国宁.鲁棒PID设计在涡扇发动机中的应用[J].计算机仿真,2011,03:106-109+141.
    [126]李满华,陆华才,孙驷洲.永磁同步直线电机直接进给系统鲁棒PID控制研究[J].电工电能新技术,2011,03:28-31.
    [127]刘毅男,李述清,张胜修,周帅伟.航空发动机闭环增益成形PID控制器设计研究[J].电光与控制,2011,11:74-76.
    [128]王震宇,吴汉松,吴瑶.基于输入状态线性化的船舶航迹系统鲁棒控制及仿真[J].船电技术,2012,08:47-49+53.
    [129]李述清,张胜修.一种简便状态反馈控制律设计及其应刖[J].控制工程,2010,S3:52-53+98.
    [130]翟欢欢.基于递推的船舶航向鲁棒控制器设计[D].哈尔滨工程大学,2010.
    [131]关巍,张显库,王新屏.基于积分逆推法的船舶航向非线性鲁棒控制[J].中国航海,2009,03:66-70.
    [132]张显库,肖惟楚,郭晨.船舶进出港低速航向保持[J].交通运输工程学报,2005,04:77-81.
    [133]张显库,关巍.大惯性船舶航向保持的改进简捷鲁棒控制[J].中国航海,2010,33(3):1-4.
    [134]王立军,张显库.基于鲁棒模糊控制的船舶转向及航向保持[J].中国航海,2011,02:1-4+29.
    [135]张显库,吕晓菲,郭晨,杨盐生.船舶航向保持的鲁棒神经网络控制[J].船舶力学,2006,05:54-58.
    [136]张显库.用航向偏差的正弦函数驱动的自动舵控制算法[J].中国航海,2011,34(1):1-4.
    [137]Zhang Xianku, Jin Yicheng and Yang Chengen, A kind of robust rudder roll-damping system[C]. ISSCAA, Harbin,2006:1151-1154.
    [138]张显库,张丽坤,杨承恩.闭环增益成形算法在舵减摇系统中的应用[J].中国航海,2004,02:22-26.
    [139]Wang Lijun, Zhang Xianku. Improved Closed-Loop Gain Shaping Algorithm and Its Application in RRS[J], ICIC Express Letters,2011,5(11):4215-4220.
    [140]张显库,杨盐生,郭晨.舵鳍联合减摇的鲁棒控制系统[J].交通运输工程学报,2006,04:71-74.
    [141]Zhang Xianku. New method on design of robust controller for unstable process[C]. Proc of Int. Conf. On Machine Learning and Cybernetics, Hong Kong,2007:643-648.
    [142]张显库.闭环增益成形算法的模型摄动[J].应用科技,2009,03:35-37+50.
    [143]张显库.船舶运动简捷鲁棒控制[M].北京:科学出版社,2012.
    [144]王立军.船舶大舵角转向时艏摇与横摇的耦合仿真研究[J].船舶与海洋工程,2013,01:6-11.
    [145]Perez, T. and Blanke, M. Mathematical Ship Modeling for Control Applications [R], Technical University of Denmark, Denmark,2002.
    [146]张显库.船舶控制系统[M].大连:大连海事大学出版社,2010.
    [147]吴秀恒.船舶操纵性与耐波性[M].人民交通出版社,1999.
    [148]王立军,毕修颖,王思思.一种FLC-PID混合控制自动舵研究[J].上海造船,2010,4:42-46.
    [149]张显库,杨佐昌,关巍等.基于船舶回转试验建立横摇响应型数学模型[J].中国航海,2009,32(4):77-80.
    [150]王立军,张显库.响应型船舶运动模型的建模与遗传算法辨识[J].中国航海,2013,02:33-37.
    [151]张显库,贾欣乐,刘川.响应型船舶运动数学模型的构造[J].大连海事大学学报,2004, 30(1):18-21.
    [152]惠小锁,张显库.“育鲲”轮测试数据处理及横摇建模的验证[J].测试技术学报,2010,24(2):152-156.
    [153]张显库,贾欣乐.船舶运动控制[M].北京:国防工业出版社,2006.
    [154]张显库,王新屏,朱璐.关于船舶Nomoto模型的进一步思考[J].航海技术,2008(2):2-4.
    [155]G.N Roberts. A note on the application of rudder roll stabilization for ships [C]. Proceedings of the American Control Conference, June 1998.
    [156]李辉,许艮,杨亚丽.应用遗传算法辨识天窗驱动电机关键设计参数[J].电机与控制学报,2011,15(3):1-6.
    [157]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems,1985,15 (1):116-132.
    [158]D. Sandaruwan, N. Kodikara, C. Keppitiyagama. A Six Degrees of Freedom Ship Simulation system for Maritime Education [J]. The International Journal on Advances in ICT for Emerging Regions,2010,3:34-47.
    [159]Satpati B, Bandyopadhyay I, Koley C, et al. Robust controller design for course changing/ course keeping control of a ship using PSO enabled automated quantitative feedback theory[C]. IEEE Region 10 Annual International Conference, Proceedings/TENCON,2008,2008 IEEE Region 10 Conference, TENCON 2008.
    [160]胡寿松.自动控制原理(第五版)[M].北京:科学出版社,2013.
    [161]郭禹.航海学[M].大连:大连海事大学出版社,1999.
    [162]张显库,金一丞.控制系统建模与数字仿真(第2版)[M].大连:大迮海事大学出版社,2013.
    [163]张显库,尹勇,金一丞等.航海模拟器中适应式鲁棒航迹保持算法[J].中国航海,2011,34(4):57-61.
    [164]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模[M].大连海事大学出版社,1999.
    [165]李成.超高层建筑在止弦风荷载作用下的横向振动[J].江南大学学报(自然科学版),2011,10(1):63-66.
    [166]Mcgookin, E.W., Murray-smith, D.J., Li, Y., Fossen, T.I. Ship steering control system optimization using genetic algorithms. Control Engineering Practice,2000,8 (4),429-443.
    [167]李海燕,马明旭,井元伟.基于非支配排序遗传算法的多学科鲁棒协同优化方法[J].控制理论与应用,2011,28(4):561-566.
    [168]DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Trans on Evolutionary Computation,2002,6(2):182-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700