用户名: 密码: 验证码:
复杂机电产品模块化设计若干关键技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高、经济全球化和产品多样化的发展,客户需求呈现出多样化和个性化的特点,客户在低成本、高质量和个性化方面的要求已经成为当前制造业共同面临的严峻的挑战。模块化设计制造是迎接上述挑战的重要途径,基于合理的产品模块化体系,可以快速地组合成满足客户需求的个性化产品,同时又可以通过通用模块的批量生产和批量管理降低生产和管理成本。本文对复杂机电产品模块划分方法、模块相似性度量方法、模块化产品配置设计等模块化设计的关键技术进行了研究,并结合实际对某企业的轮式装载机进行了模块化设计的应用研究。具体研究内容包括:
     (1)提出了基于最小最大划分的复杂产品模块划分方法。首先给出最小最大划分的定义,然后根据零部件之间的各种关联关系进行复杂产品的初步划分并计算出其最小最大划分。根据最大划分的子集将复杂产品的零部件进行分组并在各组内以最小划分的子集为计算单元进行模糊聚类分析,根据模块聚合度确定阂值而得到复杂产品的模块划分结果。该方法具有计算量小、最优的阈值和合理的权因子等优点。最后以轮式装载机的工作装置模块化设计为例来说明该方法的合理性和有效性。
     (2)研究了基于BOM(产品物料清单)和最优模块化度的模块划分方法。首先基于复杂产品的BOM形成以零部件为结点的产品结构树(PST),然后通过分析同一结点内零部件的几何、功能和物理相关性等得到关联矩阵(CM)并生成关联图(CG),根据关联图计算在不同划分情况时的模块化度(DM),在结构树范围内通过选择最优的模块化度的最小值和平均值确定模块的划分。最后以轮式装载机的工作装置模块化设计为例说明了该方法的合理性和有效性。
     (3)研究了轮式装载机进行模块划分的预处理要求及其进行模块划分的独特原则,并从多个层次应用本文相关模块划分方法对轮式装载机进行模块划分,将产品划分为17个一级模块和77个二级模块。
     (4)研究了机电产品模块的结构相似性和参数相似性,并提出了模块结构相似性和参数相似性的度量方法和基于结构相似性的模块唯一性的判别方法。提出了模块装配类型编码方法和网络模型建模方法,并以典型模块为例建立其加权的网络模型。重点研究了比较交叉法,并给出了装配关系相似度度量及匹配方法。基于装配关系的相似度和匹配提出了加强网络的匹配和相似性度量方法,并将其应用于模块唯一性的判别。
     (5)研究了模块的参数相似性度量方法及模块重用度优化方法。针对模块重用度不高,冗余实例过多的问题提出了一种模块库的聚类分析方法。首先给出了模块库、模块重用度、模块实例相似度、冗余矩阵和聚类中心等模块库的相关定义,并通过模块库相似度的计算构造相似度矩阵,然后对模块库进行聚类分析来消除冗余的模块实例,从而提高模块的重用度。最后以轮式装载机的铲斗模块库设计为例来说明该方法的合理性和有效性,在满足聚合要求的前提下,消除冗余模块12个,提高模块的重用率44.4%。
     (6)根据模块化产品的特点提出了模块化产品多层次配置方法。首先将客户需求分为约束性需求和选择性需求两大类,然后提出基于客户需求分析从核心平台和定制模块等多个层次进行模块化产品的配置设计。重点研究了模块化产品核心平台的设计和配置方法、定制模块的配置方法。并以轮式装载机为例进行了模块化产品多层次配置的应用验证。
     (7)研究了复杂机电产品模块化的系统设计方法,主要包括模块化准备、模块化规划、模块化过程和模块配置设计四个阶段。并对产品模块化准备工作、模块化规则、模块结构和接口设计方法、基于模块化的产品创新设计方法进行了论述,并分析了四种基于模块化的产品创新方法。
     (8)研究了机电产品的模块和模块库设计方法,提出从模块结构和模块接口两个方面进行机电产品模块的设计,提出机电产品模块库的构建包括模块模型库建模和模块数据库建模,并对模块和模块库的设计过程和设计方法进行了研究。以轮式装载机的产品模块为例,对模块结构设计、模块变型设计方法和模块接口设计进行了分析。
     (9)开发了面向轮式装载机的机电产品模块化设计平台,对相关研究成果进行了应用验证,完成了轮式装载机模块化设计的工程背景分析、机电产品模块化设计平台的总体设计以及相关组成系统设计。平台具备对产品及其零部件和模块进行编码管理、模块管理、需求管理等功能,同时基于轮式装载机的多层次配置方法实现了轮式装载机快速配置设计。
     通过本论文研究,解决了复杂机电产品模块化设计中模块划分、模块相似性度量及应用、模块化产品配置等关键技术,主要成果有:提出了适合于复杂机电产品的模块划分方法,具有计算量小和模块划分结果更加客观、合理等特点;提出了模块相似性及其度量方法并应用于模块重复性判别和模块重用度优化;提出了模块化产品核心平台的定义和模块化产品的多层次配置方法,能有效提高产品的配置效率;并将研究成果成功应用于轮式装载机的模块化设计。
With the improvement of the people's living standard and development of economic globalization and product diversification, the customers'demands show a diversified and personalized features, the customers'demands in low-cost, high quality and personalization aspects have become the serious challenges jointly faced in current manufacturing industry, modular design and manufacture are the important approaches to meet these challenges. The modular design is used to quickly combine into the individuation products which can satisfy the demand of the customers by the reasonable product modularization system and also reduce cost due to the batch production and management of the universal modules so as to effectively resolve the contradiction between low cost and high quality of the products and satisfaction of the individuation demands. This paper conducts the research on key technologies of the modular design such as modular division method of complex mechantronic products, the metrics method of the module parameter similarity, configuration design of the modular products etc., and carries out the application research on the modular design of the wheel loaders of certain enterprise by combining the practice. The specific research contents include:
     (1) A min-max partition modularity method suiting complex product is proposed in this paper. Firstly, present the definition of min-max partition, then execute the primarily partition of complex products according to various complex relationships between parts and components to obtain its min and max partitions, thirdly, with these min and max partitions classify the parts and components of the complex products into different groups, then in these groups carry out the fuzzy clustering analysis using the min partition subsets as calculating unit, finally obtain the results-critical value according to the modularity polymerization degree. This method has the advantage of minimum calculation, optimum critical value and reasonable weighting coefficient. At the end, this method is applied to a wheel loaders to demonstrate its rationality and effectiveness.
     (2) A new modular division method based on Bill of Material (BOW) and degree of modularization (DM) is proposed in this paper. Product structure tree (PST) consisted of nodes (part or parts) is formed based on the BOM of complex products, correlation matrix (CM) and correlation graph (CG) is calculated through an analysis of relativity of geometric structure, functional and physics, the degree of modularization (DM) is defined and calculated based on CM and CG. With the optimization of DM (include the minimum and average of DM), the modular is divided in the range of PST. As an example, the methods were applied to the working unit of loaders, and the method was verified.
     (3) The pretreatment requirement of the module division of the wheel loaders and its unique principle of the module division are researched, the module division is performed for the wheel loaders by using the relevant module division method in this paper from multiple levels, the product is divided into17one-level modules and77two-level modules.
     (4) The structure similarity and parameter similarity of the electromechanical product module are researched, the metrics method of the similarities of the module structure and parameter and the module uniqueness discrimination method based on the structure similarity are proposed. The coding method and network modeling method of the module assembly type are proposed, the weighted network model is established by taking typical module for an example. The comparative intersection method is focused on research, the similarity metrics and matching method of the assembly relationship are given. Based on the similarity and matching of the assembly relationship, the method to strengthen the network matching and similarity measure is proposed and used to discriminate the module uniqueness.
     (5) The metrics method of the module parameter similarity and module reuse degree optimization method are researched. An optimization method of module reuse degree of module-base is proposed based on the calculation of the similarity. Firstly, the definitions of module-base, module reuse degree, similarity of module-case, similarity matrix and cluster center are introduced, and the similarity matrix are obtained by the calculation of the similarity. Then, the redundant case of module was eliminated through cluster analysis of module-base to improve the reuse degree of the module. Lastly, this method is applied to the module-base of bucket of wheel loader to demonstrate its rationality and effectiveness. With the demand of cluster analysis,12kinds of redundant case can be eliminated from the module-base while the initial number of cases is39, and the reuse degree was raised to44.4%.
     (6) Multi-level configuration method of the modular products is demonstrated according to the characteristics of the modular products. First, the customers'demands are divided into two types namely binding demand and selective demand, then configuration design of the modular products is presented from the multiple levels such as core platform and customized module etc. based on the analysis of the customers'demands. This paper focuses on research on the design and configuration method of core platform of the modular products, customized module and configuration method. The application research is conducted on the modular design taking the wheel loaders as the application objects.
     (7) The modular system design approach of the complex mechantronic products has been researched, the stages such as modular preparation of the modular design of the complex mechantronic products, modular planning, modular process and module configuration design etc. are analyzed. The four types innovation method of the products based on modularization is demonstrated.
     (8) The design methods of the module and module library of the electromechanical products are researched, the module design of the electromechanical products is proposed from two aspects namely module structure and module interface, construction of the module library of the electromechanical products is proposed, including module library modeling and module library database modeling, the design process and design method of the module and module library are researched. Taking the product module of the wheel loaders for an example, the module structure design, module variant design method and module interface design are analyzed.
     (9) The modular design platform of the electromechanical products for the wheel loaders is developed, the application verification is performed on the related research findings, engineering background analysis of the modular design of the wheel loaders, overall design of the modular design platform of the electromechanical products and the relevant design of the composition system are completed. The platform has the functions of coding management, module management and demand management etc. for the products and its components and modules, at the same time, based on multi-level configuration method of the wheel loaders, the rapid configuration design method of the wheel loaders is realized.
     Key technologies such as module division, the metrics method of the module parameter similarity and its application, modular product configuration etc. are solved in the modular design of complex mechantronic products by research of this paper, main results are:modular division method suited to the complex mechantronic products is presented, the characteristics such as small calculation amount, more objective and reasonable module division results etc. are possessed; the module similarity and metrics method are proposed and applied to discriminate the module repeatability and module reuse optimization; the definition of the core platform of the modular products and multi-level configuration method of the modular products are presented to effectively improve the configuration efficiency of the products. The research results have been successfully applied to the modular design of the wheel loaders.
引文
[1]钟掘.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社,2007.
    [2]张根保,曾海峰,王国强等.复杂机电产品质量特性解耦模型[J].重庆大学学报,2010,33(5):7-15.
    [3]MARENGO L, PASQUALI C, VALENTE M. Appropriability, patents, and rates of innovation in complex products industries[J]. Economics of Innovation & New Technology,2012,21(8):753-773.
    [4]魏喆.性能驱动的复杂机电产品设计理论和方法及其在大型注塑装备中的应用[D].杭州;浙江大学,2009.
    [5]刘晓平,唐益明,秦晋等.概念设计中基于扩展功能矩阵的功能求解方法[J].计算机辅助设计与图形学学报,2007,19(12):1610-1617.
    [6]祁国宁,顾新建,谭建荣.大批量定制技术及其应用[M].北京:机械工业出版社,2003.
    [7]贾延林.模块化设计[M].北京:机械工业出版社,1993.
    [8]童时中.模块化原理设计方法及应用[M].北京:中国标准出版社,1999.
    [9]HUANG C-C. Overview of Modular Product Development[M]. Proceedings of the National Science Council China.2000:149-165.
    [10]祁国宁,顾新建,杨青海等.大批量定制原理及关键技术研究[J].计算机集成制造系统,2003,9(9):776-783.
    [11]杨青海,祁国宁.大批量定制原理[J].机械工程学报,2007,43(11):89-97.
    [12]SVENSSON C, BARFOD A. Limits and opportunities in mass customization for "build to order" SMEs[J]. Computers in Industry 2002,149(1):77-89.
    [13]KOTLER P. From mass marketing to mass customization[J]. Strategy and Leadership 1989,17(5): 10-47.
    [14]J. P B. Mass Customization:The New Frontier in Business Competition[M]. Boston:Harvard Business School Press,1993.
    [15]FOGLIATTO F S, SILVEIRA G J C D, BORENSTEIN D. The mass customization decade:An updated review of the literature[J]. International Journal of Production Economics,2012,138(1): 14-25.
    [16]TIEN J M. Manufacturing and services:From mass production to mass customization[J]. Journal of Systems Science and Systems Engineering 2011,20(2):129-154.
    [17]MOON S K, SHU J, SIMPSON T, et al. A module-based service model for mass customization: service family design[J]. ⅡE Transactions 2011,43(3):153-163.
    『18]刘琼.而向大批量定制的产品配置技术及系统研究[D];合肥工业大学,2008.
    [19]DURAY R, WARDB P T, MILLIGANB G W, et al. Approaches to mass customization: configurations and empirical validation [J]. Journal of Operations Management 2000,18(6):605-625.
    [20]FELFERNIG A, FRIEDRICH G, JANNACH D. Conceptual modeling for configuration of mass-customizable products [J]. Artificial Intelligence in Engineering,2001,15(2):165-176.
    [21]DOROGOVTSEV S N, MENDES J F F. Evolution of networks[J]. Advances in Physics 2002,51 (4): 1079-1181.
    [22]郭雷,许晓鸣.复杂网络[M].上海:上海科技教育出版社,2006.
    [23]胡海波,王林.幂律分布研究简史[J].物理,2005,12:889-96.
    [24]SH S. Exploring complex networks[J]. NATURE,2001,410(6825):268-276.
    [25]COSTA L D F, TRAVIESO G. Exploring complex networks through random walks[J]. Physical Review E 2007,75(7):1-5.
    [26]汪小帆,李翔,陈关荣.复杂网络理论及应用[M].北京:清华大学出版社,2006.
    [27]NEWMAN M E J. The Structure and Function of Complex Networks[J]. SIAM Review 2003,45(2): 167-256.
    [28]DJ W, SH S. Collective dynamics of small-world networks[J]. NATURE 1998,393(6684):440-442.
    [29]ALBERT-L SZL BARAB SI. Emergence of Scaling in Random Networks[J]. Science Magazine 1999, 286(5439):509-512.
    [30]F S, C F A, M R. Modularity, product variety, production volume, and component sourcing: theorizing beyond generic prescriptions[J]. Journal of Operation ManagementJournal of Operation Management,2002,20(5):549-575.
    [31]陈向东,严宏,刘莹.集成创新和模块创新一创新活动的战略性互补[J].中国软科学,2002,12:52-56.
    [32]青木昌彦,安藤晴彦.模块时代:新产业结构的本质[M].上海:上海远东出版社,2003.
    [33]李春田.现代标准化前沿--“模块化”研究报告(1)[J].信息技术与标准化,2007,3:52-58.
    [34]胡维刚.机床模块化设计及其智能支持系统的研究与实践[D].武汉;华中理工大学,1993.
    [35]侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报,2004,40(1):56-60.
    [36]候亮.机械产品广义模块化设计理论研究及其在液压机产品中的应用[D].天津;天津大学,2002.
    [37]G P, W B. Engineering design:a systematic approach[M]. Berlin:SPringer-Verlag,1996.
    [38]M C C. Protocol:new tool for product innovation[J]. The Journal of Product Innovation Managemnet, 1984,1(2):85-91.
    [39]DAHMUS J B, GONZALEZ-ZUGASTI J P, OTTO K N. Modular product architecture[J]. Design Studies 2001,22(5):409-424.
    [40]DU X, JIAO J, TSENG M M. Graph grammar based product family modeling[J]. Concurrent Engineering 2002,10(2):113-128.
    [41]JOSE A, TOLLENAERE M. Modular and platform methods for product family design:literature analysis[J], Journal of Intelligent Manufacturing 2005,16(3):371-390.
    [42]TSAIA Y-T, WANGB K-S. The development of modular-based design in considering technology complexity[J]. European Journal of Operational Research,1999,119(3):692-703.
    [43]HASHEMIAN P G M, RIVINA S S A E. An Integrated Modular Design Methodology for Life-Cycle Engineering[J]. CIRP Annals-Manufacturing Technology 1997,46(1):71-74.
    [44]P S N. The principle of design[M]. Oxford:Oxford University Press,1990.
    [45]B S R. Towards a theory of modular design[D]; The University of Texas at Austin,1997.
    [46]BI Z M, ZHANG W J. Modularity technology in manufacturing:taxonomy and issues[J]. International Journal of Manufacturing Technology,2001,15(5):381-390.
    [47]HWANG S-C, CHOI Y. Modular design of a product to maximize customer satisfaction with respect to body size:A case study for designing office chair[J]. International Journal of Precision Engineering and Manufacturing,2011,12(5):791-796.
    [48]徐燕申,候亮.液压机广义模块化设计原理及其应用[J].机械设计,2007,7:1-4.
    [49]高卫国,徐燕申,陈永亮等.广义模块化设计原理及方法[J].机械工程学报,2007,43(6):48-53.
    [50]李江,钟诗胜,刘金等.基于可拓理论的模块化设计方法研究[J].计算机集成制造系统2006,12(5):641-647.
    [51]GERSHENSON J K, PRASAD G J, ALLAMNENI S. Modular Product Design:A Life-cycle View[J]. Journal of Integrated Design and Process Science 1999,3(4):13-26.
    [52]LI J, SHI M, SUN N. Research on the Method of Modular Design Based on Product Overall Lifecycle[J]. Modern Applied Science,2007,1(3):27-32.
    [53]TSENGA H-E, CHANGB C-C, LIA J-D. Modula design to support green life-cycle engineering[J]. Expert Systems with Applications,2008,34(4):2524-2537.
    [54]RECCHIONI M, MANDORLI F. Supporting development of modular products utilising simplified LCA and fuzzy logic[J]. Int J Sustainable Manufacturing,2009,1(4):396-414.
    [55]SAND J C, GU P, WATSON G. HOME:House Of Modular Enhancement-a Tool for Modular Product Redesign[J]. Concurrent Engineering 2002,10(2):153-164.
    [56]YU S, YANG Q, TAO J, et al. Product modular design incorporating life cycle issues-Group Genetic Algorithm (GGA) based method[J]. Journal of Cleaner Production,2011,19(9-10):1016-1032.
    [57]KRENG V B, LEE T-P. Modular product design with grouping genetic algorithm—a case study[J]. Computers and Industrial Engineering 2004,46(3):443-460.
    [58]HE D W, KUSIAK A. Performance analysis of modular products[J]. International Journal of Production Research 1996,34(1):253-272.
    [59]KUSIAK A. Integrated product and process design:a modularity perspective[J]. Journal of Engineering Design 2002,13(3):223-231.
    [60]KHOO L P, SITUMDRANG T D. Solving the assembly configuration problem for modular products using an immune algorithm approach[J]. International Journal of Production Research 2003,41(15): 3419-3434.
    [61]BAO-TONG L, JUN H, TING L. Modular Design of Complex Product Based on the Triple Fusion of Function/Feature/Knowledge[J]. J Shanghai Jiaotong Univ,2010,15(5):563-570.
    [62]EMMATTY F J, SARMAH S P. Modular product development through platform-based design and DFMA[J]. Journal of Engineering Design,2012,23(9):696-714.
    [63]YAN J, FENG C, CHENG K. Sustainability-oriented product modular design using kernel-based fuzzy c-means clustering and genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2012,226(10):1635-1647.
    [64]龚京宗.基于FPBS的机械系统模块化设计方法与应用研究[D].长沙;国防科学技术大学,2008.
    [65]宗鸣镝,蔡颖,刘旭东.产品模块化设计中的多角度、分级模块划分方法[J].北京理工大学学报,2003,23(5):552-556.
    [66]ERIXON G, YXKULLB A V, ARNSTR MC A. Modularity-the Basis for Product and Factory Reengineering[J]. CIRP Annals-Manufacturing Technology,1996,45(1):1-6.
    [67]高广达.虚拟模块化设计技术的研究及其在数控机床中的应用[D].天津;天津大学,2001.
    [68]毛雨辉.基于一种改进聚类算法的雷达导引头产品功能模块划分方法研究[J].中国机械工程,2010,21(3):314-319.
    [69]程贤福,陈诚.基于设计关联矩阵与可拓聚类的产品模块划分方法[J].机械设计,2012,29(1):5-9.
    [70]高飞,肖刚,潘双夏等.产品功能模块划分方法[J].机械工程学报,2007,43(5):29-35.
    [71]高飞,潘双夏,冯培恩.基于广义有向图的产品功能建模方法研究[J].浙江大学学报(工学版),2005,39(5):648-651.
    [72]STONEA R B, WOODB K L, CRAWFORDB R H. Using quantitative functional models to develop Product architecture[J]. Design Studies 2000,21(3):239-260.
    [73]STONEA R B, WOODB K L, CRAWFORDB R H. A heuristic method for identifying modules for product architectures[J]. Design Studies 2000,21(1):5-31.
    [74]姜慧,徐燕申,谢艳.机械产品模块划分方法的研究[J].制造技术与机床,1999,3:10-12.
    [75]周开俊,李东波,童一飞.面向产品创新设计的功能模块划分方法[J].计算机辅助设计与图形学学报,2007,19(1):73-77.
    [76]张宝辉,龚京忠,李国喜等.产品模块化设计中的功能模块划分方法研究[J].组合机床与自动化加工技术,2004,9:55-57.
    [77]李军鹏,赵韩,陈兴玉等.基于混合PSO的复杂产品功能模块划分方法[J].合肥工业大学学报(自然科学版),2011,34:1441-1445.
    [78]K. U, K. T. Fundamentals of product modularity [J]. Issues in Design/Manufacture Integration 1991, 39:73-79.
    [79]SALHIEH S M, KAMRANI A K. Macro level product development using design for modularity[J]. Robotics and Computer-Integrated Manufacturing 1999,15(4):319-329.
    [80]王海军,孙宝元,王吉军等.面向大规模定制的产品模块化设计方法[J].计算机集成制造系统,2004,10(10):1171-1176.
    [81]王海军,魏小鹏.面向规模化产品簇的数值规划方法[J].计算机辅助设计与图形学学报,2005,17(3):473-478.
    [82]GU P, SOSALE S. Product modularization for life cycle engineering[J]. Robotics and Computer-Integrated Manufacturing 1999,15(5):387-401.
    [83]UMEDA Y, FUKUSHIGE S, TONOIKE K, et al. Product modularity for life cycle design[J]. CIRP Annals-Manufacturing Technology 2008,57(1):13-16.
    [84]NEWCOMB P J, ROSEN B B A D W. Implications of Modularity on Product Design for the Life Cycle[J]. Journal of Mechanical Design 1998,120(3):483-490.
    [85]吕利勇,乔立红,王田苗.面向产品生命周期的产品模块化分解方法研究[J].计算机集成制造 系统,2006,12(4):546-551.
    [86]潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究[J].机械工程学报,2003,39(7):1-6.
    [87]戚赟徽,王淑旺,刘光复等.面向能量优化的产品结构要素组合设计[J].机械工程学报,2008,44(1):161-167.
    [88]SOSA M E, EPPINGER S D, ROWLES C M. A Network Approach to Define Modularity of Components in Complex Products[J]. Journal of Mechanical Design 2007,129(11):1118-1129.
    [89]M.M T, J J. A Module Identification Approach to the Electrical Design of Electronic Products by Clustering Analysis of the Design Matrix[J]. Computers and Industrial Engineering 1997,33(1): 229-233.
    [90]HUANG C-C, KUSIAK A. Modularity in design of products and systems[C].6th Industrial Engineering Research Conference, Proceedings. Miami Bench, USA.1998:748-753.
    [91]SUH N P. Axiomatic Design Theory for Systems[J]. Research in Engineering Design 1998,10(4): 189-209.
    [92]HOLMQVIST T K P, PERSSON M L. Analysis and improvement of product modularization methods: Their ability to deal with complex products[J]. Systems Engineering 2003,3:195-209.
    [93]樊蓓蓓,祁国宁,纪杨建.基于复杂网络的产品族模块化过程[J].农业机械学报,2009,40(7):187-191.
    [94]唐涛,刘志峰,刘光复等.绿色模块化设计方法研究[J].机械工程学报,2003,39(11):149-154.
    [95]祁卓娅,王建正,韩新民.模块柔性划分方法[J].机械工程学报,2007,43(1):87-94.
    [96]贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160-168.
    [97]刘小鹏,张卫国,钟毅芳.机床模块化设计中的模块创建及应用[J].华中理工大学学报,2000,28(5):16-18.
    [98]BROWN D C. Defining configuring[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1998,12(4):301-305.
    [99]邵伟平,郝永平,刘永贤等.基于产品族可变型结构的配置管理研究[J].计算机集成制造系统,2006,12(6):876-881.
    [100]刘晓冰,袁长峰,高天一等.基于特征面向客户的层次型产品配置模型『J].计算机集成制造系统,2003,9(7):527-531
    [101]覃燕红,魏光兴.模块化产品智能配置理论与方法[M].重庆:西南交通大学出版社,2010.
    [102]SOININEN T, TIIHONEN J, MANNISTO T, et al. Towards a general ontology of configuration[J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING 1998,12(4):357-372.
    [103]JIANHUA D, TIANYUAN X, IU Q G. Study on an Configuration Framework for Product Family[J]. HIGH TECHNOLOGY LETTERS,2001,7(4):58-62.
    [104]王世伟,谭建荣.基于GBOM的产品配置研究[J].计算机辅助设计与图形学学报,2004,16(5):126-130.
    [105]吴健,陈刚,尹建伟等.基于本体的产品配置知识共享[J].浙江大学学报(工学版),2004,38(4):478-483.
    [106]G NTER A, K HN C. Knowledge-Based Configuration:Survey and Future Directions[C]. Proceedings of the 5th Biannual German Conference on Knowledge-Based Systems.1999:47-66.
    [107]T. F. Theory and practice of constraint handling rules[J]. The Journal of Logic Programming 1998, 37(1):95-138.
    [108]MCGUINNESS D L, WRIGHT J R. Conceptual modelling for configuration:a description logic-based approach[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1998,12(4):333-344.
    [109]CHAO P Y, CHEN T T. Analysis of assembly through product configuration [J]. Computers in Industry,2001,44(2):189-203.
    [110]张劲松,王启富,万立等.基于本体的产品配置建模研究[J].计算机集成制造系统,2003,9(5):344-350.
    [111]JOHN U. Solving large configuration problems efficiently by clustering the ConBaCon model[C]. Proceedings of the 13th International Conference on Industrial and Engineering Applocations of Artificial Intelligence and Expert Systems(IEA/A IE2000). Berlin.Germany; Springer.2000:396-405.
    [112]李伟,张孟青,刘光复.基于约束满足问题的产品配置方法[J].农业机械学报,2005,36(7):126-130.
    [113]FREUDER E C, LIKITVIVATANAVONG C, MORETTI M, et al. Computing Explanations and Implications in Preference-Based Configurators[J]. Lecture Notes in Computer Science 2003, 2627:315-336.
    [114]X.J. G, GN. Q, Z.X. Y, et al. Research of the optimization methods for mass customization(MC)[J]. Journal of Materials Processing Technology 2002,129(1):507-512.
    [115]FELFERNIG A, FRIDRICH G, JANNACH D, et al. Consistency-based diagnosis of configuration knowledge bases[J]. Artificial Intelligence,2004,152(2):213-234.
    [116]WIELINGA B, SCHREIBER G. Configuration-design Problem Solving[J]. IEEE Expert Intelligent Systems and Their Applications 1997,12(2):49-64.
    [117]王日君.基于运动学图谱的石材加工设备模块化设计技术的研究[D];山东大学,2009.
    [118]王海军,孙宝元,张建明等.客户需求驱动的模块化产品配置设计[J].机械工程学报,2005,41(4):85-91.
    [119]王海军,孙宝元,张强等.支持个性化产品定制的变型配置设计方法[J].机械工程学报,2006,42(1):90-97.
    [120]FUJITA K, AKAGI S, YONEDA T, et al. Simultaneous Optimization of Product Family Sharing System Structure and Configuration[C]. Proceedings of ASME Design Engineering Technical Conferences. Atlanta.1998.
    [121]FUJITA K, SAKAGUCHI H, AKAGI S. Product variety deployment and its optimization under modular architecture and module commonalization[C].1999 ASME Design Engineering Technical Conferences (DETC99).1999.
    [122]FUJITA K. Product variety optimization under modular architecture[J]. COMPUTER AIDED DESIGN,2002,34(12):953-965.
    [123]张利,张建军,李传斌等.模块化产品配置中的模块选择策略[J].农业机械学报,2007,38(2):134-138.
    [124]刘琼,赵韩,郑彩霞等.模块化产品优化配置问题的混合PSO求解方法[J].农业机械学报,2008,39(11):117-121.
    [125]CC. H. A multi-agent approach to collaborative design of modular products[J]. Concurrent Engineering, Research and Applications 2004,12(1):39-47.
    [126]DOBRESCU G, REICH Y. Progressive sharing of modules among product variants[J]. Computer-Aided Design,2003,35(9):791-806.
    [127]OGRADY P, LIANG W-Y. An object oriented approach to design with modules[J]. Computer Integrated Manufacturing Systems 1998,11(4):267-283.
    [128]HE D W, KUSIAK A. Designing an assembly line for modular products[J]. Computers and Industrial Engineering 1998,34(1):37-52.
    [129]CHAKRAVARTY A K, BALAKRISHNAN N. Achieving product variety through optimal choice of module variations[J]. HE Transactions 2001,33(7):587-598.
    [130]GONZALEZ-ZUGASTI J P, OTTO K N. Modular platform-based product family design[C].26th Design Automation Conference, Baltimore.2000.
    [131]慈元卓,龚京忠,李国喜等.产品模块配置空间构建研究[J].组合机床与自动化加工技术,2004,8:44-45.
    [132]李国喜,慈元卓,龚京忠等.面向产品配置的模块求解策略研究[J].国防科技大学学报,2004,26(5):85-89.
    [133]钟诗胜,李江,林琳.基于AHP法的模块化产品结构配置模型与应用[J].哈尔滨工业大学学报,2003,35(12):146]-]464.
    [134]LEUKEL J, SCHMITZ V, DORLOFF F-D. A Modeling Approach for Product Classification Systems[C]. roceedings of the 13th International Workshop on Database and Expert Systems Applications (DEXA'02).2002.
    [135]戴相富.石油系列绞车模块化设计与仿真研究[D];中国石油大学,2009.
    [136]张怀亭,李连刚.装载机产品模块化浅探[J].机械工业标准化与质量,2010,10:46-48.
    [137]MENG X, JIANG Z, HUANG G. On the module identification for product family development[J]. The International Journal of Advanced Manufacturing Technology 2007,35(1-2):26-40.
    [138]KONG F B, MING X G, WANG L, et al. Framework of a representation model for modular product development[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2012,226(5):941-949.
    [139]祁卓娅.机械产品模块化设计方法研究[D];机械科学研究总院,2006.
    [140]ITO Y, SHINNO H. Structural description and similarity evaluation of the structural configuration in machine tools[J]. International Journal of Machine Tool Design and Research 1982,22(2):97-110.
    [141]滕晓艳,张家泰.产品模块化设计方法的研究『J].应用科技,2006,33(2):62-64.
    [142]陈兴玉.面向产品族的模块化产品设计理论与方法研究[D];合肥工业大学,2009.
    [143]SINGH R, XU J, BERGER B. Global alignment of multiple protein interaction networks with application to functional orthology detection[J]. Proceedings of the National Academy of Sciences, 2008,105(35):12763-12678.
    [144]XUAN Q, FANG, WU T-J. Iterative node matching between complex networks[J]. Journal of Physics A:Mathematical and Theoretical,2010,43(18):395002.
    [145]DU F, XUAN Q, WU T-J. ONE-TO-MANY NODE MATCHING BETWEEN COMPLEX NETWORKS[J]. Advances in Complex System,2010,13(6):725-739.
    [146]杜方,宣琦,吴铁军.基于相似度传播的复杂网络间节点匹配算法[J].信息与控制,2011,40(3):331-337.
    [147]XUAN Q, WU T-J. Node matching between complex networks[J]. Phys Rev E,2009,80(2): 6103-6111.
    [148]ANASTASSIOU, A G Fuzzy Mathematics:Approximation Theory[M]. Berlin:Springer-Verlag Berlin Heidelberg,2010.
    [149]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中理工大学出版社,2000.
    [150]AGARD B, BASSETTO S. Modular design of product families for quality and cost[J]. International Journal of Production Research,2013,51(6):1648-1667.
    [151]J. J, M.M. T, V.G. D, et al. Product family modeling for mass customization[J]. Computers and Industrial Engineering 1998,35(3):495-498.
    [152]李春田.现代标准化前沿——“模块化”研究报告(7)[J].信息技术与标准化,2007,10:49-52.
    [153]MEYER M H. The Power of Product Platforms.Building Value and Cost Leadership[M]. New York: Free Press,,1997.
    [154]SIMPSON T W, MAIER J R A, MISTREE F. Product platform design:method and application[J]. Research in Engineering Design 2001,13(1):2-22.
    [155]SIDDIQUE Z, ROSEN D W. Product family configuration reasoning using discrete design spaces[C]. 12th International Conference on Design Theory and Methodology. Baltimore.2000.
    [156]王爱民,孟明辰,黄靖远.面向产品族规划的核心平台数学描述及确定方法[J].清华大学学报(自然科学版),2002,42(8):1049-1052.
    [157]肖刚,包志炎,高飞等.基于相似实例的板构件产品配置方法[J].计算机集成制造系统,2010,16(2):233-238.
    [158]WATSON I, PERERA S. Case-based design:Areview and analysis of building design applications[J]. AIEDAM,1997,11(1):59-87.
    [159]MCKENZIEA F D, GONZALEZA A J, MORRISB R. An integrated model-based approach for real-time on-line diagnosis of complex systems[J]. Engineering Applications of Artificial Intelligence, 1998,11(2):279-291.
    [160]程强.面向可适应性的产品模块化设计方法与应用研究[D];华中科技大学,2009.
    [161]蒋寿伟.机械设计手册[M].北京:机械工业出版社,2004.
    [162]侯亮.机械产品模块化开发原理、方法及其应用实践[D].杭州;浙江大学,2003.
    [163]余军合,祁国宁.事物特性表支持的变型设计方法[J].农业机械学报,2005,36(4):107-111.
    [164]余军合,祁国宁.基于关联事物特性表的变型设计技术研究[J].机械科学与技术,2006,25(5): 571-575.
    [165]鲁玉军,余军合,祁国宁等.基于事物特性表的产品变型设计[J].计算机集成制造系统,2003,9(10):840-844.
    [166]ANDERSSON S, SELLGREN U. REPRESENTATION AND USE OF FUNCTIONAL SURFACES [C].7th Workshop on Product Structuring-Product Platform:Chalmers University of TechnologyDevelopment.2004.
    [167]郑堤,唐可洪.机电一体化设计基础[M].北京:机械工业出版社,1997.
    [168]MIKKOLA J H. Modularization assessment of product architecture[M]. Frederiksberg:DRUID Denmark,2000.
    [169]王平,詹俊峰.支持网络信息共享的标准零件库[J].世界标准化与质量管理,2001,10):30-2.
    [170]马军,祁国宁,顾新建等.网络化零件库资源集成框架及其关键技术[J].机械工程学报,2007,43(8):91-96.
    [171]施进发,游理华,梁锡昌.机械模块学[M].重庆:重庆出版社,1997.
    [172]刘璇.面向特种机器人的模块化设计方法研究[D];河北工业大学,2010.
    [173]张宝辉.模块化总体设计研究[D];国防科学技术大学,2004.
    [174]沈惠平.机械创新设计及其研究[J].机械科学与技术,1997,16(5):43-47.
    [175]张付英.机械产品创新设计信息化建模、求解及其关键技术研究[D];天津大学,2004.
    []76]桂彬旺.基于模块化的复杂产品系统创新因素与作用路径研究[D];浙江大学,2006.
    [177]LANGLOIS R N, ROBERTSON P L. Networks and innovation in a modular system:Lessons from the microcomputer and stereo component industries[J]. Research Policy 1992,21(4):297-313.
    [178]P. O G, W.-Y. L. An Internet-Based Search Formalism for Design with Modules[J]. Computers and Industrial Engineering 1998,35(1):13-16.
    [179]张越超.柳工ZLG50G型特种高原装载机[J].工程机械与维修,2005,15:128.
    [180]顾巧祥.机电产品模块化设计关键技术研究[D].杭州;浙江大学,2010.
    [181]刘曦泽.面向复杂机电产品的模块化产品平台设计方法学研究[D].杭州;浙江大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700