用户名: 密码: 验证码:
油润滑渐开线斜齿轮摩擦动力学特性及疲劳寿命预估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渐开线斜齿轮因传动平稳、承载能力强被广泛应用于高速重载传动。随着传动系统对转速和转矩的大幅度提高,斜齿轮传动的啮合平稳性、效率特性及疲劳寿命等问题成为高速重载齿轮研究的重点和热点。在高速大功率运行工况下,齿轮传动表现出强非线性动力学特征。齿面在大范围变滑滚比状态下作高速剪切运动并产生瞬时高温,导致润滑油粘度大幅度降低,油膜厚度显著减小,润滑状态复杂多变。本文全面考虑了渐开线斜齿轮在混合润滑状态下的弹流润滑特性、热效应以及摩擦学特性与动力学行为的耦合关系,建立了齿轮的摩擦动力学模型;考虑残余应力和硬度梯度的影响以及裂纹在不同阶段的生长机制建立了齿轮接触疲劳寿命的全过程预估模型。
     本文首先建立了啮合接触区二维有限长线接触混合弹流润滑模型,基于最小弹性势能原理确定了低速稳态工况的载荷分布规律,并对弹流润滑模型进行数值求解,获得了接触区的稳态润滑特性。在求解过程中,采用Reynolds方程的统一差分格式解决了混合弹流润滑中粗糙峰接触区的判定问题,应用多重网格积分法加速了表面弹性变形的计算,并对多重网格法和Gauss-Seidel松弛迭代法联立求解,获得了接触区的润滑特性,揭示了齿面粗糙峰的峰值、方向相关特征和分布密度等因素对润滑特性的影响规律。
     当齿轮在高速大转矩工况下工作时,由于润滑油膜内部的高剪切作用以及混合润滑状态下粗糙峰间的摩擦剪切作用,接触区将产生大量的热。在弹流润滑状态下,入口区的剪切热将降低润滑剂的粘度,并导致由卷吸速度带入接触区的油量减少,从而使油膜厚度减薄。为了对齿面进行热分析,将能量方程、移动点热源法和热流分配系数相结合,建立了齿面温升模型,并与弹流润滑方程相耦合,通过求解获得了油膜中层温升和两齿面的温升分布特征,进而揭示了热流在齿面不同位置的传导规律。
     在实际运转中,尤其在高速工况下,由于齿形和装配误差的存在,以及油膜的瞬态挤压效应,齿轮啮合副在运动过程中将不可避免地产生动态传递误差,进而引起载荷冲击和振动。为了深入剖析润滑特性与动力学行为的耦合关系,综合考虑啮合刚度的时变特性、油膜瞬态挤压效应,齿面形貌特征以及摩擦转矩对动力学行为的影响,建立了渐开线斜齿轮的摩擦动力学模型。在数值求解过程中,建立了油膜变形量的解析模型,实现了动力学方程与弹流润滑方程的解耦,以相对线位移满足啮合周期性的假设为依据,确定了动力学方程的边界约束条件。对摩擦动力学模型进行迭代求解,获得了啮合过程中动态啮合力的变化特征以及接触区油膜压力和温升分布的动态变化过程,揭示了动态工况下斜齿轮接触区的润滑规律。
     从齿轮失效形式来看,点蚀、剥落等接触疲劳失效是最常见的失效形式,其失效机理较为复杂,与基体材料的晶体组织结构、材料缺陷以及局部应力分布有关。本文针对渗碳淬火齿轮的表面材料属性,考虑残余应力和硬度梯度的影响,以次表面最大剪切应力为评价参数,基于风险疲劳累积理论建立了裂纹萌生寿命模型,用以预测沿齿面深度方向微裂纹的萌生位置和形核寿命。在裂纹扩展寿命模型中,考虑裂纹在晶粒内部的非线性扩展规律以及相邻晶粒间的非连续扩展特征,建立了短裂纹扩展模型。综合考虑疲劳裂纹扩展速率的不同阶段,建立了长裂纹扩展的统一方程,进而完成了对齿轮接触疲劳寿命的预估。
Helical gears are widely employed in high-power transmission due to the advantage ofsteady operating performance and heavy-load capability. With the increasing requirementfor high speed and heavy load, the meshing performance, high efficiency and fatigue life ofinvolute gear become critical and gradually are focused on by many researchers. Under thecondition of high speed and power, the gear tooth exhibits strong non-linear behaviors. Dueto the high shear effect of sliding velocity, amount of heat generates from tooth surface,which greatly reduces the viscosity of lubricant and leads to more complicated lubricatingcondition. Therefore, the author aims to build up a tribo-dynamic model that covering thecoupled influences of elastohydrodynamic lubrication (EHL) characteristics, the thermaleffects and dynamic behaviors. Based on this pressure-solving model, a new fatigue lifemodel is proposed including the factors of residual stress, the hardness gradient and thecrack growing process in different propagation stage.
     First, a two-dimensional finite line contact EHL model is built and a steady model ofthe non-uniform load distribution is proposed for helical gear based on the minimum elasticpotential energy criterion, which is combined with the mixed EHL to obtain the film shapeand pressure distribution in contact area. In numerical solution, a unified discrete formationis established to determine the asperity contact region, and the multilevel integrationmethod is introduced to speed up the calculation of surface simultaneously. Besides, theGauss-Seidel iteration and multilevel method are used to obtain the lubricatingcharacteristics. Accordingly, the influence disciplinarianof asperity roughness, direction anddensity on local pressure and film distribution are revealed.
     When the gear is working in high speed or heavy torque conditions, the high shearbehaviors of oil film and asperity frictions in contact region will generate amount of heat.Under the condition of elastohydrodynamic lubrication, the shear heating effect at inlet willdecrease the viscosity of oil film, which would lead to less volume of lubricant beingentrained by rolling velocity. Consequently, the film thickness becomes thinner. Therefore,the energy equation is combined with moving point heat source method using the heatpartition coefficient to obtain the temperature distribution in mid-layer film and tooth surfaces. Accordingly, the heat transferring mechanism in different meshing position isanalyzed.
     Due to the profile and assembly error, the dynamic transmission error and loadingimpact are unavoidable during rotating process especially under high speed conditions. Todiscover the coupled relationship between the lubricating performance and dynamicbehaviors, a tribo-dynamic model is built up considering the influences of time-varyingmeshing stiffness, the transient film squeezing effect, the surface topography and frictiontorque. In numerical solution, the film temperature is taken as the most outer iterative cycle.In order to uncouple the dynamic motion equation and the EHL model, an analyzed modelof film elastic deformation is proposed to simplify the calculation of film stiffness. Besides,based on the assumption that the relative displacement satisfies the periodicalboundarycondition, the dynamic meshing force is solved. Finally, the solved dynamic pressure andtemperature in contact region are obtained in dynamic model.
     In terms of the gear failures, the contact failures such as pitting and case crushing aremost common forms. The contact failure occurs at the spot where either the material defectsor shear stress peak exists. The maximum shear stress in subsurface is employed by authorto evaluate the fatigue life base on the material inherent properties. Crack initiation modelfor gear contact failure is built according to the risk accumulation theory. In the modelingof short crack propagation, the non-linear and discontinuouscharacteristics are taken intoaccount. Besides, a unified equation for long crack propagation covering various crackswith different scales is proposed to predict the whole fatigue life of gear pair. Consequently,the whole contact fatigue life is predicted by combining the three parts of the fatigue life indifferent stage.
引文
[1]Reynolds O.On the theory of lubrication and its application to Mr.Beauchamp Tower’s experiments,including an experimental determinationof the viscosity of olive oil[J]. Philos. Trans. R. Soc. London,1886,177:157-234.
    [2]Ertel A M. Hydrodynamic lubrication based on new principles[J]. Akad.Nauk. SSSR, PrikladnayaMatematika i Mekhanika,1939,3(2):41-52(in Russian).
    [3]Spikes H A. Sixty years of EHL[J]. Lubrication Science,2006,18:265-291.
    [4]Grubin A N. Fundamentals of the hydrodynamic theory of lubricationof heavily loaded cylindricalsurfaces[M]. Book No.30, Central ScientificResearch Institute for Technology and MechanicalEngineering, Moscow(DSIR Translation),1949:115-166.
    [5]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992年.
    [6]Dowson D, Higginson GR. A numerical solution to the elastohydrodynamicproblem[J]. J. Eng. Sci.,1959,1:6-15.
    [7]Dowson D, Higginson G R. New roller bearing lubricationformula[J]. Engineering,1961,192:158-159.
    [8]Dowson D, HigginsonG R. Elastohydrodynamic lubrication[M]. Pergamon, Oxford,1966.
    [9]Dowson D, Toyoda S. A central film thickness formula for elastohydrodynamic line contacts[C].Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, Mechanical Engineering Publications,Bury St. Edmunds, UK,1979:60-65.
    [10]Ranger A P, Ettles C M M, Cameron A. Solution of the point contact elastohydrodynamicproblem[C]. Proceedings of the RoyalSociety of London,1973,346:227-244.
    [11]Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts. Part I.Theoretical formulation[J].Transactions of the ASME, Journal of Lubrication Technology,1976,98:223-229.
    [12]Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts. Part II.Ellipticity parameter results[J].Transactions of the ASME, Journal of Lubrication Technology,1976,98:375-383.
    [13]Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts. Part III.Fully flooded results[J]. Transactions of the ASME, Journal of Lubrication Technology,1977,99:264-276.
    [14]Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts. Part IV.Starvation results[J]. Transactionsof the ASME, Journal of Lubrication Technology,1977,99:15-23.
    [15]Vakilzadeh V, Gohar R. Oil-film starvation in elastohydrodynamic circular contacts[J]. Journal ofMechanical EngineeringScience,1977,19:22-29.
    [16]Johnson K L, Greenwood JA, Poon SY. A simple theory of asperity contact in elastohydrodynamiclubrication[J]. Wear,1972,19:91-108.
    [17]Patir N, Cheng H S. An average flow model for determining effects of three dimensional roughnesson partial hydrodynamic lubrication[J]. Transactions of the ASME, Journal of Lubrication Technology,1978,100:2-17.
    [18]Conry T F, WandS, CusanoC A. Reynolds–Eyring equation for elastohydrodynamic lubrication inline contacts[J]. Transactions of the ASME, Journal of Tribology,1987,109:648-654.
    [19]Lubrecht A A. The numerical solution of the lubricated lineand point contact problem usingmultigrid techniques[J].PhD Thesis, University of Twente,1987.
    [20]Lubrecht A A, Venner CH, ten Napel WE, et al. Film thickness calculations inelastohydrodynamically lubricated circular contacts using a multigrid method[J]. Transactions of theASME, Journal of Tribology,1988,110:503-507.
    [21]Venner CH, Lubrecht A A. Multilevel methods in lubrication[M]. Asmsterdam, New York: Elsevier,2000
    [22] Nogueira I, Dias A M, Gras R, et al. An experimental model for mixed friction during running-in[J].Wear,2002,253:541-549.
    [23]Patir N, Cheng HS.Application of average flow modelto lubrication between rough slidingsurfaces[J]. Transaction of ASME,J. Lubr. Technol.,1979,101(4):220-229
    [24]Greenwood J A, Tripp, JH. The contact of two nominally flat rough surfaces[J]. Proc. Inst. Mech.Eng.,1971,185:625-633.
    [25]Zhu D, Cheng H S. Effect of surface roughness on the point contact EHL[J]. ASME J. Tribol.,1988,110:32-37.
    [26]Wu C W, Zheng L Q. An average reynolds equation for partial film lubrication with a contactfactor[J]. Transaction of ASME J.Tribol.,1989,111(1):188-191.
    [27]Goglia P R, Cusano C, Conry T F. The effects of surface irregularities on the elastohydrodynamiclubrication of sliding line contacts, Part I-Single Irregularities, Part II-Wavy Surfaces[J]. ASME J.Tribol.,1984,106:104-119.
    [28]Lubrecht A A, ten Napel W E, Bosma R. The influence of longitudinal and transverse roughness onthe elastohydrodynamic lubrication of circular contacts[J]. ASME J. Tribol.,1988,110:421-426.
    [29]Chang L, Cusano C, Conry T F. Effects of lubricant rheology and kinematic condition onmicro-elastohydrodynamic lubrication[J]. ASME J. Tribol.,1989,111:344-351.
    [30]Ai X, Zhen L. A general model for micro-elastohydrodynamic lubrication and its full numericalsolution[J]. ASME J. Tribol.,1989,111:569-579.
    [31]Venner C H, ten Napel W E. Surface roughness effects in an EHL line contact[J]. ASME J. Tribol.,1992,114(3):616-622.
    [32]Ai X, Cheng H S, Zheng L. A transient model for micro-elastohydrodynamic lubrication with threedimensional irregularities[J]. ASME J. Tribol.,1993,115:102-110.
    [33]Ai XL. Cheng H S. A fast model for pressure profile in rough EHL line contacts[J].Journal ofTribology,1993,115:460-465.
    [34]Ai X.L. Cheng H S. A transient EHL analysis for line contacts with measured surface roughnessusing multigrid technique[J].Journal of Tribology,1994,116:549-556.
    [35]Zhu D, Ai X L. Point contact EHL based on optically measured three-dimensional rough surfaces[J].Journal of Tribology,1997,119:375-384.
    [36]Jiang X F, Hua D Y. A mixed elastadyrodynamic lubrication model with asperity contact[J]. ASME,J. of Tribology,1999,121:481-491.
    [37]Hu Y Z, Zhu D. Full numerical solution to the mixed lubricationin point contacts[J]. ASME J.Tribol.,2000,122:1-9.
    [38]Choo J W, Olver A V, Spikes H A. The influence of surface roughness on thin film, mixedlubrication[C].World Tribology Congress, Austria,2001.
    [39]Mostofi A, Gohar R. Elastohydrodynamic lubrication of finite line contacts[J]. ASME J. Lubr.Technol.,1983,105:598-604.
    [40]Kuroda S, Arai K. Elastohydrodynamic Lubrication BetweenTwo Rollers[J]. JSME,1985,28:1367-1372.
    [41]徐文,马家驹,陈晓阳.滚子摩擦副弹流润滑特性及其应用——I有限长直母线滚子的弹流数值解[J].摩擦学学报,1998,18(1):39-44.
    [42]马家驹,徐文,陈晓阳.滚子摩擦副弹流润滑特性及其应用——II.工程对数滚子的弹流数值解)[J].摩擦学学报,2000,20(1):63-66.
    [43]刘晓玲,杨沛然.有限长滚子线接触热弹流润滑分析[J].摩擦学学报,2002,22(4):295-299.
    [44]杨萍,杨沛然,刘晓玲.圆锥滚子的等温弹流润滑数值分析[J].摩擦学学报,2005,25(5):456-460.
    [45]杨萍,刘晓玲,杨沛然.载荷偏置对圆锥滚子润滑性能的影响[J].摩擦学学报,2012,32(3):279-285.
    [46]杨萍,杨沛然.斜齿圆柱齿轮的热弹流润滑理论[J].机械工程学报,2006(10):43-48.
    [47]Gohar R, Cameron A. The mapping of elastohydrodynamic contacts[J]. ASLE Trans.,1967,10:215-225.
    [48]Wymer D G, Cameron A. Elastohydrodynamic lubrication of a line contact[J]. Proc. Inst. Mech.Eng.,1974,188:221-238.
    [49]Bahadoran H, Gohar R. Oil film thickness in lightly-loaded roller bearings[J]. J. Mech. Eng. Sci.,1974,16:386-390.
    [50]Snidle R W, Evans HP. Elastohydrodynamics of gears[C]. Proceedings of the23rd Leeds-Lyon Symon Tribol, Leeds,1996,271-280.
    [51]Parkins D W, Rudd L. Thrust cone lubrication, Part III: A test facility and preliminary measureddata[C]. Proc InstnMech Engrs(Part J),1996,210(J2):107-112.
    [52]Zhu D, Ren N, Wang Q. Mixed elastohydrodynamic lubrication in finite roller contacts involvingrealistic geometry and surface roughness[J].ASME,Journal of Tribology,2012,134:011504.
    [53]Cheng H S, Sternlicht B. Anumerical solution for the pressure, temperature and film thicknessbetween two infinitely long lubricated rolling and sliding cylinders under heavy loads[J]. Transactions ofthe ASME, Journal of Basic Engineering,1965,87:695-797.
    [54]Cheng H S. A refined solution of the thermal-elastohydrodynamic lubrication of rolling and slidingcylinders[J]. ASLE Transactions,1965,8:397-410.
    [55]Moes H. Discussion on a paper by D Dowson[C]. Proceedings of the Institution of MechanicalEngineers,1966,180, part3B.
    [56]Kim K H, Sadeghi F. Three-dimensional temperature distributionin EHD lubrication, Part I: Circularcontact[J]. ASME J. Tribol.,1992,114:32-41.
    [57]Kim K H, Sadeghi F. Three-dimensional temperature distributionin EHD lubrication, Part II: Pointcontact and numerical formulation[J]. ASME J. Tribol.,1993,115:36-45.
    [58]Lee R T, Hsu C H. A fast method for the analysis of thermal-elastohydrodynamic lubrication ofrolling/sliding line contacts[J]. Wear,1993,166:107-177.
    [59]Hsu R T, Hsu C H. Advanced multilevel solution for thermal elastohydrodynamic lubrication ofsimple sliding line contacts.[J] Wear,1994,171:227-237.
    [60]Hsu C H, Lee R T. An efficient algorithm for thermal elastohydrodynamic lubrication underrolling/sliding line contacts[J]. ASME J. Tribol.,1994,116:762-769.
    [61]Lee R T, Hsu C H. Multilevel solution for thermal elastohydrodynamic lubrication of rolling/slidingcircular contacts[J]. Tribology International,1995,28(8):541-552.
    [62]Qiu L, Cheng H S. Temperature ris simulation of three-dimensional rough surface in mixedlubricated contacts[J]. ASME, J. of Tribology,1998,120(2):310-318.
    [63]Zhai, X. J., Chang, L. A transient thermal model for mixed-film contacts[J]. Tribology Transactions,2000,43(3):427-434.
    [64]Gao J, Lee S C, Ai X, et al. An FFT-based transient flash temperature model of generalthree-dimensional rough surface contacts[J]. ASME J. Tribol.,2000,122(3):519-523.
    [65]Liu S B, Wang Q. A three-dimensional thermomechanical model of contact betweennon-conforming rough surfaces[J]. ASME J. Tribol.,2001,123:17-26.
    [66]Wang W Z, Wang H, Liu Y C, et al. A comparative study of the methods for calculation of surfaceelastic deformation[J]. Journal of Engineering Tribology,2003,217:145-153.
    [67]Wang W Z, Liu Y C, Wang H, Hu Y Z. A computer thermal modelof mixed lubrication inpointcontacts[J]. ASME J. Tribol,2004,126:162-170.
    [68]Martin H M. The lubrication of gear teeth[J]. Engineering,1916,102:199-204.
    [69]McEween E. The effect of variation of viscosity with pressure on the load carrying capacity of oilfilm between gear teeth[J]. Journal Institute of Petroleum,1952,38:655-665.
    [70]Adkins R W, Radzimovsky E I. Lubrication phenomena in spur gears[J]. Transaction of ASMEJournal Basic Eng,1965,87:655-656.
    [71]Dowson D, Higginson GR. Theory of involute gear lubrication[C]. Inst. Pet. Gear LubricationSymposium,1966.
    [72]Vichard J P. Transient effects in the lubrication of hertzian contacts[J]. Journal ofMechanicalEngineering Science,1971,13:173-180.
    [73]Gu A. Elastohydrodynamic lubrication of involute gears[J].Transactions of the ASMEJournal ofEngineering for Industry,1973,11:1164-1170.
    [74]Cheng H S,Wang K L. A numerical solution to the dynamic load, film thickness and surfacetemperature in spur gears[J]. Transactions of Journal of Mechanical Design,1981,103:177-195.
    [75]Petrousevitch A I. The investigation of oil film thickness in lubricated ball-race rolling contact[J].Wear,1972,19:369-389.
    [76]Wada S, Tsukijihara M. Elastohydrodynamic squeeze problem of two rotating cylinders[J]. BulletinJSME,1981,24(190),137-942.
    [77]Holmes M J A, Evans H P, Snidle R W. Analysis of mixed lubrication effects in simulated geartooth contacts[J]. ASME J. Tribol.,2005,127(1):61-69.
    [78]Li S, Kahraman A. A transient mixed elastohydrodynamic lubrication model for spur gear pairs[J].ASME J. Tribol.,2010,132:011501.
    [79]Evans H P, Snidle R W, Sharif K J, et al. Analysis of micro-elastohydrodynamic lubrication andprediction of surface fatigue damage in micropitting tests on helical gears[J]. ASME J. Tribol.,2013,135:011501.
    [80]张鹏顺.压粘-刚性弹流状态的分析和膜厚的计算[J].润滑与密封,1987,1:9-16.
    [81]黄平,温诗铸.点、线接触真实粗糙表面的弹流润滑研究[J].力学学报,1993,25(3):302-308.
    [82]王晓力,温诗铸,桂长林.基于平均流动模型的广义雷诺方程[J].润滑与密封,1998,3:16-18.
    [83]林晓辉,黄卫,庄苹.渐开线齿轮传动非牛顿润滑介质的线弹流数值分析研究[J].计算力学学报,2003,20(2):164-168.
    [84]王优强,黄丙习,佟景伟,等.渐开线直齿轮时变热弹流润滑模拟[J].机械强度,2006,28(3):363-368.
    [85]王优强,衣雪娟,杨沛然.渐开线直齿轮瞬态微观热弹流润滑分析[J].机械工程学报,2007,43(11):142-148.
    [86]孔金平.航空齿轮润滑数值计算[D].南京航空航天大学,硕士学位论文,2006.
    [87]王优强,刘建秀,张国昌.渐开线斜齿圆柱齿轮弹流润滑模型的建立[J].润滑与密封,2006,184(12):20-25.
    [88]王优强,刘冬伟,李伟.渐开线斜齿轮瞬态弹流润滑数值分析[J].润滑与密封,2008,33(7):20-24.
    [89]黄立,胡元中,王文中.斜齿轮非稳态等温弹流润滑数值分析[J].润滑与密封,2009,34(7):23-27.
    [90]王文中,操鸿,胡纪滨.渐开线斜齿轮非稳态弹流润滑数值模拟研究[J].摩擦学学报,2011,31(6):604-609.
    [91]靳广虎,朱如鹏,陆俊华.正交面齿轮齿面温升的研究[J].机械传动,2002,26(3):1-4.
    [92]武斌,郑站强,石万凯.转速对齿轮非牛顿流体弹流润滑温升的影响[C].2010年重庆市机械工程学会学术年会论文集,2010.
    [93]Blankenship G W, Kahraman A. Steady state forced response of a mechanical oscillator withcombined parametric excitation and clearance type nonlinearity[J]. Journal of Soundand Vibration,1995,185:743-765.
    [94]Kahraman A, Blankenship G W. Interactions between commensurate parametric and forcingexcitations in asystem with clearance[J]. Journal of Sound and Vibration,1996,194:317-336.
    [95]Kahraman A, Singh R. Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibration,1990,142:49-75.
    [96]Ozguven H N, Houser D R. Dynamic analysis of high speed gears by using loaded statictransmission error[J]. Journal of Sound and Vibration,1988,125:71-83.
    [97]Li S. Gear contact model and loaded tooth contact analysis of a three-dimensional, thin-rimmedgear[J]. ASME J. Mech. Des.,2002,127:511-517.
    [98]Guilbaut R, Gosselin C, Cloutier L. Express model for load sharingand stress analysis in helicalgears[J]. ASME J. Mech. Des.,2005,127:1161-1172.
    [99]Cooley C G, Parker R G, Vijayakar S M. A frequency domain finite element approach forthree-dimensional gear dynamics[J]. ASME J. Vibr. Acoust.2011,133(4):0410041.
    [100]Baud S, Velex P. Static and dynamic tooth loadingin spur and helical geared systems-experimentsand model validation[J]. ASME J. Mech. Des.,2002,124:334-346.
    [101]Velex P, Ajmi M. Dynamic tooth loads and quasi-static transmission errorsin helicalgears-approximate dynamic factor formulae[J].Mech. Mach. Theory,2007,42:1512-1526.
    [102]Tamminana V K, Kahraman A, Vijayakar S. A study of the relationship between the dynamicfactors andthe dynamic transmission errorof spur gear pairs[J].ASME J. Mech. Des.,2007,129:75-84.
    [103]Fatih K, Stephen E O, Kadir C. Dynamic analysis of involute spur gears with asymmetric teeth[J].International Journal of Mechanical Sciences,2008,50:1598-1610.
    [104]Liu G, ParkerR G. Dynamic modeling and analysis of tooth profile modification for multimeshgear vibration[J]. ASME J. Mech. Des.,2008,130(12):121402.
    [105]He S, Singh R. Dynamic transmission error prediction of helical gear pair under sliding frictionusing floquet theory[J]. ASME J. Mech. Des.,2008,130:052603.
    [106]Houser D R, Seireg A. Evaluation of dynamic factors for spur and helical gears[J]. ASME Journalof Engineering for Industry,1970,1:504-515.
    [107]Cheon G J. Analysis of the nonlinear behavior of gear pairs considering hydrodynamiclubricationand sliding friction[J]. Journal of Mechanical Science and Technology,2009,23:2125-2137.
    [108]Zhu C C, Song C S. Geometry design and tooth contact analysis of crossed beveloid gears formarine transmissions[J]. Chinese Journal of Mechanical Engineering,2012,25(2):328-337.
    [109]Wu B L. Effect of gear width and helix angle on factor of dynamic load of double circular archelical gearing[J]. Chinese Journal of Mechanical Engineering,2004,17(3):353-355.
    [110] Pedrero J I, Pleguezuelos M, et al. Load distribution model along the line of contact for involuteexternal gears[J]. Mechanismand Machine Theory,2010,45:780-794.
    [111]Wijnant Y H. Contact dynamics in the field of elastohydrodynamic lubrication[D].Ph.D. thesis,University of Twente, The Netherlands,1998.
    [112]Zhang Y Y, Wang X L, Yan X L. Dynamic behaviors of the elastohydrodynamic lubricated contactfor rolling bearings. ASME Journal of Tribology,2013,135:021501.
    [113]Wang K L, Cheng H S. A numerical solution to the dynamic load, film thickness and surfacetemperatures in spur gears: Part I-Analysis. ASME Journal of Mechanical Design,1981,103:177-187.
    [114]Brancati R, Rocca E, Russo R. A gear rattle model accounting for oil squeeze betweenthe meshinggear teeth[C].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,2005,219:1075-1083.
    [115]Li S, Kahraman A. Influence of dynamic behavior on elastohydrodynamic lubrication of spurgear[J]. Journal of Engineering Tribology,2011,225:740-753.
    [116]Li S, Kahraman A. A Spur gear mesh interface damping model basedon elastohydrodynamiccontactbehavior[J]. International JournalofPowertrains,2011,1:4-21.
    [117]Li S, Kahraman A. A tribo-dynamic model of a spur gear pair[J]. Journal of Sound Vibration,2013,332:4963-4978.
    [118]Kubo A, Yamada K, Aida T, et al. Research on ultra high speed gear devices[J].Transactions ofJapanese Society of Mechanical Engineers,1972,38:2692-2715.
    [119]Umezawa K, Ajima T, Houjoh H. Vibration of three axis gear system[J], Bulletin of JSME,1986,29:950-957.
    [120]Kahraman A, Blankenship G W. Effectofinvolutetipreliefondynamicresponseofspurgearpairs[J].Journal ofMechanicalDesign,1999,121:313-315.
    [121]Kahraman A, Blankenship G W. Effectofinvolutecontactratioonspurgeardynamics[J], JournalofMechanicalDesign,1999,121:112-118.
    [122]杨沛然,温诗铸.周期性载荷对非牛顿热弹性流体动力润滑的影响[J].力学学报,1992,24(4):404-410.
    [123]苏永琳,杨沛然,王成焘.变速变载变曲率时变等温线接触弹流润滑分析[J].润滑与密封,2008,33(3):21-25.
    [124]王优强,畅通.啮入冲击对直齿轮弹流润滑的影响[J].计算力学学报,2010,27(3):527-532.
    [125]唐进元,周炜,陈思雨.齿轮传动啮合接触冲击分析[J].机械工程学报,2011,47(7):22-30.
    [126]李同杰,朱如鹏,鲍和云等.行星齿轮系扭转非线性振动建模与运动分岔特性研究[J].机械工程学报,2011,47(21):76-83.
    [127]周长江,唐进元,钟志华.齿轮传动的线外啮合与冲击摩擦[J].机械工程学报,2008,44(3):75-81.
    [128]刘国华,李亮玉.基于非线性理论的齿轮机构动力学模型的建立及实验[J].机械设计,2006,23(5):15-17.
    [129]朱孝录,鄂中凯.齿轮承载能力分析[M].北京:高等教育出版社,1992年.
    [130]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002年.
    [131]杨庆祥,赵言辉,许志强,等.渗碳及渗碳喷丸齿轮轮齿弯曲疲劳极限的定量分析[J].机械工程学报,2004,40(7):34-40.
    [132]Way S. Pitting due to rolling contact[J]. Trans. ASME, Journal of Applied Mechanics,1935,2:A49-A58.
    [133]Soda N, Yamamoto T. Effect of tangential traction and roughness on crack initiation/propagationduring rolling contact[J]. ASLE Trans.1982,25(2):198-206.
    [134]Basquin O H. The exponential law of endurance tests[C]. Proceeding of the American Society forTesting and Materials.1910,10:625-630.
    [135]Lundberg G, Palmgren A. Dynamic capacity of rolling bearings[J]. Acta Politech. Mech. Eng. Ser.R. Swedish Acad. Eng. Sci.1952,2,9-50.
    [136]Coy J J, Townsend D P, Zaretsky E V. Dynamic capacity and surface fatigue life for spur andhelical gears[J]. Trans. ASME, J. of Lub. Tech.,1976,4:267-276.
    [137]Ioannides E, Harris T A. A new fatigue life model for rolling bearings[J]. Trans. ASME, J. Tribol.,1985,107:367-378.
    [138]Zaretsky E V. Fatigue criterion to system design, life and reliability[J]. J. Propuls. Power.,1987,3:76-83.
    [139]Kim T H,Olver A V. Stress history in rolling-sliding contact of rough surfaces[J]. Tribol. Int.,1998,31:727-736.
    [140]Epstein D, Keer L M, Wang Q J, Chen H S, et al. Effect of surface topography on contact fatigue inmixed lubrication[J]. Tribol. Trans.,2003,46:506-513.
    [141]Irwin G. R. Analysis of stresses and strains near the end of a crack traversinga plate. Journal ofApplied Mechanics,1957,24:361-364.
    [142]Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. J. Basic Eng. Trans. ASME,1963,528-534.
    [143]胡卫华,吕运冰.周期性I-II复合型裂纹的应力强度因子[J].武汉理工大学学报,2002,26(1):123-125.
    [144]董飞飞,邵忍平,王伟.齿轮参数对三维裂纹应力强度因子影响的研究[J].应用力学学报,2012,29(6):721-729.
    [145]Glodez S, Abersek B, Flasker J, et al. Evaluation of the service life of gears in regard to surfacepitting[J]. Engineering Fracture Mechanics,2004,71:429-438.
    [146]Liu G, Moustiez A, Lesage J, et al. A numerical fracture analysis of a stationary semi-circularinterface crack during interfacial indentation test[J]. Surface&Coatings Technology,2006,201:2086-2091.
    [147]张明,姚振汉.双材料界面裂纹小范围屈服边界元分析[J].清华大学学报(自然科学版),1997,37(10):99-102.
    [148]黄佩珍,师俊平,李中华.求解界面裂纹应力强度因子的高次权函数法[J].固体力学学报,2000,21(2):166-170.
    [149]Heo S P, Wang W H. Stress intensity factor analysis of elliptical corner cracks in mechanical jointsby weight function method[J]. International Journal of Fracture,2002,115(4):377-399.
    [150]Carloni C, Nobile L. Maximum circumferential stress criterion applied to orthotropic materials[J].Fatigue and Fracture of Engineering Materials and Structures,2005,28(9):825-833.
    [151]Dalmas D, Laksimi A. On the method of determination of strain energy release rate during fatiguedelamination in composite materials[J]. Applied Composite Materials,1999,6(5):327-340.
    [152]Zacharopoulos D A. Stability analysis of crack path using the strain energy density theory[J].Theoretical and Applied Fracture Mechanics,2004,41(3):327-337.
    [153]李超,王优强,王美术.表面微点蚀对渐开线直齿圆柱齿轮弹流润滑的影响[J].润滑与密封,2011,36(6):55-59.
    [154]李超,王优强.直齿圆柱齿轮表面微凸起磨损的时变热效应弹流润滑分析[J].润滑与密封,2012,37(4):39-43.
    [155]张延化,王优强,卞荣.灰色GM(1,1)模型在齿轮疲劳寿命预测中的应用[J].机械传动,2009,33(3):100-102.
    [156]王倩倩,张义民,吕昊.基于可靠性的裂纹齿轮点蚀寿命参数灵敏度评估[J].工程设计学报,2013,20(4):282-287.
    [157]石万凯,汤庆儒.基于裂纹扩展的齿轮弯曲疲劳寿命仿真分析[J].兰州理工大学学报,2012,38(6):30-33.
    [158]吕尤.网格型仿生表面形态汽车齿轮抗疲劳性能研究与数值模拟[D].吉林大学,博士学位论文,2012
    [159]林腾蛟,钟声,沈亮.圆柱齿轮齿根三维裂纹扩展分析及寿命预测[J].重庆大学学报,2012,35(11):1-7.
    [160]Venner C H, Lubrecht A A.Multilevel methods in lubrication[M]. Elsevier, New York,2000.
    [161]Li S. Lubrication and contact fatigue models for roller and gear contacts[D]. PhD Thesis.The OhioState University,2009.
    [162]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    [163]Polonsky I A, Keer L M. A numerical method for solving rough contact problems based on themulti-level multi-summation and conjugate gradient techniques[J]. Wear,1999,231:206-219.
    [164]Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M].Oxford Press, Second Edition,1959.
    [165]Umezawa K, Suzuki T and Sato T. Vibration of Power Transmission Helical Gears(ApproximateEquation of Tooth Stiffness)[J]. Bulletin of JSME,1986,29(251):1605-1611.
    [166]Cai Y.Simulation on the Rotational Vibration of Helical Gears in Consideration of the ToothSeparation Phenomenon (A New Stiffness Function of Helical Involute Tooth Pair)[J]. Transaction ofASME, Journal of Mechanical Design,1995,117:460-469.
    [167]Gelinck E R M, Schipper D J. Calculation of stribeck curvesfor line contacts[J]. TribologyInternational,2000,33(3-4):175-181.
    [168]Akbarzadeh S, Khonsari M M. Thermoelastohydrodynamic analysis of spur gearswithconsideration of surface roughness[J]. Tribology Letters.2008,32(2):129-141.
    [169]Sojoudi H, Khonsari M M.On the behavior of friction in lubricated point contact with provision forsurface roughness[J]. Journal of Tribology, ASME,2010,132(1):012102.
    [170]Moes H. Optimum similarity analysis with applications to elastohydrodynamic lubrication[J]. Wear1992,159:57-66.
    [171]Akbarzadeh S, Khonsari M M. Performance of spur gears considering surface roughness and shearthinning lubricant[J].Journal of Tribology, ASME,2008,130(2):021503.
    [172]Sadeghi F, Sui P C. Thermal elastohydrodynamic lubrication of rolling/sliding contacts. ASME J.Tribol.1990,112,189-195.
    [173]Ichimaru K. and Hirano F.,1974,“Dynamic Behavior of Heavy-Loaded Spur Gears,” Transactionof ASME Journal of Engineering Industry,5,pp.373-381.
    [174]Kalker J J. Numerical calculation of the elastic field in a half-space[J]. Communications in appliednumerical methods,1986,2:401-410.
    [175]Ioannides E and Harris T A. A new fatigue life model for rolling bearing[J]. Transaction of ASME,Journal of Tribology,1985,107:367-378.
    [176]王璐,王正,宋希庚,等.疲劳短裂纹理论及寿命预测方法新进展[J].机械强度,2012,34(4):597-603.
    [177]Glodez S, Abersek B, Flasker J. Evaluation of the service life of gears in regard to surface pitting[J].Engineering Fracture Mechanics,2004,71:429-438.
    [178]Bilby A, Cottrell A H, Swinden K H. The spread of plasic yield from a notch[C]. Proc. R. Soc.London,1963, A-272:304-314.
    [179]Navarro A, de los Rios E R. Short and long fatigue crack growth-a unified model[J]. PhilosophicalMagazine,1988,57(1):15-36.
    [180]Glodez S, Winter H., Stuwe H P. A fracture mechanics model for the wear of gear flanks bypitting[J]. Wear,1997,208:177-183.
    [181]Richard Liu C, Choi Y. A new methodology for predicting crack initiation life for rolling contactfatigue based on dislocation and crack propagation[J]. International Journal of Mechanical Sciences,2008,50:117-123.
    [182]Hearle A D, Johnson K L. Mode II stress intensity factors for a crack parallel to the surface of anelastic half-space subjected to a moving point load[J].J. Mech. Phys. Solids,1985,33(1):61-81
    [183]黄帅,张国强,王毛球,等.不同渗碳层深度下重载齿轮钢的疲劳性能[J].钢铁研究学报,2012,24(4):34-38.
    [184]杨庆祥,赵言辉,许志强,等.渗碳及渗碳喷丸齿轮轮齿弯曲疲劳极限的定量分析[J].机械工程学报,2004,40(7):34-40.
    [185]Calculation of load capacity of spur and helical gears-Part5: Strength and quality of materials[S].International Standard, ISO6336-5:2003(E).
    [186]武志斐,王铁,张瑞亮.18Cr2Ni4WA齿轮接触疲劳特性试验研究[J].兵工学报,2010,31(5):598-602.
    [187]朱孝录.齿轮材料的接触疲劳强度[J].机械传动,1994,18(3):34-38
    [188]Harris T A, Kotzalas M N.滚动轴承分析(第I卷)轴承技术的基本概念(译本)[M].北京:机械工业出版社,2010年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700