用户名: 密码: 验证码:
复杂转子耦合系统有限元建模及其动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转子轴承系统的动力学行为预测中,除理论分析与实验研究外,常借助于传递矩阵法和有限单元法这两种数学建模方法。国内传递矩阵法的研究水平与应用现状已接近国际领先,但有限单元法在转子动力学中的运用尚显得相对薄弱,需要提升与发展。一方面,引入有限单元法对转子轴承系统建模具有大量优势:可以考虑陀螺力矩、转动惯量、横向剪切变形、重力项等因素的影响;其运动微分方程表达清晰规范,物理意义明确;可以方便地耦合周边环境中的结构和作用力,特别适用于复杂转子耦合系统,而这一点正是传递矩阵法的不足之处。尽管有限单元法建模往往编程困难、矩阵维数大且计算耗时,但现代计算机的软件与硬件能力减小了此不利因素。另一方面,相对简单转子系统,目前线性范围内的数值计算已较为成熟,国内外研究者相当的工作量转移到考察各种非线性因素的影响,其动力学方程多基于Jeffcott转子模型;而针对复杂转子耦合系统,即使线性分析计算也不够成熟,建模方法上仍有发展空间且值得探索。
     齿轮传动在机械领域广泛应用,多平行轴齿轮啮合转子系统是转子系统中重要且特殊的一类,齿轮副的存在使其动力学研究十分复杂。各平行轴转子相互耦合,系统动力学特性与非耦合的单轴转子不同,因此对各平行轴转子单独设计计算已无法满足高精度计算的要求。双转子系统在航空发动机中已有应用,内外转子反向旋转时,可抵消部分陀螺力矩,提高飞机机动性能。其转子系统由高压转子和低压转子两个子系统组成,相对单转子发动机,其结构复杂,振动特性的分析计算也更为困难。为研制先进航空发动机以提升战机的振动性能和确保可靠运行,进行双转子系统动力学研究具有重大战略意义,而在这方面国外公开的资料很少。以往国内学者常采用传递矩阵法研究双转子结构,但此方法很难计入飞行中空间运动的影响,而采用有限单元法建模可以克服这一困难。鉴于以上原因,本文以有限单元法为理论基础,重点研究多平行轴齿轮啮合转子系统和双转子系统的建模方法,通过数值计算分析了两类系统的动力特性,具体开展了以下工作:
     1)针对常见的单转子轴承系统,应用有限单元法并结合Rayleigh梁理论和Timoshenko梁理论,详细地推导出了其系统运动微分方程:在此基础上理论分析了系统特征值问题、不平衡响应和瞬态响应的求解方法;基于MATLAB平台编写程序实现转子系统的临界转速、不平衡响应和瞬态计算。
     2)参与了浙江省某企业某款径流式汽轮机在设计阶段的转子动力学分析,分别应用商业软件ANSYS和本文开发的程序对其进行静挠度、临界转速、振型及不平衡响应计算,两种途径得到的结果一致,验证了本文开发程序的正确与有效。同时,分析结果为径流式汽轮机转子结构的确定和轴承参数的选取提出了指导意见。
     3)以浙江省重大科技专项《大功率船用齿轮箱关键技术的研究与应用》(项目代号:2009C11062)为依托,对某款三平行轴的船用齿轮箱啮合转子传动系统进行固有特征分析,考察工作转速工况下的各传动级啮合频率与系统固有频率,并通过考察各阶固有频率随齿轮啮合刚度的变化来区分弯曲振动与扭转振动。在多平行轴齿轮啮合转子系统建模方法的研究上,首先推导了在压力线坐标系下齿轮啮合单元的运动微分方程,通过坐标变换得到在全局坐标下的运动微分方程,然后给出了齿轮啮合单元刚度矩阵集成到整体转子刚度矩阵的方法以最终形成啮合转子系统运动方程。
     4)在双转子系统建模方法的研究上,推导了中介轴承的力传递和内外转子的耦合过程,给出了双转子系统的动力学模型,并发展了针对双转子结构的传递矩阵法。结合数值案例,应用基于有限单元法的动力学模型和传递矩阵法模型计算双转子结构正反向旋转下的临界转速,两种方法得到的结果一致。考察了内外转子间的中介轴承刚度、转速比对系统振动特性的影响;结合直接积分法,对系统启动与停机的瞬态响应进行数值模拟。本文建立的模型为双转子系统动力学行为的预测研究提供了较为完整的基础,研究结果对于提高航空发动机转子系统的动力学性能,指导双转子系统的设计和使用具有重要的理论意义和工程应用价值。
The transfer matrix method and the finite element method are commonly applied in engineering analysis of rotor dynamics. The transfer matrix method is deeply investigated and extensively used in China, though the finite element method for rotor dynamics is insufficiently studied and immaturely developed in the domestic research. However, a finite element model of rotor-bearing systems is more powerful and advantageous, which can include the effects of gyroscopic moments, rotary inertia, transverse shear deformation and gravity, and the model features concise formula and straight forward physical meaning. This computational model can easily be coupled with the ambient structures and forces, which makes it particularly suitable for dealing with complex multi-rotor coupled systems. On the other hand, for simple rotor-bearing systems, the numerical computing is now developed maturely within the framework of linear theory, so both domestic and international scholars begin to focus their study on the influence of various nonlinear factors, which always besed on the Jeffcott rotor model. Meanwhile, for complex multi-rotor coupled systems, it is necessarily to achieve more development, modification and optimization for their computational modelings.
     Gears are widely used in the mechanical field. The multi-parallel axis gear rotor system is one kind of important and special rotor system, but the existence of gear pair makes the dynamics research complicated. The dynamic characteristics of parallel axis rotor mutual coupling system are different from those of non-coupling single axis rotor system, and therefore the separate design and calculation of each parallel axis rotor cannot meet the requirement of high-precision calculation. Dual rotor system has been applied in aviation engines. The counter-rotating of the inner and external rotor can offset some gyroscopic torque, and improve aircraft maneuverability. For these reasons, this paper took the finite element method as the theoretical theory, focused on multi-parallel shaft gear rotor system and dual rotor system modeling method, and analyzed the dynamic characteristics of these two systems by numerical calculation. Specific works were carried out as follows:
     1) For the common single rotor bearing system, the finite element method combined with Rayleigh beam theory and Timoshenko beam theory was used to deduce the differential equations of motion in detail; The system eigenvalue problem and the solving method for unbalance response and transient response were theoretically analyzed based on the above; A Program written on MATLAB realized the calculation of rotor system critical speed, unbalance response and transient.
     2) In the rotor dynamics analysis of a radial turbine in design stage, the commercial software ANSYS and the program developed in this paper were respectively used to carry on calculation of static deflection, critical speed, mode of vibration and unbalance response. The consistent results obtained from two ways verified that the program was correct and effective. At the same time, the analysis results were helpful to determine the radial turbine rotor structure and the selection of bearing parameters.
     3) This study originated from the Key Industrial Projects founded by Zhejiang Province Science and Technology Department:"Investigation and Application of the Key Technologies for Large Marine gearboxes"(2009C11062). The research analyzed the inherent characteristics of a three parallel axis gearbox meshing rotor transmission system for marine ships, inspected each transmission level's meshing frequency and the system's frequency, and distinguished between the flexural and torsional vibrations through the inspection of each level inherent frequencies varied by the gear meshing stiffness. In the research of multi parallel axis gear meshing rotor system modeling methods, this paper derived the differential equations of motion for gear meshing unit in the line pressure coordinate firstly, which could obtain the differential equations of motion in the global coordinate by coordinate transformation; Then, this paper found a way to integrate the stiffness matrix of gear meshing unit into the whole rotor stiffness, and obtained the meshing rotor motion equation finally.
     4) In the research on modeling method for rotor system, this paper derived the transfer of medium bearing force and the coupling process of internal and external rotor, provided the dynamic model of dual rotor system, and developed the transfer matrix method of dual rotor structure. In the numerical case, the critical speed of the dual rotor structure with normal and reverse rotation calculated by the finite element method dynamics model and the transfer matrix method model was agreed. This paper inspected the effects of the intermediate bearing's rigidity and speed ratio to the system's vibration characteristics; Combined with the direct integral method, the numerical simulations were carried on the system's start and stop transient response. The model established in this paper provided the relatively complete basis for the prediction of dual rotor system's dynamic behavior, and the results of this research have important theoretical significance and engineering application value for improving the dynamic performance of aero engine's rotor system and guiding the design of dual rotor system.
引文
[1]Muszynska, A.,2005. Rotordynamics[M]. Taylor & Francis Group, LLC, Boca Raton.
    [2]顾家柳,夏松波,张文,转子动力学研究的现状及展望[J].振动工程学报,1988,1(2):63-70.
    [3]曹树谦.高维复杂转子系统非线性动力学的若干现代问题研究[D].天津:天津大学,2003.
    [4]宣海军EORD支承转子动力学特性分析及其在超高速旋转机械中的应用研究[D].杭州:浙江大学,2004.
    [5]能源部,机电部,国产200MW机组低频振动分量普查工作报告,1990
    [6]Rankine, W.J.,1869. On the centrifugal force of rotating shafts[J]. Engineer,27:249.
    [7]Jeffcott, H.H.,1919. The lateral vibration of loaded shafts in the neighborhood of a whirling speed-The effect of want of balance[J]. Philosophical Magazine,37(6):304.
    [8]Rao, J.S.,1996. Rotor Dynamics[M]. New Age International, New Delhi.
    [9]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-8.
    [10]韩清凯,于涛,2010.故障转子系统的非线性振动分析与诊断方法.北京:科学出版社.
    [11]钟一谔, 何衍宗, 王正, 李方泽,1987.转子动力学.北京:清华大学出版社.
    [12]王树声.导弹技术词典-推进系统(上册)[M].宇航出版社,1987.
    [13]Shiyu Zhou, JianjunShi, Active balancing and vibration control of rotating machinery:a survey[J], The Shock and Vibration Digest,2001, pp.361-371.
    [14]童水光.转子轴承系统电磁阻尼器控制的研究[D].杭州:浙江大学,1991.
    [15]Duchemin M, et al. Dynamic behavior and stability of a rotor under base excitation [J]. Journal of Vibration and Acoustics, Transactions of the ASME,2006,125(5):576-585
    [16]E.J.Gunter, The Influence of Internal Friction on the Stability of High Speed Rotors, Journal of Engr. For Indus., Trans. ASME Nov.1967.
    [17]唐云冰,高德平,罗贵火,章璟璇.叶轮偏心引起的气流激振力对转子稳定性影响的分析[J].航空学报,2006,02:245-249.
    [18]F.F.Ehrich:Self-excited Vibration. Shock and Vibration Handbook,1976.
    [19]张直明,张言羊,谢友柏等,1984.滑动轴承的流体动力润滑理论.北京:高等教育出版社.
    [20]杨永锋,任兴民,徐斌.国外转子动力学研究综述[J].机械科学与技术,2011,10:1775-1780.
    [21]Rao, J.S.,2011. History of Rotating Machinery Dynamics[M]. Springer-Verlag, New York.
    [22]黄文虎,武新华,焦映厚,夏松波,陈照波.非线性转子动力学研究综述[J].振动工程学报,2000,04:5-17.
    [23]Clough, R.W.,1960. The Finite element method in plane stress analysis. Proceedings, American Society of Civil Engineers,2nd Conference on Electronic Computation, Pittsburgh, PA, p.345-378.
    [24]冯康,1965.基于变分原理的差分格式.应用数学与计算数学,2(4).
    [25]张峰,2005NX Nastran基础分析指南.北京:清华大学出版社.
    [26]徐芝伦,1974.弹性力学问题的有限单元法.北京:水利水电出版社.
    [27]郭乙木, 陶伟明, 庄茁,2003.线性与非线性有限元及其应用.北京:机械工业出版社.
    [28]张洪才, 何波,2011.有限元分析——ANSYS13.0从入门到实战.北京:机械工业出版社.
    [29]R.W. Clough, The Finite Element in plane stress analysis
    [30]虞烈,刘恒,轴承一转子系统动力学[M].西安:西安交通大学出版社,2001.
    [31]季文美,1985.机械振动.北京:科学出版社.
    [32]闻邦椿, 顾家柳, 夏松波, 王正,1999.高等转子动力学-理论、技术与应用.北京:机械工业出版社.
    [33]Ruhl R L, Booker J F. A finite element model for distributed parameter turbo rotor systems[J]. ASME Journal of Engineering for Industry,1972,94(1):126-132.
    [34]Nelson, H.D., Mc-Vaugh, J.M.,1976. The dynamics of rotor-bearing systems using finite elements. ASME Journal of Engineering for Industry,98(2):593-600.
    [35]M. Geradin, N. Kill,1984. A new approach to finite element modelling of flexible rotors, Engineering Computations, Vol.1 Iss:1, pp.52-64.
    [36]Yu, J., Craggs, A. Mioduchowski, A.1999. Modeling of shaft orbiting with 3-D solid finite elements, International Journal of Rotating Machinery, vol.5, p.53-65.
    [37]Wei Li, Yi Yang, Deren Sheng, Jianhong Chen,2011. A novel nonlinear model of rotor/bearing/seal system and numerical analysis, Mechanism and Machine Theory, Vol.46, Issue 5, pp.618-631.
    [38]成玫.转子-轴承-密封系统动力学特性研究[D].上海:上海交通大学,2009.
    [39]Nelson HD, Rotordynamic modeling and analysis procedures:a review[J], JSME, Inter. J. Series C,1998,41(1):1-12
    [40]李润方.齿轮系统动力学:振动、冲击、噪声[M].北京:科学出版社,1997:2-10.
    [41]S.S.Sutar, S.V.Kadam,2012. Dynamic analysis of geared rotor-a review[J], International Journal of Emerging Technology and Advanced Engineering, Vol.2, Issue 10, pp.422-424.
    [42]Kahraman, A, Ozguven, H. N., Houser, D. R., Zakrajsek, J. J, ynamic Analysis of Geared Rotors by Finite Elements, ASME Journal of Mechanical Design,114, pp,507-514,1992.
    [43]L. D. Mitchell, D. M. Mellen. Torsional-Lateral Couple In a Geared High-Speed Rotor System[J]. Journal of Mechanical Design,1975,97(12):95.
    [44]J. W. Lund. Critical speeds, stability and response of a geared train of rotors[J]. Journal of Mechanical Design,1978,100(3):535-538.
    [45]B. M. Hamad, A. Seireg. Simulation of Whirl Interaction In Pinion-Gear Systems Supported on Oil Film Bearings. J. Eng. Power,1980,102(2):508-510.
    [46]H. Iida, A. Tamura, K. Kikuch et al. Coupled torsional-flexural vibration of a shaft in a geared system of rotor[J]. Bulletin of the JSME,1980,23(186):2111-2117.
    [47]Neriya S. V., Bhat R. B., Sankar T. S. Efiect of coupled torsional-flexural vibration of a geared shaft system on dynamic tooth load. Shock Vib. Bull., Part 3,1984,54:67-75
    [48]S. V. Neriya, R. B. Bhat, T. S. Sankar. Coupled Torsional-Flexural Vibration of a Geared Shaft System Using Finite Element Method. The Shock and Vibration Bulletin,1985, Part 3,55: 13-25.
    [49]IWATSUBO T, ARII S, KAWAI R. Coupled lateral-torsional vibration of rotor system trained by gears. I:Analysis by transfer matrix method[J]. Bulletin of the JSME,1984,27(224):271-277.
    [50]Zuetbas Z., et al. Stability behavior of geared rotor systems regarding torsional lateral coupling. Rotat. Mach. Dyn.1989, DE-18(1):217-224
    [51]A. Kahraman, H. N. Ozguven, D. R. Houser, et al. Dynamic analysis of geared rotors by finite elements[J]. ASME, Journal of Mechanical Design,1992,114(3):507-514.
    [52]A. Kahraman. Effect of axial vibrations on the dynamics analysis of a helical gear pair[J]. Journal of Vibration and Acoustics-Transactions of the ASME,1993,115(1):33-39.
    [53]C. Chen, S. Natsiavas, H. D. Nelson. Coupled Lateral-Torsional Vibration of a Gear-pair System Supported by a Squeeze Film Damper. Journal of Sound and Vibration,1998,120(4):860-867.
    [54]J. S. Rao, J. R. Chang, T. N. Shiau. Coupled bending-torsion vibration of geared rotors[C]. USA, 1995:977-989.
    [55]J. S. Rao, T. N. Shiau, J. R. Chang. Theoretical Analysis of Lateral Response Due to Torsional Excitation of Geared Rotors. Mech. Mach. Theory,1998,33(6):761-783.
    [56]T. N. Shiau, J. S. Rao, J. R. Chang, et al. Dynamic Behavior of Geared Rotors[J]. Journal of Engineering for Gas Turbines and Power,1999,121:494-503.
    [57]S. T. Choi, S. Y. Mau. Dynamic Analysis of Geared Rotor Bearing System by the Transfer Matrix Method. ASME Journal of Mechanical Design, Dec 2001,123:562-568.
    [58]A. S. Lee, J. W. Ha, D. H. Choi. Coupled lateral and torsional vibration characteristics of a speed increasing geared rotor bearing system[J]. Journal of Sound and Vibration,2003,263(4):725-742.
    [59]M. A. Rao, J. Srinivas, V. R. Raju, et al. Coupled torsional-lateral vibration analysis of geared shaft systems using mode synthesis[J]. Journal of Sound and Vibration,2003,261:359-364.
    [60]M. A. Emery. The effects of torsional-lateral coupling on the dynamics of a gear coupled rotor[D]. USA:Texas A&M University,2005.
    [61]张辉等.齿轮驱动的转子系统弯扭拙合振动.全国第三界转子动力学学术讨论会论文集,青岛,1992:348-353.
    [62]马红.齿轮-轴承-转子系统弯扭耦合振动特性研究[D].西安:西安交通大学,1993.
    [63]张建云,丘大谋.齿轮刚度及制造误差对多平行轴转子系统动力学性能的影响[J].机械科学与技术,1996(5):95-100.
    [64]张建云.齿轮传动对多平行转子-轴承系统动力学特性影响的研究[D].西安:西安交通大学,1999.
    [65]余光伟.多平行轴齿轮-轴承-转子系统偶和振动的有限元分析[D].上海大学,1999:1-12.
    [66]夏伯乾,虞烈,谢友柏.齿轮-转子-轴承系统弯扭耦合振动模型研究[J].西安交通大学学报.1997,12:95-101.
    [67]夏伯乾.齿轮耦合多平行转子-轴承系统动力学及其应用研究[D].西安交通大学博士论文.1998:2-13.
    [68]夏伯乾,虞烈,谢友柏.DH型压缩机齿轮-轴承-转子系统动力学分析[J].振动工程学 报,2003,16(2):251-255.
    [69]李明,胡海岩.完整约束下齿轮啮合转子系统的弯扭耦合振动稳态响应[J].振动工程学报.2003,16(1):75-79.
    [70]Li M, Hu H Y, Jiang P L, et al. COUPLED AXIAL-LATERAL-TORSIONAL DYNAMICS OF A ROTOR-BEARING SYSTEM GEARED BY SPUR BEVEL GEARS[J]. Journal of sound and vibration,2002,254(3):427-446.
    [71]M. Li, H. Y. Hu. Dynamic Aanlysis of a Spiral Bevel-geared Rotor-bearing System. Journal of Sound and Vibration,2003,259(3):605-624.
    [72]窦唯,张楠,刘占生等.高速齿轮转子系统弯扭耦合振动研究[J].振动工程学报,2011,24(4):385-393.
    [73]吴青凤,王一军,游思坤等.齿轮传动转子系统动力学特性的动态子结构法[J].机械设计,2008,25(5):31-34.
    [74]车永强,徐静霞,钱小东,等.齿轮传动转子系统弯扭耦合振动研究[J].机电工程,2012,29(6):632-635.
    [75]蒋庆磊,吴大转,谭善光等.齿轮传动多转子耦合系统振动特性研究[J].振动工程学报,2010,23(3):254-259.
    [76]苏武会.齿轮祸合多转子系统动力学特性研究[D].西安:西北工业大学,2007.
    [77]魏超.大型船用齿轮箱系统动态性能分析方法研究[D].杭州:浙江大学,2013.
    [78]Hibner, D H, Dynamic response of viscous-damped multi-shaft jet engines. Journal of Aircraft, 1975,12(4):305-312.
    [79]Hibner, D H, Kirk R G., Buono D F. Analysis and experimental investigation of the stability of intershaft squeeze film dampers, part Ⅰ:Demonstration of instability. Journal of Mechanical Design,1977,99:47-52.
    [80]Hibner, D H, Bansal P N, Buono D F. Analysis and experimental investigation of the stability of intershaft squeeze film dampers, part Ⅱ:Control of instability. Journal of Mechanical Design, 1978,100:558-562.
    [81]Glasgow, D.A., Nelson, H.D.. Stability analysis of rotor-bearing systems using component mode synthesis. ASME Journal of Mechanical Design,102(2):352-359.
    [82]Gunter, E.J., Barrett, L.E., Li, D.F.. Unbalance response of a two spool gas turbine engine with squeeze film bearings. ASME,81-GT-219.
    [83]Rajan M, Nelson H D, Chen W J. Parameter Sensitivity in the Dynamics of Rotor-Bearing Systems[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1986, 108(2):197-206.
    [84]Kazao Y, Gunter E J. Dynamics of multi-spool gas turbines using the matrix transfer method-Applications [J]. International Journal of Turbo and Jet-Engines,1989,6(2):143-152.
    [85]Kazao Y, Gunter E J. Dynamics of multi-spool gas turbines using the matrix transfer method-Theory[J]. International Journal of Turbo and Jet-Engines,1989,6(2):153-161.
    [86]Gupta K D. Dynamic response of a dual rotor system by extended transfer matrix method. International Conference on Vibrations in Rotating Machinery,1988:599-605.
    [87]Gupta KD, Gupta K, Athre K. Stability analysis of dual rotor system by extended transfer matrix method. ASME,89-GT-194.
    [88]Gupta KD, Gupta K, Athre K. Unbalance response of a dual rotor system:theory and experiment. Journal of Vibration and Acoustics,1993,115:427-435.
    [89]Lalanne M, Ferraris G. Rotor Dynamics Prediction in Engineering[M], New York:Wiley,1990.
    [90]Delbez, A, Charlot,G., Ferraris, G., et al. Dynamic behavior of a counter-rotating multirotor air turbine starter. ASME,93-GT-59.
    [91]Ferraris G. Prediction of the dynamic behavior of non-symmetric coaxial co-rotating or counter-rotating rotors. Journal of sound and vibration,1996,195(4):649-666.
    [92]晏砺堂,李其汉.用动坐标计算带轴间阻尼器双转子系统的动力特性[J].航空动力学报,1986,01:1-6+87.
    [93]阮金彪,孙亦定,刘树春,刘荣强,张飞虎.带挤压油膜阻尼器柔性双转子系统的动力特性分析[J].机械工程师,1995,03:42-43.
    [94]晏砺堂,王德友.航空双转子发动机动静件碰摩振动特征研究.航空动力学报,1998,13(2):173-176.
    [95]刘献栋,李其汉,王德友.具有转静件碰摩故障双转子系统的动力学模型及其小波变换特征.航空动力学报,2000,15(2):187-190
    [96]魏海涛,范晓明.机动飞行中双转子系统的振动响应分析.中国航空学会第十届航空发动机结构强度与振动会议,安徽歙县,中国航空学会,2000:315-324.
    [97]赵明,魏德明,任平珍,李继庆,桂业英.模态综合法计算双转子临界转速研究.燃气涡轮试验与研究,2003(3):38-49.
    [98]庞辉,李育锡,王三民.基于Riccati变换的整体传递矩阵法计算双转子临界转速研究[J].机械科学与技术,2005,07:832-834+874.
    [99]邓四二,滕弘飞,周彦伟,孟瑾,张志华,马付建.滚动轴承-双转子系统动态性能分析[J].轴承,2006,04:1-4.
    [100]胡绚.反向旋转双转子系统动力学特性研究[D].南京:南京航空航天大学,2007.
    [101]胡绚,罗贵火,高德平.反向旋转双转子系统动力特性分析[J].现代机械,2007,4:45-49.
    [102]胡绚,罗贵火,高德平.反向旋转双转子稳态响应计算分析与试验[J].航空动力学报,2007,07:1044-1049.
    [103]韩军,高德平,胡绚,陈高杰.航空发动机双转子系统的拍振分析[J].航空学报,2007,06:1369-1373.
    [104]罗贵火,胡绚,杨喜关.反向旋转双转子系统非线性分析[J].振动工程学报,2009,03:268-273.
    [105]Hsiao-Wei Chiang D, Chih-Neng Hsu, et al. Turbomachinery Dual Rotor-Bearing System Analysis[C].2002, ASME TURBO EXPO 2002, GT-2002-30315.
    [106]Childs, D. W. Turbomachinery Rotordynamics:Phenomena, Modeling, and Analysis[M], New York:John Wiley&Sons,1993.
    [107]顾致平,刘永寿,2010.非线性转子系统中的传递矩阵技术.北京:科学出版社.
    [108]R.克拉夫, J.彭津,2006.结构动力学.第二版.北京:高等教育出版社.
    [109]哈尔滨工业大学理论力学教研室,2002.理论力学:上册.第五版.北京:高等教育出版社.
    [110]邱吉宝,向树红,张正平,2009.计算结构动力学.合肥:中国科学技术大学出版社.
    [111]Maurice Petyt. Introduction to finite element vibration analysis[M]. Cambridge University Press. 1990.
    [112]Nelson, H.D.,1980. A finite rotating shaft element using Timoshenko beam theory. ASME Journal of Mechanical Design,102(4):793-803.
    [113]Han, S.M., Benaroya, H., Wei, T.,1999. Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and Vibration,225(5):935-988.
    [114]宋兆基,徐流美等,2005. MATLAB 6.5在科学计算中的应用.北京:清华大学出版社.
    [115]张雄, 王天舒,2007.计算动力学.北京:清华大学出版社.
    [116]廖伯瑜,周新民,尹志宏等,2004.现代机械动力学及其工程应用:建模、分析、仿真、修改、控制、优化.北京:机械工业出版社.
    [117]张志涌,2003.精通MATLAB 6.5版,北京:北京航空航天大学出版社.
    [118]徐斌,高跃飞,余龙,2009MATLAB有限元结构动力学分析与工程应用.北京:清华大学出版社.
    [119]Bathe K J. Finite Element Procedures[M]. New Jersey:Prentice-Hall Inc,1996.
    [120]童水光,汪希萱.转子-轴承系统中电磁阻尼器理论研究.振动工程学报,1992,5(1):17-24.
    [121]王能超,2010.计算方法:算法设计及其MATLAB实现.武汉:华中科技大学出版社.
    [122]王勖成,邵敏,1997.有限单元法基本原理和数值方法.第2版.北京:清华大学出版社.
    [123]Newmark, N. M.1959. A method of computation for structural dynamics. Journal of Engineering Mechanics, ASCE,85 (EM3) 67-94.
    [124]康松,杨建明,胥建群,2000.汽轮机原理.北京:中国电力出版社.
    [125]ISO. ISO 6336-1-1996, Calculation of Load Capacity of Spur and Helical Gears-Part 1:Basic principles, introduction and general influence factors[S]. Geneva:ISO,1996.
    [126]余放,王明为.舰船减速齿轮装置的加工与设计[M].北京:国防工业出版社,2009:3-102.
    [127]CB/T 4199-2011,中华人民共和国船舶行业标准,船用中速柴油机齿轮箱系列[S].2011:1-5.
    [128]曾凡明,吴家明,庞之洋.舰船动力装置原理[M].北京:国防工业出版社,2005:106-108.
    [129]《航空发动机设计手册》总编委会,2000.航空发动机设计手册[M],第19册,转子动力学及整机振动.北京:航空工业出版社.
    [130]顾家柳,丁奎元,刘启洲等,1985.转子动力学[M].北京:国防工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700