用户名: 密码: 验证码:
连续梁桥地震损伤控制与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为交通枢纽工程,桥梁结构是生命线工程的重要一环,其建设造价高,工程作用重大,一旦发生地震破坏,将会给社会造成巨大的经济损失,且震后修复非常困难。连续梁桥作为一种重要的桥型,以其良好的力学性能和经济性能等优势,在全世界范围内被广泛采用。本文以连续梁桥为研究对象,对其进行了智能控制和数值模拟,系统的研究了连续梁桥结构体系在强震作用下的地震响应及损伤。本文的研究工作主要包括以下几个方面:
     (1)为了更好的研究连续梁桥结构在强震作用下的半主动控制及其数值模拟,本文首先基于控制装置和控制算法,详细的介绍了磁流变阻尼器的构造、性能、工作模式和出力模型;然后针对控制系统的状态方程、最优控制算法、主动控制力与状态空间之间的增益关系,对比分析了不同控制算法间的异同点,并给出了基于磁流变阻尼器常用的几种半主动控制算法及其物理意义。这为连续梁桥采用半主动控制方法的研究、应用及其数值模拟奠定了理论基础。
     (2)在连续梁桥的智能控制研究中,大多以控制梁的加速度和控制桥墩墩顶与梁间的相对位移为目的,而忽略了对桥墩损伤的控制。本文提出了一种改进的半主动控制策略,通过在限界Hrovat最优半主动控制算法中引入桥墩的损伤指数,使桥梁的地震反应和桥墩的损伤同时得到控制。本文以一设置了磁流变阻尼器的两跨连续梁桥为研究对象,采用MATLAB对其进行数值模拟分析,对所提出的半主动控制策略进行了多种工况下的验证。计算结果表明,采用考虑损伤的半主动控制策略,能够在较好控制桥梁地震反应的同时,有效减轻桥墩在强震过程中的损伤,使桥墩的损伤指数得到明显降低。
     (3)本文提出了一种多墩联合半主动控制算法,该控制算法在主动最优控制力的基础上,综合考虑连续梁桥各墩的损伤状态,通过调整阻尼器的目标出力,在主梁加速度和各桥墩墩顶与主梁间的相对位移得到控制的同时,使各桥墩的损伤指数能够平均分配。并以一设置了磁流变阻尼器的三跨连续梁桥为研究对象,采用MATLAB对其进行数值模拟分析,对所提出的半主动控制算法进行了多种工况下的验证。计算结果表明,采用多墩联合半主动控制算法,能够较好地控制桥梁的地震反应,同时使本应破坏最严重的桥墩在强震过程中的损伤指数得到有效的降低,达到各桥墩损伤平均分配的效果。
     (4)本文提出了一种在大型有限元软件ABAQUS中实现半主动控制的方法。传统控制理论的数值模拟方法大多是基于MATLAB数值程序实现的,一般需要一定的假设和简化,而在强震激励作用下,难以保证结构的地震响应始终处于线弹性状态,这将不可避免地导致结构响应分析存在一定的误差。采用本文所提出的数值模拟方法可以更好的考虑在使用MATLAB进行数值分析时结构的塑
     性响应。本文利用该方法分析了一个三跨连续梁桥的地震响应,并在有限元软件ABAQUS中成功实现了半主动控制的数值模拟。计算过程和结果表明,本文所提出的方法可实现对带有半主动控制装置的结构进行地震响应的精细化模拟,为结构智能振动控制研究提供一个更加有效的途径。
Bridges serve as transportation hubs, and are important parts of the lifelineengineering. They are of high construction cost and significant engineering meaning.The seismic damage of long span bridges causes great economic loses and greatrehabilitation difficulty. As an important bridge type,continuous beam bridge hasbeen widely adopted worldwide due to its mechanical and economic superiorities. Theresearch in this dissertation focuses on the intelligent control, seismic response anddamage of continuous beam bridge, in which the following aspects are included:
     (1) A full introduction of the structure, performance, operating modes and outputmodel of magnetorheological (MR) damper based on the control device and controlalgorithm is given at first for better research on the semi-active control and numericalsimulation of continuous beam bridge under the strong earthquake. Then, differencesbetween different control algorithms are compared based on the the equation of state,active control force and the gain relationship between them are summarized.Accordingly, several common semi-active control algorithms based themagnetorheological damper and their physical significance is detailedly expounded,which lays a theoretical foundation for the research on the semi-active control methodand numerical simulation of continuous beam bridge.
     (2) As for the intelligent control of the continuous beam bridge, most of thecurrent study is aimed at controlling the beam acceleration and the relativedisplacement between pier top and beam with the pier damage is ignored. Animproved semi-active control strategy is proposed against this problem. In thisstrategy, the piers damage parameter is introduced into algorithm of limiting Hrovatoptimal semi-active control, so as to control the seismic response of bridges and thepier’s damage at the same time. Several scenarios of a two-span continuous beambridge equipped with MR dampers is numerically simulated with MATLAB tovalidate the proposed semi-active control strategy. The results indicate that thismethod is well capable of controlling the seismic response and reducing the damageindex of the pier simultaneously.
     (3) A multi-pier joint semi-active control algorithm is proposed. On the basis ofactive optimal control and with the considerartion of the damage state of the continuous beam bridge pier, this control algorithm adjusts the target output ofdampers, in order to control the acceleration of the beam and the relative displacementbetween the top of each pier and the beam making the damage index of each pieraverage at the same time. A three-span continuous beam bridge equipped with MRdampers is numerically studied with MATLAB and several scenarios are simulated tovalidate the proposed semi-active control algorithm. The results indicate that it is wellcapable of controlling the seismic response and effectively reducing the damage indexof the pier which damage is most serious at the mean time, and achieving the effectthat the damage of each pier is evenly distributed to use this multi-pier jointsemi-active control algorithm.
     (4) A numerical method of the realization of semi-active control in commercialfinite element software ABAQUS is proposed. The traditional method of numericalsimulation on control theories are realized by programming using MATLAB, which isbased on some assumptions and simplification. However, it is difficult to ensure thatthe seismic response of the structure is always in linear elastic state during the processof hazard evolution under strong earthquake so that certain error during suchsimulation is inevitable. One of the main advantages of the method in this dissertationis that the structural plastic response can be taken into better consideration. Theseismic response of a bridge with three-span continuous girder is numerically studiedand the numerical simulation of semi-active control is successfully realized inABAQUS. The proposed method can be used to carry out the refined simulation ofthe seismic response of the structures with semi-active control set, which provides aneffective approach for the research of intelligent control.
引文
[1]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报,2000,33(3):1-6.
    [2]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [3]韩大建,马文田.我国现代悬索桥的特色创新与展望[J].华南理工大学学报,1999,7(11):57-67.
    [4]李杰.生命线工程抗震:基础理论与应用[M].北京:科学出版社,2005.
    [5] Earthquake Engineering Research Institute (EERI). The hyogo-ken NanbuEarthquake of January17,1995-preliminary reconnaissance report [R]. Rep. No.95-04, Oakland, CA,1995.
    [6] Earthquake Engineering Research Institute (EERI). Nothridge earthquakereconnaissance report, Vol.1[R]. Rep. No.95-03,1995, EERI, Oakland, Calif.
    [7] Earthquake Engineering Research Institute (EERI).1999Chi-Chi, Taiwanearthquake reconnaissance report [R]. Rep. No.01-04, EERI, Oakland, Calif,2001.
    [8] Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridge [M].USA, New York: John Wiley and Sons INC,1996.
    [9]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学,2003.
    [10]戴竞,凤懋润.我国预应力混凝土公路桥的发展与现状[J].土木工程学报,1997,30(3):3-10.
    [11]李坚.我国预应力混凝土连续梁桥的发展与工程实践[J].城市道桥与防洪,2001,3(1):21-27.
    [12]范立础.世界预应力混凝土桥梁发展现状[C].预应力混凝土连续梁桥和刚构桥学术会议论文集,1995.
    [13]姚玲森.桥梁工程[M].北京:人民交通出版社,2004.
    [14]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003.
    [15]宋泽冈.多跨不对称施工PC连续梁桥施工控制研究[D].湖南:长沙理工大学,2008.
    [16] Podolny W, Muller J M. Construction and Design of Prestressed ConcreteSegmental Bridges [M]. John Wiley&Sons, Inc.1994.
    [17]林桂萍.大跨径混凝土连续梁桥施工控制技术研究[D].四川:西南交通大学,2012.
    [18]雷俊卿.桥梁悬臂施工与设计[M].北京:人民交通出版社,2000.
    [19]张继尧,王昌将.悬臂浇筑预应力混凝土连续梁桥[M].北京:人民交通出版社,2004.
    [20]叶再军.多跨长联预应力混凝土连续梁桥施工控制研究[D].湖北:武汉理工大学,2006.
    [21]田杨.大跨长联预应力混凝土连续梁桥的施工控制研究[D].四川:西南交通大学,2006.
    [22]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [23]杜修力,韩强,李忠献等.5.12汶川地震中山区公路桥梁震害及启示[J].北京工业大学学报,2008,34(12):1270-1279.
    [24]伍敏.高层建筑结构地震损伤与倒塌分析[D].天津:天津大学,2012.
    [25]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [26]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2005.
    [27]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [28]周莉.城市桥梁地震碰撞分析及抗震性能评估[D].天津:天津大学,2010.
    [29]李正.复杂受力条件下混凝土损伤本构模型及钢筋混凝土桥梁地震损伤分析[D].天津:天津大学,2010.
    [30]刘金龙.地震作用下多塔斜拉桥失效模式控制研究[D].黑龙江:哈尔滨工业大学,2009.
    [31]谢礼立.2008年汶川特大地震的教训[J].中国工程科学,2009,11(6):28-36.
    [32]姜增国,邢尚青.连续梁桥的系统可靠度分析[J].交通科技,2004,(2):1-3.
    [33]吕颖钊.在役混凝土桥梁可靠性评估与寿命预测研究[D].陕西:长安大学,2006.
    [34]吕颖钊,宋一凡,贺拴海.基于等待梁法的在用梁桥承载力可靠度[J].长安大学学报,2004,24(4):46-50.
    [35] Yao J T P. Concept of Structural Control [J]. Journal of Structural Division,ASCE,98(7):1567-1574,1972.
    [36] Jann-Nan Yang. Application of Optimal Control Theory to Civil EngineeringStructures [J]. Journal of the Engineering Mechanics Division, ASCE,101(6):819-838,1975.
    [37]欧进萍.结构振动控制—主动、半主动与智能控制[M].北京:科学出版社,2003.
    [38]刘豹.现代控制理论[M].北京:机械工业出版社,2000.
    [39]邢德进,李忠献.形状记忆合金在土木工程中的研究与应用[J].材料导报,2006,20(8):62-64.
    [40] Dolce M, Cardone D, Marnetto R. Implementation and testing of passivecontrol devives based on shape memory alloys [J]. Earthquake Engineering andStructural Dynamics,2000,29(7):945-968.
    [41]邢德进,李忠献.基于SMA阻尼器的大跨桥梁地震位移控制分析[J].大连理工大学学报,2006,46(Suppl):94-98.
    [42] Ghobarah A, Ali H M. Seismic performance of highway bridges [J].Engineering Structures,1988,10(3):157-166.
    [43]李忠献,陈海泉,刘建涛.应用SMA复合橡胶支座的桥梁隔震[J].地震工程与工程振动,2002,22(2):143-148.
    [44] Sang-Hyo Kim,Ho-Seong Mha,Sang-Woo Lee.Effects ofbearing damage uponseismic behaviors ofa multi-span girder bridge [J]. Engineering Structures,2006,28:1071-1080.
    [45] Bryant G.Nielson, Reginald DesRoches.Seismic Performance Assessment ofSimply Supported and Continuous Multispan Concrete Girder Highway Bridges[J]. Journal of bridge Engineering(ASCE),2007,125:611-620.
    [46] Hwang, Jenn-shin, Tseng, Yi-Shane. Design formulations for supplementalviscous dampers to highway bridge [J]. Earthquake Engineering and StructuralDynamics,2005,34(13):1627-1642.
    [47]聂利英,李建中,范立础.滑动支座竖向动反力对桥梁结构动力性能的影响[J].同济大学学报,2002,30(11):1290-1294.
    [48]谢旭,高博青,吴善幸等.柔性橡胶支座上的桥梁结构地震碰撞响应分析[J].浙江大学学报(工学版),2004,38(6):725-730.
    [49]王常峰,陈兴冲,朱东生.活动支座摩擦力对桥梁抗震性能的影响参数分析[J].世界地震工程,2005,21(4):82-87.
    [50] Sahasrabudhe S S, Nagarajaiah S. Semi-active control of sliding iso latedbridges using MR dampers: an experimental and numerical study [J].EarthquskeEngineering and Structural D ynamics,2005,34(8):965-983.
    [51] Graesser E J, Cozzarelli F A. Shape memory alloys as new materials fforseismic isolation [J]. Journal of Engineering Mechanics,1991,117(11):2590-2608.
    [52] Lee, Tzu-Ying, Kawashima, Kazuhiko. Semiactive control of nonlinear isolatedbridges with time delay [J]. Journal of Structural Engineering,2007,133(2):235-241.
    [53]李忠献,周莉,岳福青.城市梁桥防碰撞粘滞阻尼器的效果分析与参数设计[J].地震工程与工程振动,2006,26(5):195-200.
    [54] Battaini M, Casciati F, Faravelli L. Fuzzy control of structural vibration.Anactive mass system driven by a fuzzy controller [J]. Earthquake Engineeringand Structural Dynamics,1998,27(11):1267-1276.
    [55] Faravelli L, Timothy Yao. Use of adaptive networks in fuzzy control of civilstructures [J]. Microcomputers in Civil Engineering,1996,11(1):67-76.
    [56] Li Zhong-Xian, Xu Long-He. Performance tests and hysteresis model ofMRF-04K damper [J]. Journal of Structural Engineering-ASCE,2005,131(8):1303-1306.
    [57] Ok, Seung-Yong, Kim, Dong-Seok, Park, Kwan-Soon, Koh, Hyun-Moo.Semi-active fuzzy control of cable-stayed bridges using magneto-rheologicaldampers [J]. Engineering Structures,2007,29(5):776-788.
    [58] Iemura, Hirokazu, Pradono, Mulyo Harris. Simple algorithm for semi-activeseismic response control of cable-stayed bridges [J]. Earthquake Engineeringand Structural Dynamics,2005,34(4-5):409-423.
    [59]李忠献,樊素英,史志利等.应用MRF-04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J].土木工程学报,2005,38(8):74-79.
    [60]王成博,史志利,李忠献.应用MR阻尼器的大跨度斜拉桥地震反应半主动控制研究[J].天津大学学报,2005,38(2):95-101.
    [61]李忠献,岳福青,周莉.城市隔震高架桥梁地震反应的半主动控制[J].土木工程学报,2007,40(1):42-48.
    [62] J.D. Carlson, B.F. Spencer, Jr. Magneto-rheological Fluid Daampers forSemi-Active Seismic Control. Proc.3rd Int. Conf. on Motion and Vib. Control,China, Japan, Vol.Ⅲ,1996:35-40.
    [63] B.F. Spencer, Jr., S.J. Dyke, M.K. Sain and J.D. Carlson. PhenomenologicalModel of a Magnetorheological Damper [J]. Engrg. Mech., ASCE, Vol.123,No.3,1997:230-238.
    [64] B.F. Spencer, Jr., J.D. Carlson, M.K. Sain and G. Yang. On the Current Status ofMagnetorheological Dampers: Seismic Protection of Full-Scale Structures. Proc.American Control Conf., Albuquerque, New Mexico,1997:458-462.
    [65] S.J. Dyke, B.F. Spencer, Jr., M.K. Sain and J.D. Carlson. Seismic ResponseReduction using Magnetorheological Dampers. Proc. IFAC World Congress,San Francisco, CA, June30-July5,1996
    [66] S.J. Dyke, B.F. Spencer, Jr., M.K. Sain and J.D. Carlson. Modeling and Controlof Magnetorheological Dampers for Seismic Response Reduction. Smart Mat.And Struct., Vol.5,1996:565-575.
    [67] S.J. Dyke, B.F. Spencer, Jr., M.K. Sain and J.D. Carlson. ExperimentalVerification of Semi-active Structural Control Strategies Using AccelerationFeedback. Proc.3rd Int. Conf. on Motion and Vib. Control, China, Japan, Vol.Ⅲ,1996:291-296.
    [68]关新春,李金海,欧进萍.不同规格磁流变阻尼器的磁学与力学特性[J].功能材料,2006,37(7):1169-1172.
    [69]李忠献,刘建军.螺旋凹槽结构磁流变阻尼器性能分析与试验[J].工程力学,2008,25(11):8-13.
    [70]沙凌峰,徐赵东,李爱群.磁流变阻尼器的设计与分析[J].工业建筑,2008,38(3):59-63.
    [71]瞿伟廉,刘嘉,涂建维等.500KN足尺磁流变液阻尼器设计的关键技术[J].地震工程与工程振动,2007,27(2):124-130.
    [72] Iemura, Hirokazu, Pradono, Mulyo Harris. Simple algorithm for semi-activeseismic response control of cable-stayed bridges [J]. Earthquake Engineeringand Structural Dynamics,2005,34(4-5):409-423.
    [73] Symams M D, Kelly S W. Fuzzy logic control of bridge structures usingintelligent semi-active seimic isolation systems [J]. Earthquake Engineering andStructural Dynamics,1999,28(1):37-60.
    [74]林伟,李忠献,倪一清.基于信赖域方法的MR阻尼器瞬时最优半主动控制[J].工程力学,2009,26(9):36-42.
    [75] Park K S, Jung H J, Spencer B F, etal. Hybrid control systems for seismicprotection of a phase. Ⅱ: benchmark cable-stayed bridge [J]. Journal ofStructural Control.2003,10(3-4):231-247.
    [76] He W L, Agrawal A K, Mahmoud K. Control of seismically excited cable-stayedbridge using resetting semiactive stiffness dampers [J]. Journal of BridgeEngineering.2001,6(6):376-384.
    [77] Kurata N, Kobori T, Takahashi M, Niwa N, Midorikawa H. Actual seismicresponse controlled building with semi-active damper system [J]. EarthquakeEngineering&Structural Dynamics.28(11):1427-1447,1999.
    [78]何亚东,黄金枝,何玉敖.智能磁流变(MR)阻尼器半主动控制的研究[J].振动工程学报,16(2):198-202,2003.
    [79] Ribakov Y, Gluck J. Selective combined control stiffness andmagnetorheological damping system in nonlinear multistorey structures [J]. TheStructural Design of Tall Buildings.11(3):171-195,2002.
    [80]董平,唐家祥. MR智能材料在结构振动控制中的应用[J].工程抗震,(2):15-18,23,2000.
    [81] Wu B, Wang Q Y, Shing P B, Ou J P. Equivalent force control method forgeneralized real-time substructure testing with implicit integration [J].Earthquake Engineering&Structural Dynamics.36(9):1127-1149,2007.
    [82] Ramallo J C, Yoshioka H, Spencer B F. A two-step identification technique forsemiactive control systems [J]. Structural Control and Health Monitoring.2004.11(4):273-289,2004.
    [83] Kurata N, Kobori T, Koshika N. Performance-based design with semi-activestructural control technique [J]. Earthquake Engineering&Structural Dynamics.31(2):445-458,2002.
    [84]闫明明,陈恩利,王军,王林.结构智能半主动控制系统仿真设计[J].系统仿真学报,19(21):4998-5001,5019,2007.
    [85]徐建功,王肇民,何玉敖.基于预测控制的结构振动半主动控制研究[J].世界地震工程,19(2):126-131,2003.
    [86]关新春.磁流变液及其智能结构减振驱动器的理论与试验研究[D].黑龙江:哈尔滨建筑大学,2000.
    [87]吴林林,磁流变阻尼器的构造设计与性能试验[D].天津:天津大学,2002.
    [88]张路,新型磁流变阻尼器及大跨度空间结构半主动控制体系研究[D].天津:天津大学,2010.
    [89] Stanway R, Sproston J L, Stevens N G. Non-linear Identification of anElectrorheological Vibration Damper [J]. IFAC Identification and SystemParameter Estimation,1985,195-200.
    [90] Stanway R, Sposton J L, Stevens N G. Non-linear Modeling of an Electro-heological Vibration Damper [J]. Journal of Electrostatics,1987,(20):167-184.
    [91] Shames I H, Cozzarelli F A. Elastic and inelastic Stress Analysis [J]. EnglewoodCliffs: Prentice Hall,1992:120-122.
    [92] Wen Y K. Method of Random Vibration of Hysteretic Systems [J]. Journal ofEngineering Mechanics Division,1976,102(2):249-263.
    [93] Spencer B F Jr, Dyke S J, Sain M K, et al. Phenomenological model of amagnetorheological damper [J]. Journal of Engineering Mechanics.1997,123(3):230-238.
    [94] Yang J N, Lin S, Jabbari F. H2-based control strategies for civil engineeringstructures [J]. Journal of Structural Control.2003.10(3-4):205-230.
    [95]张春巍欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析.世界地震工程,19(1):37-43,2003.
    [96]杨飏,欧进萍.基于瞬时最优算法的磁流变阻尼隔震结构半主动控制[J].世界地震工程,19(2):145-150,2003.
    [97]颜桂云,吴国荣,陈福全.高层建筑非线性地震反应的半主动H∞控制[J].振动与冲击,26(2):93-97,2007.
    [98] Scruggs J T, Taflanidis A A, Iwan W D. Non-linear stochastic controllers forsemiactive and regenerative systems with guaranteed quadratic performancebounds-Part1: State feedback control [J]. Structural Control and HealthMonitoring.14(8):1101-1120,2007.
    [99] Scruggs J T, Taflanidis A A, Iwan W D. Non-linear stochastic controllers forsemiactive and regenerative systems with guaranteed quadratic performancebounds-Part2: Output feedback control [J]. Structural Control and HealthMonitoring.14(8):1121-1137,2007.
    [100] Inaudi J A. Modulated Homogeneous Friction: A Semi-active Damping Strategy[J]. Earthquake Engineering&Structural Dynamics.26(3):361-376,1997.
    [101] Roberti V, Lamarque C H, Jezequel L. Control strategies for a slender structure[J]. Journal of Structural Control.2(1):25-48,1995.
    [102] Iemura H, Igarashi A, Kalantari A. Experimental verification and numericalstudies of an autonomous semi-active seismic control strategy [J]. StructuralControl and Health Monitoring.13(1):301-323,2006.
    [103]林伟,李忠献,倪一清.基于信赖域方法的MR阻尼器瞬时最优半主动控制[J].工程力学,2009,26(9):36-42.
    [104] Spencer Jr BF, Nagarajaiah S. State of the Art of Structural Control[J]. JournalOF Structural Engineering, ASCE,2003,129(7):845-856.
    [105]汪志昊,陈政清.基于磁流变阻尼器的隔震高架桥Skyhook控制[J].振动与冲击,2010,29(12):196-199.
    [106] Baris Erkus, Masato Abe and Yozo Fujino. Investigation of semi-active controlfor seismic protection of elevated highway bridges[J]. Engineering Structures,2002(24):281-293.
    [107]陈水生.高架桥梁地震响应磁流变阻尼器(MR)半主动控制[J].长安大学学报(自然科学版),2003,23(6):40-43.
    [108] Park Y J, Ang AH. Mechanistic seismic damage model for reinforcedconcrete[J]. Journal OF Structural Engineering,1985,111(4):740-757.
    [109]欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    [110]亓兴军,李小军.桥梁减震半主动控制算法比较与分析[J].振动与冲击,2006,25(6):71-75.
    [111]丁阳,张路,姚宇飞,李忠献. MR-J型磁流变阻尼器性能测试与阻尼力预估模型[J].天津大学学报,2009,42(9):763-769.
    [112]彭天波,李建中,范立础.双曲面球型减隔震支座的开发及应用[J].同济大学学报(自然科学版),2007,35(2):176-180
    [113] Sahasrabudhe S S, Nagarajaiah S. Semi-active control of sliding isolatedbridges using MR dampers: an experimental and numerical study[J]. EarthquakeEngineering and Structural Dynamics,2005,34(8):965-983
    [114] Loh C H, Wu L Y, Lin P Y. Displacement control of isolated structures withsemi-active control devices [J]. Journal of Structural Control,2003,10(2):77-100
    [115] Erkus B, Abe M, Fujino Y. Investigation of semi-active control for seismicprotection of elevated highway bridges[J]. Engineering Structures,2002,24(3):281-293
    [116]姜南.应用MR阻尼器的相邻建筑地震反应半主动控制理论与试验研究[D].天津:天津大学建筑工程学院,2008
    [117]姜南,李忠献,孙松建.相邻模型结构MR阻尼器半主动控制振动台试验[J].天津大学学报,2012,45(1):58-63
    [118]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,34(11):41-49
    [119]瞿伟廉.土木工程结构振动的智能控制[J].工程力学,2008,25(增刊Ⅱ):106-116.
    [120]徐晓龙孙炳楠.基于智能算法的高层建筑非线性地震反应的MR阻尼器半主动控制[J].工程力学,2008,25(1):209-216.
    [121]王正林王胜开陈国顺. Matlab/Simulink与控制系统仿真[M].北京:电子工业出版社,2005.
    [122]刘朝辉李德建.磁流变阻尼器的Bingham模型及其simulink仿真分析[J].科技信息(科学教研),17,2008.
    [123] Dyke S J, Spencer B F, Sain M K, et al. Experimental study of MR dampers forseismic protection[J]. Smart Materials and Structures,1998,7(5):693-703.
    [124]董胜利李小军亓兴军.简直梁桥减震半主动控制算法研究[J].地震工程与工程振动,2007,27(4):156-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700