用户名: 密码: 验证码:
介观尺度薄板成形流动应力和摩擦系数的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电子产品的微型化,介观尺度的微型、微细零件在电子工业和精密机械两大行业中的应用越来越广泛,其市场需求量逐年快速增长,介观尺度的成形技术也逐渐成为各国制造业大力发展的对象。但是,介观尺度成形面临的许多难题却严重阻碍着它的发展:在介观尺度成形中,流动应力的尺度效应现象在多种试验中均有观察到,但尚无有力的参数来刻画该尺度效应,现有理论模型的适用性和参数的正确性都不尽完备;摩擦尺度效应中,现有模型未能从微观本质上揭示其机理,模型的建立和计算也存在模糊区域;介观薄板成形尤其是拉深成形国内开展研究较少。因此,解决这些问题是提高介观尺度下成形的工艺水平和促进微细成形产业发展的当务之急。本文对国内外介观尺度成形的研究成果,尤其是关于流动应力、模具与工件间摩擦和薄板成形这几方面的内容进行了详细的研究,根据存在的问题制定了理论研究的方向,搭建了若个实验平台并开展了有针对性的试验研究。根据试验中的数据和微观形貌的特点,分别推导、建立了基于SAP的流动应力尺度效应模型和基于润滑区面积比的摩擦系数尺度效应理论模型。将具体的试验数据与模型计算数据进行了对比,验证了文中提出这两个尺度效应模型是正确、可行的。本课题设计了介观尺度的拉深模具并制备了介观圆筒拉深件,通过对拉深件质量的分析,验证了前文的理论和积累了一定的工艺参考。
     本文具体进行了以下几个方面的研究工作:
     1.分别对铜单个晶粒、铜单晶、铜多晶的拉伸应力-应变曲线进行了分析和拉伸试验;对压缩面力下的铜双晶不同晶界方向的晶粒、晶界变形进行了模拟和试验,结果表明:晶界处存在明显的应力集中和应力梯度现象;垂直晶界面存在周期性扭曲变形;垂直晶界双晶体中孔洞和裂纹分布位置更集中于滑移线上或临近滑移线某一侧。这些研究为后续的章节提供了基础数据。
     2.对介观尺度下不同厚度、不同宽度、不同晶粒尺寸的试样进行批量拉伸试验,结果表明:随着尺度的减小,流动应力呈现减小趋势,表现出了明显的尺度效应;分别讨论了厚度、宽度、晶粒尺寸对尺度效应的影响,构建了参数-表层面积比SAP来对尺度效应进行刻画;对产生流动应力尺度效应的机理进行了分析、揭示,推导了介观成形的流动应力-应变的理论模型即SAP相关的过渡式表面层模型,对模型的参数k取值进行了讨论,得出k值的取值范围;结合本文的试验数据,对该模型进行了计算验证。
     3.基于拉胀测试原理搭建了介观尺度下摩擦系数测试平台,对不同厚度、宽度、晶粒大小的试样分别进行润滑条件下和非润滑条件下摩擦系数的测定,结果表明:随着试样尺度的减小,其摩擦系数呈现增大趋势,表现出了明显的尺度效应。对已有的摩擦尺度效应的理论模型进行了研究、分析,指出了该模型和算法中“开口润滑包”的宽度并非是固定的,该区域对摩擦尺度效应的产生不起关键的作用。
     4.设计搭建了适合制备介观尺度试样摩擦面形貌的试验台,制备了摩擦面的形貌,对形貌进行了显微形貌观察。对摩擦面的润滑区进行了着重的观察和分析,引入了计算机图形学中图像识别原理,计算了润滑区的面积比例。根据各区域的面积变化对摩擦尺度效应产生的机理进行分析和揭示。结果表明:随着试样尺度的减小,其摩擦面上的润滑区面积比例逐渐减小造成了摩擦系数的增大。推导、建立了基于润滑区面积比的摩擦尺度效应理论模型,对理论模型的主要参数进行了讨论,并用实例进行验证计算。
     5.设计了适合本实验目的的介观尺度拉深模具,进行了拉深试验,对试验得到的微形圆筒进行高度、破裂方式和壁厚的观察与测试。根据前文的研究结论,对试验现象进行了分析,得到了拉深件的高度、壁厚、失效破裂的影响因素和方式。
     尽管本文就介观尺度成形的流动应力和摩擦以及拉深模具几方面行了大量的试验研究和理论分析,取得了一定成果,但仍存在一些不足:如摩擦模型中k的取值,若通过模拟或观察到这些过渡层不同的应力状态,将使得k值更加准确;介观拉深模具如果能涉及更多的环节将使研究更完备,这些在后续研究中应积极展开。
As the size decreasing of electronic products recently years, the meso scale parts arewidely used and increasing required in electronic and precise machinery industry. Therefore,the producing technology of meso scale parts turned into the vigorously developingtechnology in manufacturing industry of many countries. But problems in meso scale formingstopped the development of this technology. Firstly, the size effect was observed in manyexperiments but the power of parameter on expressing size effect was not enough and themodel applying, variable assignment, calculating method need to be improved. Secondly, thereason of microscopic level for friction size effect still has’t been found and there is manyvague defination of the model setting up and calculating. Thirdly, the research on meso sheetforming, especially deep drawing still has big blank. In order to improve the meso formingcapacity and micro parts industry, it is urgent to solve these problems.In this paper, manymeso forming reports, especially on stress-strain, friction and meso forming were detaillystudied and many experimens were carried out. The theory research and experiment platformwere set up based on these problems. The stress-strain model based on SAP and frictionmodel based on lubricated area were set up according to the micro morphology of specimens.Compared the model data with experiment, the accuracy of stress-strain and friction model ofsize effect were proved. Finally, the mould of meso scale was developed and micro tube wasdrawed, the quality of micro tube was analysed.
     Detaily, the following research was carried out in this paper:
     1. By the analysis and experiment,the stress-strain curver of copper single crystal,coppersingle crystal rod, polycrystalline copper were made out. The simulation and experimentabout the defomation of grain and grain boundary of polycrystalline copper in different grainboundary orientation were carried out. It shows there is obvious stress and stress gradientconcentrate on the grain boundary and periodical distorting exists in vertical grain boundary.The position of holes and cracks in polycrystalline copper with vertical grain boundaryconcentrate on or beside the slipping line. These conclusions will be the base data for the nextchapters.
     2. The stretching experiment of specimens with different thickness, width, crystal sizewas carried out. It shows that the stress decreased while specimen size decreased and thestress-strain size effect is obviously. The relationship between thickness, width, crystal sizeand size effect was discussed, the parameter SAP was set up. The reason and SAP relatedmodel for size effect of stress-strain were discussed and set up and the scope of k in this model was made out. Finally, according to the experimental data, the proving of this modelwas carried out.
     3. Based on bend-stretching test theory, the friction test bed was developed and themorphology in different thickness, width, crystal size, lubricating condition were tested. Itshows that the coefficient of friction increased while specimen size decreased and the frictionsize effect is obviously. According to the research and analysis about the present model aboutfriction size effect, a serious defect in this model was found.
     4. The meso scale friction area morphology preparing test bed was developed and thefriction area morphology was made. The friction area morphology, especially the lubricatedarea was observed. With the image recognization technology, the lubricated area proportionwas calculated and the reason of friction size effect was discussed. It shows that the lubricatedarea proportion decreased while specimen size decreased, which lead to the increasing offriction coefficient. Finally, the model was set up and main parameters in this model werediscussed. After calculating and comparing with a sample, the accuracy of the model wasproved.
     5. The meso scale deep drawing mould satisfied with the experiment’s aim of this paperwas developed. Afte deep drawing experiment, the height, broke mode and wall thickness ofthe tube were observed. According the conclusions of previous chapters, the factorsinfluncing the height, broke mode and wall thickness of the tube was discussed.
     Also lots of experiment and research about stess-strain, friction and deep drawing mouldin meso scale foming were carried out and some progresses were obtained, but still there areseveral aspects need to be improved. Firsly, if the stress of transitional layer could besimulated or observed, the accuracy of parameter k will be improved. Secondly, if the mesodeep drawing mould could involed several more processes, more conclusions will be reached.All these aspects should be considered during the next study.
引文
[1] TaiRan Hsu. MEMS和微系统设计与制造[M].北京:机械工业出版社,2004:2-10
    [2]孙友松,章争荣,刘明俊.跨入新世纪的塑性加工技术[J].锻压技术,2003,28(1):35-37
    [3] H G Craihead. Nanoelect romechanical Systems[J]. Science,2000,290(24):1532-1535
    [4] U. Engel, R. Eckstein. Microforming-from basic research to its realization[J]. Journal ofMaterials Processing Technology,2002,125:35-44
    [5] R. Wechsun, et al. Nexus Market Analysis for Microsystems III[J].Wicht TechnologieConsulting,2005:50-55
    [6] Linfa Peng, Fang Liu, Jun Ni, Xinmin Lai. Size effect in thin sheet metalforming and itselastic–plastic constitutive model[J]. Materials and Design,2007,28:1731-1736
    [7] Ruprecht R, Gietzelt T, M ü ller K, et al. Injection Molding of MicrostructuredComponents from Plastics, Metals and Ceramics[J]. Microsystem Technologys,2002,8:351-358
    [8] Howe R, Allen M. Microsystems Research and Development in J apan[J]. Site Reports,2002(1):14-18
    [9]王仲仁,苑世剑.塑性加工领域的新进展[J].金属成形工艺,2003,21(5):1-8
    [10]陈军伟编译.激光微加工技术纵览:基本原理、实际运用及未来展望[J].光机电信息,2001,11:15-21
    [11] Geiger M, Mebner A, Engel U, et al. Metal forming of microparts for electronics[J].Production Engineering,1994,2(1),15-18.
    [12] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel. Microforming[A],51stGeneral Assembly of CIRP[C].2001,50(2),445-462.
    [13] Tiesler N, Engel U. Microforming effects of miniaturization[J]. Metal Forming,2000,355-360
    [14]申昱,于沪平,阮雪榆.金属微成形技术.塑性工程学报,2003,10(6):5-6
    [15] Kocanda A, Pres T. The Effect of Miniaturisation on the Final Geometry of the BentProduct[A]. The English International Conference on Metal Forming[C],2000:1456-1461
    [16]苑伟政,李晓莹.微机械及微细加工技术[J].机械科学与技术,1997,16(3):503-508.
    [17]宋满仓,张巧丽,王敏杰.微成形领城的关健技术[J].中国塑料,2003,17(9):6-10
    [18] Frank Vollertsen, Zhenyu Hu, Hendrik Schulze Niehoffet al. State ofthe Art in MicroForming and Investigations in Micro drawing(3). Journal of Materials ProcessingTechnology,2004(151):70-79
    [19]雷鹍,丁水,王长丽,王国峰,张凯锋.金属微成形的工艺进展[J].锻造与冲压.2006,6:68-71
    [20]张凯锋等.面向微细制造的微成形技术(3).中国机械工程,2004(6):1121-1127
    [21] N. N. Market Analysis for Microsystems[J]. NEXUS Task Force,1998,10-15
    [22] U.Engel,R.Eekstein. Microforming-from basic research to its realization[J]. Journal ofMaterials Processing Technology,2002,125:35-44
    [23] T.Wanheim, N.Bay, A.S.Petersen, A theoretically determined model for friction in metalworking processing[J]. Wear28(1974):251-258.
    [24] R.Howe, M.Allen, et al. Microsystems Research and Development in Japan[J]. SiteReports,2002,(l):14-16
    [25] M.Geiger, M.Kleiner, R.Eckstein, et al.Microforming[A]. Annals of the CIRP[C],2001,50:445-462
    [26]申昱,于沪平,阮雪榆.微小尺度镦挤复合成形工艺研究[J].塑性工程学报,2006,13(1):58-61
    [27]罗均,谢少荣,龚振邦.面向MEMS的微细加工技术[J].电加工与模具,2001(5):1-6
    [28] Raulea L V, Goveart L E, Baaijens FP T. Grain and Specimen Size Effects in ProcessingMetal Sheets[A]. Proceedings of the International Conference on Technology ofPlasticity1999[C].1999:939-944
    [29] Geiger M, Mebner A, Engel U. Production of Microparts size Effects in Bulk MetalForming. Similarity Theory Production Engineering,1997,4(1):55-58
    [30]马宁.微细塑性成形中的尺度效应及计算机模拟技术研究[D].华中科技大学工学硕士学位论文,2005:5-8
    [31] U. Engel. Tribology in microforming[J]. Wear,2006,260:265-273
    [32] S.W. Beak, S.I. Oh, S.H. Rhim. Lubrication for micro forming of ultra thinmetal foil[J].Annals of the CIRP,2006,55:295-298
    [33] Engel U, Messner A, Tiesler N. Cold Forging of Microparts effect of Miniaturization onFriction[A]. The1st ESAFORM Conference on Materials Forming1998[C],1998:965-971
    [34] J. Jeon, A.N. Bramley. A friction model for microforming[J]. International jounalofAdvanced Manufacturing Technology.2007,33:125-129
    [35] K. Baskaran, R. Narayanasamy, S. Arunachalam. Effect of friction factor onbarrelling inthe elliptical shaped billets during cold upset foging[J]. Journal of Materials Science.2007,42:7630-7637
    [36] S.S. Han. The influence of tool geometry on friction behavior in sheet metalforming[J].Journal of Materials Processing Technology.1997,63:129-133
    [37] Yasunori Saotome, Hiroyuki Iwazaki. Superplastic backward microextrusion ofmicroparts for micro-electro-mechanical system[J]. Journal of Materials ProcessingTechnology,2001(119),307-311
    [38] U. Engel, E. Egerer. Basic Research on cold and warm forging of microparts[J]. KeyEngineering Materials,2003(233-236),449-456.
    [39] Messner A, Engel U, Kals R, Vollertsen. Size effect in the FE-simulation ofmicro-forming processes[J]. Journal of Materials Processing Technology,1994,45(1-4),371-376
    [40] Eckstein. R, Engel. U. Behavior of the grain structure in micro sheet metal working[A].8thInternational Conference on Metal Forming2000[C],2000Sept.,53-59.
    [41] Jenn-Terng Gau, Chris Principe, Jyhwen Wang. An experimental study on size effectson flow stress and formability of aluminm and brass for microforming[J]. Journal ofMaterials Processing Technology,2007,184(1-3),42-46.
    [42] Richelsen A B, van der Giessen E. Size effects in sheet drawing. SheMet2001[A],Proceedings of the9th International Conference on Sheet Metal2001[C],2001,263-274
    [43] J.F. Michel, P. Picart. Size effects on the constitutive behaviour for brass in sheet metalforming[J]. Journal of Materials Processing Technolgoy.2003,141(3):439-446
    [44] J.F. Michel, P. Picart. Modelling the constitutive behaviour of thin metal sheet usingstrain gradient theory[J]. Journal of Materials Processing Technology.2002,125-126:164-169
    [45] L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens. Size effects in theprocessing of thin metal sheets[J]. Journal of Materials Processing Technology.2001,115:44-48
    [46] T.A. Kals, R. Eckstein. Miniaturization in sheet metal forming[J]. Journal of MaterialsProcessing Technology.2000,103:95-101
    [47] L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens. Size effects in theprocessing of thin metal sheets[J]. Journal of Materials Processing Technology.2001,115(1):44-48
    [48] L.V. Raulea, L.E. Govaert, F.P.T. Baaijens. Grain and specimen size effects inprocessing metal sheets[A]. Proceedings of the6th ICTP1999[C].1999:19-24
    [49] M. Geiger, R. Eckstein. Microforming. Advanced Technology of Plasticity[A].Proceedings of the7th ICTP[C].2002,(1):327-338
    [50] M. Geiger, F. Vollertsen, R. Kals. Fundamentals on the manufacturing of sheet metalmicroparts[A]. Annals of the CIRP1996[C].1996,45(2):227-282
    [51] L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens. Size effects in theprocessing of thin metal sheets[A]. Journal of Materials Processing Technology2001[C].2001,115:44-48
    [52] J.T. Gau, C. Principe, J. Wang. An experimental study on size effects on flow stress andformability of aluminum and brass for microforming[J]. Journal of Materials ProcessingTechnology.2007,184:42-46
    [53] J.T. Gau, C. Principe, M. Yu. Springback behavior of brass in micro sheet forming[J].Journal of Materials Processing Technology.2007,191:7-10
    [54] T.A. Kals, R. Eckstein. Miniaturization in sheet metal forming[J]. Journal of MaterialsProcessing Technology.2000,103:95-101
    [55] R. Kals, F. Vollertsen, M. Geiger. Scaling effects in sheet metal forming[A].Proceedings of the4th SheMet[C],1996:65-75
    [56] J.F. Michel, P. Picart. Modelling the constitutive behaviour of thin metal sheet usingstrain gradient theory[J]. Journal of Materials Processing Technology.2002,125-126:164-169
    [57] J.F. Michel, P. Picart. Size effects on the constitutive behaviour for brass in sheet metalforming[J]. Journal of Materials Processing Technolgoy,141:439-446
    [58] F.H. Yeh, C.L. Li, Y.H. Lu. Study of thickness and grain size effects on materialbehavior in micro-forming[J]. Journal of Materials Processing Technology,2008(201):237-241
    [59]魏悦广.机械微型化所面临的科学难题—尺度效应.21世纪青年学者论坛.
    [60]魏悦广,王学峥,武晓雷,白以龙.微压痕尺度效应的理论和试验[J].中国科学(A辑),2000(11)1025-1032.
    [61] I. Manika, J. Maniks. Size effects in micro and nanoscale indentation[J]. Acta Materialia.2006,54:2049-2056
    [62]李凡国.微型H62黄铜圆柱体加热镦粗实验研究[D].南京航空航天大学工学工学硕士学位论文,2006:65-72
    [63] Y. Shen, H.P. Yu, X.Y. Ruan. Discussion and prediction on decreasing flow stress sizeeffect [J]. Transactions of Nonferrous Metals Society of China.2006(16):132-136
    [64] Y. Shen, H.P. Yu, X.Y. Ruan. Simulation study on fluctuant flow stress scale effect [J].Journal of Zhejiang University Science A.2006,7:1343-1350
    [65] Y. Wang, P.L. Dong, Z.Y. Xu, H. Yan, J.P. Wu, J.J. Wang. A constitutive model for thinsheet metal in micro-forming considering first order size effects[J]. Materials andDesign.2010,31:1010-1014
    [66] L.F. Peng, F. Liu, J. Ni, X.M. Lai. Size effect in thin sheet metal forming and itselastic-plastic constitutive model [J]. Materials and Design.2007,28:1731-1736
    [67] X.M. Lai, L.F. Peng, P. Hu, S.H. Lan, J. Ni. Material behavior modeling inmicro/meso-scale forming process with considering size/scale effects [J].Computational Materials Science.2008,43:1003-1009
    [68]郭斌,周健,单德彬,王慧敏.黄铜箔拉伸屈服强度的尺寸效应[J].金属学报.2008,44:419-422
    [69] D.B. Shan, C.J. Wang, B. Guo, X.W. Wang. Effect of thickness and grain size onmaterial behavior in micro-bending [J]. Transactions of Nonferrous Metals Society ofChina.2009,19:507-510
    [70]李雷,谢水生,米绪军,曹建国.金属微塑性成形中的尺度效应及数值模拟技术[J].科技导报.2008,26(1):76-79
    [71] Ming-Chin, Yi-An Chen, Chih-Hao, et al. Size-effects of micro-metal forming in brassand the development of micro-parts for mobile phone[A]. Proceeding of ICOMM,UIUC2006[C].2006:152-157
    [72] J. F. Michel, P. Picart. Size effects on the constitutive behaviour for brass in sheet metalforming[J]. Journal of Materials Processing Technology,2003,141,439-446.
    [73] Geiger M, Mebner A, Engel U. Production of microparts-size effects in bulk metalforming.similarity theory[J]. Production Engineering,1997,4(1),55-58.
    [74] T.A. Kals, R. Eckstein. Miniaturization in sheet metal forming[J]. Journal of MaterialsProcessing Technology.2000,103:95-101
    [75] Linfa Peng, Fang Liu, Xinmin Lai, Jun Ni. Size dependent constitutive modeling forthin stainless sheet in micro-forming process[A]. Proceedings of the7th ICFDM2006,International Conference on Frontiers of Design and Manufacturing2006[C],2006,289-294
    [76] Linfa Peng, Fang Liu, Jun Ni, Xinmin Lai. Size effects in thin sheet metal forming andits elastic–plastic constitutive model[J]. Material and Design,2007,28:1731-1736.
    [77]李经天,董湘怀等.微细塑性成形研究进展[J].塑性工程学报,2004,11(4):1-8.
    [78] Bammann DJ. An internal variable model of viscoplasticity[J]. International Journal ofEngineering Science,1984,22(8-10):1041-1053
    [79] Bammann DJ. On the perfect lattice-dislocated state interaction[J]. InternationalSymposium on Mechanical Behavior of Structured Media,1981:265-273
    [80] Zbib HM. A gradient-dependent flow theory of plasticity:Application to metal and soilinstabilities[J]. Applied Mechanics Reviews,1989,42(11):295-304
    [81] Aifantis EC. On the microstructural origin of certain inelastic models[J]. Journal ofEngineering Materials and Technology-Transactions of the ASME,1984,106(4):326-330
    [82] Aifantis EC. The Physics of Plastic deformation[J].Intemational Journal of Plastieity,1987,3(3):211-247
    [83]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999:48-58
    [84]陈少华,王自强.应变梯度理论进展[J].力学进展,2003,33(2):207-216
    [85] Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects inplasticity[J]. J. Mech. Phys. Solids,1993,41,1825-1857.
    [86] Fleck N A, Muller G M, Ashby M E, et al. Strain gradient plasticity: theory and study[J].Acta Metal Mater,1994,42,475-487.
    [87] Fleck N A, Hutchinson J W. Strain gradient plasticity[J]. Advanced Applied Mechanics,1997(33):295-361.
    [88] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-I[J].Mech.Phys. Solids,1999(47):239-263.
    [89] J. F. Michel, P. Picart. Modelling the constitutive behaviour of thin metal sheet usingstrain gradient theory[J]. Journal of Materials Processing Technology,2002:125-126,164-169.
    [90] D. Okumura, Y. Higashi, K. Sumida, et al. A homogenization theory of strain gradientsingle crystal plasticity and its finite element discretization[J]. International Journal ofPlasticity,2007,23(7):1148-1166.
    [91]陶彩军,王自强,陈少华.考虑压头尖端曲率半径和应变梯度效应的微压痕有限元分析[J].力学学报,2004,36(6):34-41.
    [92]陈少华,王自强.应变梯度理论进展[J].力学进展,2003,33(2):207-216.
    [93]黄克智,丘信明,姜汉卿.应变梯度理论的新进展(一)-偶应力理论与SG理论[J].机械强度,1999,21(2):81-87.
    [94]黄克智,丘信明,姜汉卿.应变梯度理论的新进展(二)-基于微观机制的MSG应变梯度塑性理论[J].机械强度,1999,21(3):161-165.
    [95] E.C.Aifantis. Strain gradient interpretation of size effects[J]. International Journal ofFracture,1999(95):299-314.
    [96] U.Engel, A.Messner, N.Tiesler,Cold forging of microparts-effect ofminiaturization onfriction[A].Proceedings of the1st ESAFORM Conferenceon Materials Forming[C],1998:77-80.
    [97]圆环挤压试验[12] N.Tiesler, U.Engel, M.Geiger,Basic Research on Cold Forming ofMicroparts,Advanced Technology of Plasticity[A],Proceedings of the7th ICTP[C],2002:379-384.
    [98] Tan X, Bay N, Zhang W. On Parameters AffectionMetal Flow and Friction in theDouble-Cup Extrusion Test. Annals of the CIRP [J],1997,46(1):311-314
    [99] Messner A, Engel U, Kals R, Vollertsen. Size effect in the FE-simulation ofmicro-forming processes[J]. Journal of Materials Processing Technology,1994,45(1-4):371-376.
    [100] Ghobrial M L, Lee J Y, Altan A. Factors affecting the double cup extrusion test forevaluation of friction in cold and warm forging[A]. Annals of the CIRP[C],1993:347-351.
    [101] Tan X, Bay N, Zhang W. On parameters affection metal flow and friction in the double–cup extrusion test[A]. Annals of the CIRP[C],1997:311-314.
    [102] F. Vollertsen, H. Schulze Niehoff, Z. Hu. State of the art in micro forming[J].International Journal of Machine Tools&Manufacture,2006(46):1172-1179.
    [103] N. Takatsuji, K. Dohda, T. Makino, T. Yoshimura. Friction behavior in aluminummicro-extrusion[A]. Proceedings of the International Conference on Tribology inManufacturing Processes2007[C].2007:157-162
    [104] N. Krishnan, J. Cao, K. Dohda. Study of the size effects on friction conditions inmicroextrusion-part1: mciro extrusion experiments and analysis[J]. Journal ofManufacturing Science and Engineering.2007,129:669-676
    [105] L.F. Mori, N. Krishnan, J. Cao, H.D. Espinosa. Study of the size effects and frictionconditions in microextrusion-part2: size effect in dynamic friction for brass-steelpairs[J]. Journal of Manufacturing Science and Engineering.2007,129:677-689
    [106] Y. Saotome, K. Yasuda, H. Kaga. Microdeep drawability of very thin sheetsteels[J].Journal of Materials Processing Technology.2001,113:641-647
    [107] Z. Hu, H.S. Niehoff, F. Vollertsen. Tribological size effects in deep drawing[A].Proceedings of the2nd International Conference on New Forming Technology[C].2007:573-581
    [108] http://www.seki-corp.co.jp/
    [109] Z. Hu, F. Vollertsen. Friction test for deep drawing with respect to size-effectrs[A].Proceedings of the1st International Conference on New Forming Technology[C].2004:153-158
    [110] F. Vollertsen, Z. Hu. Tribology size effects in sheet metal forming measured by a stripdrawing test[A]. CIRP Annals-Manufacturing Technology[C].2006,55:291-294
    [111] Z. Hu, F. Vollertsen. Modelling of friction with respect to size effects[J]. InternationalJournal of Material Forming.2008, S1:1231-1234
    [112]赵亚西. H62黄铜微挤压成形及其尺寸效应研究[D].南京航空航天大学工学硕士学位论文.2007:20-45
    [113]席庆彪.微拉深工艺的实验研究及计算机模拟[D].上海交通大学工学硕士学位论文,2007:88-97
    [114] N.Tiesler,Microforming-size effects in friction and their influence onextrusionprocesses[J],WIRE(1),2002:34-38.
    [115] N.Tiesler,U.Engel,M.Geiger,Forming of microparts-effects of miniaturization onfriction[A], Proceedings of6th ICTP[C],1999:889-894
    [116] L.F. Peng, X.M. Lai, H.J. Lee, J.H. Song, J. Ni. Friction behavior modeling and analysisin micro/meso scale metal forming process[J]. Materials and Design.2010,31:1953-1961
    [117] U. Engel. Tribology in microforming[J]. Wear.2006,260:265-273
    [118] K. YOshida, M. Maejima. Optimum Drawing Conditions for Shaped Microwire of100-400um Size[A]. Proceeding of the8th ICTP[C],2005:156-173
    [119] Y. Saotome, T. Okamoto. An in-situ incremental microforming system forthree-dimensional shell structures of foil materials[J]. Journal of Materials ProcessingTechnology,2001,113:636-640
    [120] S. Tanaka, T. Nakamura, K. Hayakawa. Miniature incremental forming ofmillimeter-sized thin sheet structures[A]. Proceedings of the7th ICTP[C],2002:403-408
    [121] Saotome Yasunori, Iwazaki Hiroyuki. Superlastic Backward Microext rusion ofMicropart s for Micro-electro mechanical Systems[J]. Journal of Materials ProcessingTechnology,2001,119(1-3):307-311
    [122] Yasunori Saotome, Kaname Yasuda, Hiroshi Kaga. Microdeep drawability of very thinsheet steels[J]. Journal of Materials Processing Technology,2001,113:641-647.
    [123] Justinger, G. Hirt, N. Witulski. Analysis of cup geometry and temperature conditions inthe miniaturized deep drawing process[A]. Proceedings of the8th ICTP[C],2005:297-303
    [124] Erhardt R, Schepp F, Shmoeckel D. Microforming with local part heating by laserirradiation in transparent tools[A]. The7th International Conference on Sheet Metal[C],1999:676-681
    [125] K. Manabe, T. Shimizu, H. Koyama, M. Yang, K. Ito. Validation of FE simulation basedon surface roughness model in micro-deep drawing[J]. Journal of Materials ProcessingTechnology.2008,204:89-93
    [126] X Peng, R Balendra, Y Qin, et al. FE simulation of laser-aided stamping[J]. Journal ofMaterials Processing Technology,2004,145(2):256-263.
    [127] X. Peng, Y. Qin, R. Balendra. Analysis of laser-heating methods for micro-partsstamping applications[J].. Journal of Materials Processing Technology,2004,150(1-2):84-91.
    [128] X. Peng, Y. Qin, R. Balendra. A numerical investigation to the strategies of the localisedheating for micro-part stamping[J]. International Journal of Mechanical Sciences,2007,49(3):379-391.
    [129] R.Erhardt, F.Schepp, D.Schmoeckel,Micro forming with local part heating by laserirradiation in transparent tools[A]. Proceedings of the SheMet[C],1999:497-504
    [130] Amit Jaisingh, K. Narasimhan, P.P. Date, et al. Sensitivity analysis of a deep drawingprocess for miniaturized products[J]. Journal of Materials Processing Technology,2004,147:321–327.
    [131] Kim, G.Y., Mayor, R., Kim, H., et al. An Experimental Investigation on Semi-solidForming of Micro/meso-scale Features[J]. Journal of Manufacturing Science andEngineering,2007,129:246-251
    [132] Saotome Y, Iwazaki H, Superplastic extrusion of microgear shaft of10μm in module[J].Microsystem Technologies,4,(6):126-129
    [133] Manish Kamala, J. Shang, V. Cheng, et al. Agile manufacturing of a micro-embossedcase by a two-step electromagnetic forming process[J]. Journal of Materials ProcessingTechnology,2007,190:41-50
    [134] Kim G.Y, Koc M., Mayor R., et al. Modeling of the semi-solid material behavior andanalysis of micro/meso-scale feature forming[J]. Journal of Manufacturing Science andEngineering,2007,129:237-245
    [135] X.H. Dong, N. Ma. A study on size effects on process design of micro deep drawing[A].Proceedings of the8th ICTP[C],2005:287-291
    [136]马宁,董湘怀.第2类尺度效应对微拉深成形的影响[J].塑性工程学报.2007,14:115-119
    [137]席庆标,董湘怀.微拉深成形工艺及模具设计研究[J].锻压技术.2007,32:57-61
    [138]席庆标.微拉深工艺的实验研究及计算机模拟[J].上海交通大学,2007
    [139] L.F. Peng, X.M. Lai, H.J. Lee, J.H. Song, J. Ni. Friction behavior modeling and analysisin micro/meso scale metal forming process[J]. Materials and Design.2010,31:1953-1961
    [140]彭林法.微/介观尺度下薄板成形建模分析与实验研究[D].上海交通大学工学博士学位论文,2007:60-98
    [141]刘会霞等.金属箔板激光动态微拉深成形技术[J].光电子激光.2009,20:363-365
    [142]童敏杰.电沉积法制备细晶铜的微成形性能[D].哈尔滨工业大学工学硕士学位论文,2006:25-45
    [143]张凯峰等.电沉积纳米镍薄板的超塑微拉深性能[J].中国机械工程.2007,18:983-987
    [144]范钦珊等材料力学[M],北京:清华大学出版社,2008:25-40
    [145] W.N. Sharpe, K.T. Tumer, R.L. Edwards. Polysilicon tensile testing with electrostaticgripping, microelectromechanical structures for materials research[J]. MaterialsResearch Society.1998,518:191-196
    [146] W.N. Sharpe, S. Brown, G.C. Johnson. Round-robin tests of modulus and strength ofpolysilicon, microelectromechanical structures for materials research[J]. MaterialsResearch Society.1998,518:57-65
    [147] E. Mazza, J. Dual. Mechanical behavior μm-sized single crystal silicon structure withsharp notches[J].. Journal of the Mechanics and Physics of Solids.1999,47:1795-1821
    [148] H.D. Espinosa, B.C. Prorok, M. Fischer. A methodology for determining mechanicalproperties freestanding thin films and MEMS materials[J]. Journal of the Mechanicsand Physics of Solids.2003,51:47-67
    [149] H. Ogawa, O. Tabato, J. Sakata, Y. Taga. Specimen size effect on tension strength ofsurface micromachined polycrystalline silicon thin film[J]. J. ofMicroelectronmechanical System.1998,7(1):106-113
    [150] M.A. Haque, M.T.A Saif. Mechanical behavior of30-50nm thick aluminum films underuniaxial tension[J]. Scripta Materialia.2002,47:863-867
    [151] Y. Saotome, K. Yasuda and H. Kaga. Microdeep drawability of very thin sheet steels[J].Journal of Materials Processing Technology.2001,113:641-647
    [152]丁建宁,孟水刚,温诗铸.微结构和尺寸约束下多晶硅微机械构件拉伸强度的尺寸效应[J].科学通报.2001,5(46):436-440
    [153]张泰华,杨业敏,赵亚溥. MEMS材料力学性能的测试技术[J].力学进展.2002,4(32):545-562
    [154]张泰华.纳米硬度计在MEMS力学检测中的应用[J].微纳电子技术.2003,7(8):212-214
    [155]赵则祥,王海容,蒋庄德.纳米压入法MEMS材料力学性能测量与评定标准化的初步设想[J].机械强度.2001,23(4):456-459
    [156]袁林.微纳米尺度下材料变形行为的跨尺度模拟及实验研究[D].哈尔滨工业大学工学硕士学位论文,2006:55-70
    [157] R. Saha, W.D. Nix. Effects of the substrate on the determination of thin film mechanicalproperties by Nanoindentation[J]. Acta Mater.2002,50:23-38
    [158] S. Simunkova, O. Blahova, I. Stepanek. Mechanical properties of thin film-substratesystems[J]. Journal of Materials Processing Technology.2003,133:189-194
    [159] J.F. Michel, P. Picart. Size effects on the constitutive behaviour for brass in sheet metalforming[J]. Journal of Materials Processing Technolgoy.2003,141(3):439-446
    [160] L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens. Size effects in theprocessing of thin metal sheets[J]. Journal of Materials Processing Technology,2001,115(1):44-48
    [161] J.S. Stolken, A.G. Evans. A microbend test method for measuring the plasticity lengthscale[J]. Acta Mater,1998,46:5109-5115
    [162]俞汉清等,金属塑性成形原理[M].北京:机械工业出版社,2011:66-70
    [163]汪大年,金属塑性成形原理[M].北京:机械工业出版社,1986:80-85
    [164]赫奈康著.胡亚民,李先禄编译.金属塑性变形[M].重庆:重庆大学出版社,1983:129-135
    [165] J.F. Michel, P. Picart. Size effects on the constitutive behaviour for brass in sheet metalforming[J]. Journal of Materials Processing Technolgoy.2003,141(3):439-446
    [166]于君祖.微塑性体积成形中尺寸效应的研究[D].哈尔滨工业大学工学硕士学位论文,2005:15-22
    [167]虞烈,袁崇军译.主动磁轴承基础、性能及应用[M].北京:新时代出版社,1997:179-183
    [168]龙志强等.轴向磁轴承电磁参数的计算[J].磁性材料及器件,2000,31(5):10-13
    [169]冯端等.金属物理学第三卷金属力学性质[M].北京:科学出版社,1999:111-116
    [170]潘金生,仝健民,田民波.材料科学与基础[M].北京:清华大学出版社,2000:45-49
    [171] Elam C F. Distortion in Metal Crystals[M]. Oxford,1935
    [172] U. Engel, R. Eckstein. Microforming-from basic research to its realization[J]. Journal ofMaterials Processing Technology,2002,125:35-44.
    [173]王明章,林实,李成华等.晶粒的取向和变形性质对双晶体循环变形影响的模拟研究[J].固体力学学报,1998,19(3):207-212.
    [174] Muto H,Takahashi Y, Futami T, Saki M. Cooperative grain-boundary sliding inpolycrystalline ceramics[J]. Journal of the European Ceramic Society,2002,22:2437-2442.
    [175] Kim B N,Hiraga K.Contribution of Grain Boundary Sliding in Diffusional Creep. ScritaMaterialia[J],2000,42(5):451-456.
    [176] Wang Y N,Huang J C. Comarison of grain boundary sliding in fine grained Mg and Alalloys during superplastic deformation[J]. Scripta Materialia,2003,48(8):1117-1122.
    [177]吴希俊.晶界结构及其对力学性质的影响(I)[J].力学进展,1990,20:159-173
    [178]周自强.晶界研究的现状和发展[J].北京航空航天大学学报,1989,3:117-124.
    [179]温志勋,岳珠峰等.含与不含晶界空穴双晶体晶体滑移与应力场分析[J].机械强度,2008,30(1):101-107.
    [180]杜正兴,温志勋等.考虑两种晶界的各向异性双晶和三晶体晶界附近弹塑性应力场分析[J].计算力学学报,2008,25(5):627-932
    [181]王自强,段祝平.塑性细观力学[M].北京:科学出版社,1995:35-38
    [182]岳珠峰,尹泽勇,杨治国等.各向异性晶体滑移有限元程序及其应用[J].计算力学学报,1997,14(4):500-503
    [183] BECKER R. Effects of strain localization on surface roughening during sheetforming[J]. Acta Metallurgica,1998,46(4):1385-1401
    [184] Yang W,Wang H T.Mechanics modeling for deformation of nano-grained metals[J].Journal of the Mechanics and Physics of Solids,2004,52(4):875-889
    [185] Muto H,Sakai M.The large-scale deformation of polycrystalline aggregates: cooperativegrain-boundary sliding[J]. Acta Mater,2000,48:4161-4167
    [186]王永明.体心立方金属扭转晶界的原子级模拟[D].陕西省西安市:陕西师范大学工学硕士学位论文,2009:15-30
    [187]张旭.基于应变梯度塑性理论的微纳米尺度材料力学行为研究[D].湖北武汉市:华中科技大学工学博士学位论文,2011:69-110
    [188] Chen C L,Tan M J. Effect of grain boundary character distribution (GBCD) on thecavitation behaviour during superplastic deformation of Al7475[J]. Mtaerials Scienceand Engineering A,2002,338:243-252
    [189]张光,张克实.正交各向异性弹塑性材料中微孔洞的扩张[J].机械强度,2002,24(2):246-249
    [190] Mabuchi M,Higashi K. On accommodation helper mechanism for superplasticity inmetal matrix composites[J]. Acta materialia,1999,47(6):1915-1922
    [191]邹风雷,高克玮等.纯铜双晶体拉伸变形的介观力学分析[J],金属学报,2008,3:297-301
    [192] Muto H,Sakai M.The large-scale deformation of polycrystalline aggregates: cooperativegrain-boundary sliding. Acta Mater,2000,48:4161-4167
    [193]邹风雷,高克玮等.双晶体拉伸变形的原位观察分析[J],科技信息,2007,34:33
    [194]李发东,李玉龙等.垂直晶界铜双晶的拉伸变形行为[J],中国有色金属学报,2012,5:1283-1291
    [195] Micro-groove forming by soft punch and its numerical simulation[A], Proceedings ofthe1stInternational Conference on Micromanufacturing[C],2006:192-197
    [196]钟家湘.郑秀华.刘颖编著金属学教程[M].北京:北京理工大学出版社,1996:96-99
    [197]王祖唐.金属塑性成形理论[M].北京:机械工业出版社,1989:178-185
    [198]杨道明,朱勋,李紫桐编著.金属力学性能与失效分析[M].北京:冶金工业出版社,1991:66-70
    [199] U. Engel, S. Gei d rfer, M. Geiger. Simulation of Microforming Processes-An AdvancedApproach Applying A Mesoscopic Model[A]. ICIP[C].2005:982-987
    [200] D.J. Kim, T.W. Ku, B.S. Kang, Finite element analysis of micro-rolling using grain andgrain boundary elements[J], Journal of Materials Processing Technology2002,(130-131):456-461
    [201] T.A. Kals, R. Eckstein. Miniaturization in sheet metal forming[J]. Journal of MaterialsProcessing Technology.2000,103:95-101
    [202] Armstrong R. W. On Size effects in polycrystal plasticity[J]. J. Mech. Phys. Solids,1961,9:196-199
    [203] Armstrong R W, Codd I, Douthwaite R M, et al. Plastic deformation of polycrystallineaggregates[J]. Philosophical Magazine,1962,7(73):45-58.
    [204] Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformationof FCC polycrystals and its implications for diffraction measurements of internalstresses[J]. Acta Materialia,1998,46(9):3087-3098
    [205] Gap yong Kim, Koc. M, Jun Ni. Modeling of the size effects on the behavior of metalsin the microscale deformation processes[J]. Journal of Manufacturing Science andEngineering,2007,129(3):470-476
    [206] Engel U, Eckstein R1Microforming2f rom basic research to it’s realization [J]. Journalof Materials Processing Technology,2002,125-126:35-44
    [207]李经天微细塑性成形实验技术研究[D]湖北:华中科技大学工学硕士学位论文,2004:65-77
    [208]温景林.金属材料成形摩擦学[M].沈阳:东北大学出版社,2000:8-10
    [209] W.J. Wojtowicz. Sliding friction test for metalworking lubricants[J]. LubricationEngineering,1955,11:174-177
    [210] M. Littlewood, J.F. Wallance. The effect of surface finish and lubrication on thefrictional variations involved in the sheet-metal-forming-process[J]. Sheet MetalIndustries,1964,41:925-930
    [211] J.L. Duncan, B.S. Shabel, J.G. Filho. A tensile strip test for evaluating friction in sheetmetal forming[J]. Society of Automotive Engineers,1978:1-8
    [212]孙英,康英林,王先进.新型薄板成形摩擦实验装置的开发与应用研究[J].轧钢,l996(8):l70-l72
    [213] D.N. He, X.F. Yin, H.Z. Tao, D. Lv, X.Y. Ruan, J.L. Cheng, J.Y. Jiang.Research on theevaluation method of friction and lubrication in deep drawing[J]. Acta MetallurgicaSinica,2000,13:439-445
    [214] Falin Peng, Size dependent constitutive modeling for thin stainless sheet inmicro-forming process[A], Proceedings of the7th ICFDM2006[C],2006:289-294
    [215]于君祖.微塑性体积成形中尺寸效应的研究[D].哈尔滨工业大学工学硕士学位论文,2005:38-46
    [216]黄征宏.微成形技术发展现状[J].锻压装备与制造技术,2007.3:19-24
    [217]周学良.润滑油[M].北京:化学工业出版社2007:92-95
    [218]朱获,王明环,明平美,张朝阳,微细电化学加工技术[J].纳米技术与精密工程2005,3(2):15-20
    [219]张凯锋等.面向微细制造的微成形技术[J].中国机械工程,2004(6):54-58
    [220]周健.5A02铝合金微型齿轮精密微塑性成形工艺研究[D].哈尔滨工业大学工学硕士学位论文.2004:41-50
    [221] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel. Microforming[A],51stGeneral Assembly of CIRP[A].2001,50(2),445-462.
    [222]张国云等计算机视觉与图像识别[M]科学出版社,北京2012:39-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700