用户名: 密码: 验证码:
低频VI型弯张小尺寸声源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前的水声装备呈现出越来越明显的向低频发展的趋势,水声装备对于低频声源的需求也正变得越来越迫切。低频声源在平台使用时往往对声源的体积和重量有比较苛刻的要求,所以能工作于低频的小尺寸的声源技术是当前换能器领域研究的热点之一,本文一方面研究了一种新型的小尺寸的Ⅵ型弯张换能器单元的设计与制造,并成功研制出了相应的换能器单元样品;另一方面将小型Ⅵ型弯张换能器单元应用于组合式MPS声源系统的设计,研究了构造更低工作频率声源的方法。
     在小尺寸的换能器单元的研究方面,本文对当前主要的低频发射换能器技术展开了深入调查和研究,选择了Ⅵ型弯张换能器作为本文的研究对象。在换能器单元设计方面充分借鉴了当前较热门的Cymbal型Ⅴ型弯张换能器的设计思路,并对Ⅵ型弯张换能器的结构进行了大胆的改进。研究建立了基于非等厚弯张壳体的参数化模型,小型Ⅵ型弯张换能器壳体的结构形式基本都能通过参数调节来实现,这为该类型换能器的设计和结构优化创造了便利条件。在换能器驱动源的设计方面采用压电陶瓷拼镶圆环取代纯压电陶瓷圆环,有效地解决了以往元件对Ⅵ型弯张换能器在尺寸和制造工艺方面的限制,使得换能器不仅在性能方面有明显的提高、而且更加便于低频声源的设计和制造。对小型Ⅵ型弯张换能器的制造工艺进行了研究,并设计研制了若干个小型Ⅵ型弯张换能器单元样品,换能器单元直径100mm、厚度35mm、重量不到1kg,对其性能进行了测试,单元工作频率3.5kHz,发送电压响应级125dB左右,工作电压900V时声源级181dB以上。对换能器单元进行了水压试验,换能器单元能够经受10MPa以上的高静水压而不受损伤,表现出卓越的深水适应性。研究过程表明本文是对小型Ⅵ型弯张换能器设计和制造的一次较为成功的探索研究。
     在组合式低频声源的研究方面,参考加拿大超电公司组合式MPS声源的设计思路,将所研制的4个小型Ⅵ型弯张换能器单元近距离组合使用,利用换能器单元之间的互作用,形成一个新的低频声源系统,这个声源系统的工作频率明显低于单元的工作频率,当换能器单元间间距为0.8mm时,该组合式声源的工作频率降低至2kHz以下,远低于单元的工作频率,研究的4单元组合式声源系统在1700Hz加565V电压时声源级181dB以上。
     本文的研究表明,组合式声源技术是利用小尺寸发射换能器单元构建小尺寸低频声源的灵活而有效的手段,本文所研制的小型Ⅵ型弯张换能器单元本身体积小巧、低频声学性能和深水工作性能优良,并能够用于组合式MPS声源的设计,以制造更低工作频率的低频发射声源。
The frequencies of the underwater Acoustic equipments are becoming lower and lower.And the demand of underwater acoustic equipments for low frequency sound source is alsobecoming more and more urgent. When the low frequency sound sources were used on theplatforms, the requirements for the volume and weight of sound sources were usually verystrict. So the design technologies for the small size transmission transducers which could beused under very low frequency were one of the hotspots in current transducer research field.The design and manufacture of a novel class Ⅵ small-sized flextensional transducer wasstudied in this paper, and several corresponding minisize class Ⅵ flextensional transducerswere successfully produced. On the other hand, the minisize class Ⅵ flextensionaltransducers were used for the design of MPS (Modular projector System). By these methodswe constructed a new sound source which could be operated under more low frequency.
     During the research and development of small-sized low frequency transducer, athorough investigation was carried out in the field of the technologies for the low frequencytransmission transducers. Then the class Ⅵ flextensional transducer became the researchobject of this paper. Within the design of this novel transducer, we make full use of thoseadvanced design ideas which were successfully used in the current popular Cymbalflextensional transducer. The structure of the conventional class Ⅵ flextensional transducerwas improved. A novel parametrical model for class Ⅵ flextensional shells with non-equalthickness was established during the study, and almost any kinds of class Ⅵ flextensionalshells can be achieved by adjusting the parameters of the model. The invention of theparametrical model brought great convenience for the design and optimization of this type oftransducer. In the aspect of the designing of the driving source of the transducer, we used PZTring with Inactive Segments substituted for pure PZT ring, which effectively overcame thelimitations of the size of PZT elements used in the class Ⅵ flextensional transducer. Withthis development, not only the performance of the transducer was significantly improved, butalso the design and manufacturing of the transducer become more convenient. Themanufacture technology of this novel minisize class Ⅵ transducer is studied, and several transducer unit samples were produced. Each transducer unit is100mm in diameter, less than35mm in thickness, no more than1kg in weight. The test of acoustic performance wasconducted, the working frequency of the transducer unit was about3.5kHz, and the TVL wasaround124dB. When the transmitting voltage was900V, the source level of the transducerunit would exceed181dB. The hydraulic test for transducer unit has been carried out, TheTransducer unit successfully survived under10MPa hydraulic test without any damage, whichexhibited its excellent deep-water adaptability. All these work shows that the research ondesign and manufacture of this novel minisize class Ⅵ flextensional transducer was ofsuccessfully.
     In the research of MPS low frequency projector, we refer to the ‘Modular ProjectorSystem' invention from Canada Ultra Electronics Company.4minisize class Ⅵflextensional transducer units were selected out to form the MPS. They were arranged withvery narrow gap, and by the interaction affections between the transducers, the4transducerschanged into one new sound source. Thus the work frequency of this new transducer wasobviously lower than that of the each unit’s. When the gap between each two transducers was0.8mm, the working frequency of the MPS transducer with4elements is reduced to below2kHz, much lower than the working frequency of the transducer unit. When the4units MPStransducer was applied with565V voltage at1700Hz, the source level would exceeded181dB.
     Studies involved in this paper showed that, the Modular Projector System technology isan effective and flexible method for constructing small size low frequency sound source. Thenovel minisize class Ⅵ transducer designed and produced in this paper has many advantages,such as small in volume, light in weight, beautiful low frequency acoustic properties andexcellent pressure resistant properties. prominently, it is suitable for being used for theconstruction of the Modular Projector System. By this means, powerful acoustic source withlower operating frequency might easily be achieved.
引文
[1]王荣津等.水声材料手册.科学出版社,北京,1983:15-17
    [2] E. Newnham, D. P. SKINNER, L. E. CROSS. Connectivity and piezoelectricpyroelectric composites. Mat Res Bull.1978, Vol13(5):525-536
    [3] Leslie Bowen, Richard Getilman, Daiel Fiore, Hong Pham, William Serwatka, CraigNear and Brain Pazol. DESIGN, FABRICATIONN, AND PROPETIES OFSONOPANEL1-3PIEZOCOMPOSITE TRANDUCERS. Feroelectrics,1996,Vol187:109-120
    [4] Richard Getilman, Daniel Fiore, Hong Pham, William Serwatka, and Lesli Bpwen.Manufacturing of1-3piezocomposite SonoPanel transduces. SPIE Vol2447:274-281
    [5] Thomas R. Howarth, and Robert Y. Ting. Electroacoustic Eevaculations of1-3Piezocomposite SonoPanel Materials. IEEE Trans. Ultranson. Ferroelec. Freq. Contr.2000,Vol47:886-894
    [6] Kim C. Benjamin. Recent advances in1-3piezoelectric polymer composite transducertechnology for auv/uuv acoustic imaging applications. Journal of Electroceramics,2002, Vol(8):145–154
    [7]徐玲芳,陈文,周静.1-3型压电复合材料研究现状与展望.陶瓷学报.2006,Vol27(1):145-150
    [8] Jones DF and Linberg JF,“Recent transduction developments in Canada and theUnited States”, Proceedings Institute of Acoustics,1995, vol17(3):15-33
    [9] Montgomery T C,Meyer R J,Bienert E M. Broadband Transcduction Implementationand System Impact. OCEANS2007Volume[C]:1-5
    [10] Zhu Houqlng,Liu Jlanguo,Wang Xmrong,Xing Yanhong,Zhang Hongping.Applications of Terfenol-D in China. Journal of Alloys and Compounds,1997,Vol258:49-52
    [11]莫喜平,刘建国,崔政等.800HzTerfenol-D鱼唇式弯张换能器.应用声学,2002,Vol21(2):12-15.
    [12]莫喜平. Terfenol-D鱼唇式弯张换能器.声学学报,2001, Vol26(1):25-28
    [13]莫喜平,姜广军. Ⅳ型弯张换能器振动辐射特性分析.应用声学,2001,Vol19(2):7-11
    [14]贺西平. Ⅶ型低频弯张稀土换能器研究[J].声学与电子工程,2004, Vol2:1-4
    [15]罗豪甦,许桂生,王评初等.压电单晶与电声换能技术.世界产品与技术/EC,2000, Vol10:54-57
    [16]孟洪,俞宏沛,罗豪甦等. PMNT及其在水声换能器中的应用.声学与电子工程,2004, Vol1:22-26
    [17] Seung-Eek Eagle Park, Wesley Hackenberger. High performance single crystalpiezoelectrics applications and issues. Current Opinion in Solid State and MaterialsScience,2002, Vol6:11-18
    [18] C. G. Oakley, M. J. Zipparo. Single crystal piezoelectrics:A revolutionary developmentfor transducers.IEEE Ultrasonics Symposium:2000,1157-1167
    [19]郭益平,罗豪甦,徐海清等.铅基弛豫型铁电单晶研究进展及其应用.人工晶体学报,2001, Vol30(4):330-336
    [20] D. Berlincourt. Ttansducrs Using Forced Transitions Between Ferroelectric andAntiferroelectric States. IEEE TRANSACTIONS ON SONICS ANDULTRASONICS,1966,Vol.SU-13(4):116-125
    [21] Pan W Y, Zhang Q M, Bhalla A S et al. Field-forced antiferroelectric to ferroelectricswitching in modified lead zirconate titanate stannate ceramics. J Am. Ceram. Soc.1989, Vol72(4):571-578
    [22]吕可佳,李俊宝,尹义龙,邢建新.基于相变换能机理的反铁电陶瓷水声换能器初探.应用声学,2010,29(2):93-99
    [23]吕可佳,李俊宝,尹义龙,邢建新.新型反铁电相变陶瓷弯张换能器.声学技术,2011, Vol30(3):377-379
    [24]国防科工委科技与质量司.声学计量.原子能出版社,2002,9:96-97
    [25]张文波,王明洲,郝保安.双激励宽带水声换能器理论研究.鱼雷技术,2007,Vol15(2):34-37
    [26]孙好广,俞宏沛,欧阳哲.双激励宽带换能器的有限元设计.声学与电子工程,2003(3):12-14
    [27] Patrick R. Downey, Marcelo J. Dapino, Ralph C. Smith.Analysis of hybridPMNTerfenol broadband transducers in mechanical series configuration. SPIE10thAnnual International Symposium on Smart Structures and Materials,2003:1-12
    [28]刘强,范进良,曹荣.压电/超磁致伸缩混合式宽带纵振换能器的线性数学模型.声学与电子工程,2005(1):12-15
    [29]莫喜平.功能材料及其应用于换能器技术的研究进展.物理,2009, Vol38(3):49-156
    [30]徐钧,俞宏沛,李建成.纵振换能器拓宽频带的方法综述.声学与电子工程,2003(4):17-21
    [31]黄树枝,王宏,王艳.一种自由溢流式压电圆环阵.声学技术,2003, Vol22(4):227-229
    [32]谢朝矩,姚国华.低频宽带大功率溢流式镶拼圆管换能器.应用声学,1994,Vol15(1):30-35
    [33] Y. Le Gall, D. Boucher, X. Lurton et al. A300Hz Janus-Helmholtz transducer forocean acoustic tomography.Engineering in Harmony with Ocean. proceedings,1993:1278-1281
    [34]腾超.宽带稀土Janus换能器研究.工学硕士论文,哈尔滨工程大学.2009
    [35]栾桂冬,张金铎,朱厚卿.低频大功率发射换能器的要求及限制.声学技术,1999,Vol18(2):54-58
    [36]莫喜平.第三讲让声纳系统耳目一新:新型水声换能器与换能器新技术,物理.2006, Vo135(5):414-419
    [37] Jean-Noel Decarpigny, Bernard Hamonic, Oscar Bryan Wilson. The Design ofLow-Frequency Underwater Acoustic Projectors: Present Status and Future Trends,IEEE Journal of Oceanic Engineering.1991, Vol16(1):107-122
    [38]贺西平,李斌,孙进才.弯张换能器的发展简史及展望.声学技术.1999,Vol18(1):46-49
    [39] L. H. Royster, The flextensional concept, a new approach to the design of underwateracoustic transducers. Applied Acoustics (Elsevier, London,1970):117-126
    [40] Kenneth D. Rolt. History of flextensional electroacoustic transducer. J. A. S.A.1990,Vol87(3):1340-1349
    [41]陈思,蓝宇.长轴加长型宽带弯张换能器.声学学报.2011, Vol36(6):638-644
    [42] Richard A. G. Fleming, Dennis F.Jones, Charles G.Reithmeier. Broadband ClusterTransducer for Underwater Acoustics Applications. J. Acoust. Soc. Am.2009,Vol126(5):2285-2293
    [43]王世全,夏铁坚,王月兵. Ⅲ型弯张换能器的有限元设计及结果验证.声学与电子工程.2004(4):1-5
    [44]房晋洪. Ⅲ型弯张换能器研制.声学技术.2009, Vol28(5):159-160
    [45]贺西平,王英民,张争气,腾舵.凹筒型换能器性能参数与开缝数之间的关系研究.应用声学.2008, Vol27(6):440-443
    [46] Christopher John A. Purcell. Folded Shell Projector(FSP). U.S.Patent5,805,529.Sep.8,1998
    [47] PAN Y Z, MO X P, LIU Y P et al. A New Design on Broadband FlextensionalTransducer. Applied Acoustics.2011, Vol72(11):836-840
    [48]范进良,唐良雨,沈铁东,朱伟敏,夏铁坚.一种低频Ⅳ型弯张换能器的设计.声学技术,2009, Vol28(6):33-36
    [49]蓝宇,王文芝,王智元,王伟. Ⅳ型弯张换能器的有限元法应力分析.哈尔滨工程大学学报,2001, Vol22(3):33-36
    [50]莫喜平.水声换能器研究新进展.应用声学.2012, Vol31(3):172-177
    [51] MO X P, ZHU H Q. A New Design of Low-frequency Broadband FlextensionalTransducer. Proceedings of2nd International Conference&Exhibition on UnderwaterAcoustics Measurements: Technologies and Results, June2007, Greece:1391
    [52]陈哲.双壳体弯张换能器研究.哈尔滨工程大学硕士学位论文.2008
    [53]吕可佳,李俊宝,邢建新,尹义龙.反铁电相变陶瓷低频发射换能器.声学学报.2011, Vol36(5):520-526
    [54] Xu Q C, Yoshikawas, Belsick.J.R, et al Piezoelectric composites with high sensitivityand high capacitance for use at high pressures IEEE Trans UFFC,1991;38(6):634-639
    [55] Jindong Zhang, W. Jack Hughes, Philippe Bouchilloux, R.J.Meyer Jr. A class Vflextensional transducer the cymbal. Ultrasonics1999,37:387–393
    [56] Aydin Dogan. Flextensional Moonie and Cymbal actuators. Thesis for the Degree ofDoctor of Philosophy. The Pennsylvania State University.1994:91-92
    [57] James F. Tressler, Wenwu Cao, Kenji Uchino, Robert E. Newnham. Ceramic-MetalComposite Transducers for Underwater Acoustic Applications. Proceeding of the TenthIEEE International Symposium on Applications of Ferroelectrics.1996,Vol(Ⅱ):561-564
    [58]郭栋,李龙土,桂治轮.陶瓷聚合物压电复合材料的最新进展.高分子材料科学与工程.2001, Vol17(6):44-47
    [59]李邓化,张良莹,姚熹.复合型拔式执行器的高位移性能研究.传感器技术学报.1999(3):214-217
    [60]李纪莲.一种新型压电陶瓷一金属复合换能器的研究.国防科技大学工学硕士论文,2005:51-59
    [61] CHEN Sheng, LIN Guan-cheng. Testing an improved Cymbal hydrophone. Journal ofMarine Science and Application2009(8):328-332
    [62]李邓化,张良莹,姚熹.水听器用钹式压电复合物的试验研究.功能材料与器件学报.2000, Vol6(1):13-18
    [63]李邓化,田红霞.复合连通型压电水声换能器基阵的研究.北京信息科技大学学报.2009, Vol24(4):1-5
    [64] James F.Tressler. Thomas R.Howarth. Walter L.Carney. Thin,lightweightelectroacoustic projector for low frequency underwater applications. J.Acoust.Soc.Am.2004.116(3):1536-1543
    [65]张丽萍.宽带Cymbal平面圆阵的研究.哈尔滨工程大学工学硕士学位论文.2009:18-47
    [66]邢建新. Cymbal换能器及成阵技术研究.哈尔滨工程大学工学硕士学位论文.2006:20-66
    [67] James F.Tressler, Robert E.Newnham. Capped ceramic underwater soundprojector:The “Cymbal” transducer. J.A.S.A.1999, Vol105(2):591-600
    [68] J. Zhang, A.C.Hladky-Hennion, W.Jack Hughes, R.E.Newnham. A miniature class Vflextensional Cymbal transducer with directional beam patterns:the double-driver.Utrasonics,2001, Vol39:91-95
    [69]吴石林,张玘,黄芝平,潘仲明.钹型换能器结构演化.机械与电子,2009(2):7-11
    [70] James F.Tressler, Robert E.Newnham. Doubly Resonant Cymbal-Type Transducers.IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, ANDFREQUENCY CONTROTL.1997, Vol44(5):1175-1177
    [71] Yinglin Ke, Tong Guo, and Jiangxiong Li.A New-Style Slotted-Cymbal TransducerWith Large Displacement and High Energy Transmission. IEEE transactions onultrasonics, ferroelectrics, and frequency control,2004,51(9):1171-1177
    [72]郭彤,李江雄,柯映林.槽钹形压电复合换能器理论建模及有限元分析.浙江大学学报(工学版).2005,Vol39(4):569-573
    [73] C.L.Sun,K.H.Lam.A novel drum piezoelectric-actuator.Appl.Phys.A,2006Vol84:385-389
    [74] Manoj Narayanan,Robert W.Schwartz.Design,fabrication and finite element modelingof a new wagon wheel flextensional transducer. Journal of Electroceramics,2008,Vol24(3):205-213
    [75]吴石林.球冠钹型换能器建模、仿真及优化设计研究.国防科技大学工学博士学位论文.2011:22-84
    [76]吴石林,张玘,黄芝平,潘仲明. Spherical-Cymbal换能器位移特性研究.压电与声光.2010,Vol32(1):73-77
    [77]吴石林,张玘,黄芝平,潘仲明. Spherical Cymbal换器位移特性有限元分析.传感技术学报.2009,Vol22(1):131-136
    [78]吴石林,张玘,黄芝平. Spherical-Cymbal换能器静水压性能研究.国防科技大学学报.2010, Vol32(3):127-132
    [79]林书玉,许龙.一种新型Cymbal换能器的研究.声学学报.2011, Vol36(1):27-36
    [80] James F.Tressler, Robert E.Newnham. Cymbal Drivers Utilizing Relaxor-BasedFerroelectric Single Crystal Materials. of the200012th IEEE International Symposiumon Applications of Ferroelectrics.2000, Vol(Ⅱ):561-564
    [81]吕可佳,邢建新高俊琴李俊宝. PMN-PT单晶Cymbal换能器的有限元分析.声学技术.2008, Vol27(5):538-539
    [82] Zhaohui Li, Aigen Huang, Guidong Luan,Jinduo Zhang. Finite element analyzing ofunderwater receiving sensitivity of PMN-0.33PT single crystal Cymbal hydrophone.Ultrasonics2006, Vol44:e759-e762
    [83] J.F.Fernandez, A.Dogan, J.T.Fielding, K.Uchino, R.E.Newnham. Tailoring theperformance of ceramic-metal piezocomposite actuators,'Cymbals'. Sensors andActuators.1998, Vol(A65):228-237
    [84] Aydin Dogan. Flextensional "moonie and Cymbal" actuators. Thesis for PH.D. degreeof the Pennsylvania State University.1994:1-172
    [85]李邓化,张良莹,姚熹.复合型钹式执行器的高位移性能研究.传感技术学报.1999(3):214-217
    [86] Emiliano Maione, K. Kirk Shung, Richard J. Meyer,Jack W. Hughes, Robert E.Newnham, Nadine Barrie Smith. Tansducer Design for a Portable UltrasoundEnhanced Tansdermal Drug-Delivery System. IEEE. TRANSACTIONS ONULTRASONICS, FERROELECTRICS. AND FREQUENCY CONTROL,2002,VOL40(10):1430-1436
    [87] Jiang-bo YUAN, Xiao-biao SHAN, Tao XIE, Wei-shan CHEN. Energy harvesting witha slotted-Cymbal transducer. Zhejiang Univ Sci A2009, Vol10(8):1187-1190
    [88]贾广生.基于Cymbal换能器能量采集系统的研究.哈尔滨工业大学工学硕士学位论文,2008:10-47
    [89]郭振宇,叶敏等.形状参数对Cymbal换能器发电能力的影响.机械科学与技术,2007,26(11):1454-1457
    [90] P.Ochoa, M.Villegas, M.A.Rodriguez, J.F.Fernandez. Statistic analysis ofelectromechanical response in Cymbal piezocomposites. Journal of the EuropeanCeramic Society2007,Vol(27)4173–4176
    [91] J.F.Tressler,,S.Alkoy, A.Dogan, R.E.Newnham. Functional composites forsensors,actuators and transducers. Composites:1999, Part A(30):477–482
    [92] Denghua Li, Min Wu, Peixi Oyang, Xiaofei Xu. Cymbal piezoelectric compositeunderwater acoustic transducer. Ultrasonics2006, Vol(44):e685–e687
    [93] CHEN Sheng, SUN Chao. An Improved Cymbal}Hydrophone Made of Lanthanum一Modified Lead Zirconate Titanite. Journal of SouthWest Jiaotong University(EnglishEdition).2009,Vol17(2):148-152
    [94] Walter L.Carney, Thomas R.Howarth, et al. Thin,Low Frequency Oil-Filled Projectorsfor UUV Applications. Proceedings of Oceans’01,2001:1577-1580
    [95]李朝晖等,一种具有紧凑结构的860Hz大功率发射换能器研制.全国声学学术会议.2006:563-564
    [96]欧阳哲. Ⅴ型弯张换能器研究.哈尔滨工程大学工学硕士学位论文.2009,33-52
    [97]欧阳哲,徐余,夏铁坚. Ⅴ型弯张换能器有限元设计.声学技术.2009,Vol28(5):323-324
    [98] R. E. Newnham, Jindong Zhang, R. Meyer Jr. Cymbal Transducers: A Review.Proceedings of the200012th IEEE International Symposium on Applications ofFerroelectrics,2001:29-32
    [99] Jindong Zhang, W. Jack Hughes, A. C. Hladky-Hennion, R. E. Newnham. ConcaveCymbal Transducer. Mat. Res. Innovat,1999, Vol2:252-255
    [100] Jindong Zhang. MINIATURIZED FLEXTENSIONAL TRANSDUCERS ANDARRAYS. Thesis for PHD. The Pennsylvania State University.2000:153-155
    [101] Erman Uzgur, Douglas C.Markley, Monica Guo, Benjamin Snyder, Richard J.Meyer,Aydin Dogan, Robert E.Newnham. Pressure Dependence of Cymbal Transducers.IEEE JOURNAL OF OCEANIC ENGINEERING.2007,Vol32(2):408-415
    [102] B. F. Hamonic, O.B.Wilsonm J,-N. Decarpigny. Power Transducers for Sonics andUltrasonics. Proceedings of the International Workshop, Held in Toulon,France, June12and13,1990.60-62P
    [103] H. C. Merchant. Underwater transducer apparatus. U.S. Patent3.258.738.1966
    [104]贺西平. Ⅶ型低频弯张稀土换能器研究.声学与电子工程.2004Vol74(2):1-3
    [105]贺西平,李斌,孙进才. Ⅶ型弯张换能器壳体振动模态的理论分析和试验.机械强度.2002, Vol24(3):349-351
    [106] ARMSTRONG Bruce, Allen. Underwater Sound Projector System and Method ofProducing Same [P]. International Patent:WO2006/072163A1,2006-07-13
    [107] Bruce Allan Armstrong. Underwater Sound Projector System and Method of ProducingSame [P]. International application number: PCT/CA2005/001973,2006-01-06
    [108] James Crawford, Christopher Purcell, BruceArmstrong, A Modular Projector System:Modeled Versus Measured Performance. Proc. Undersea Defence TechnologyConference, Europe2006(Winner of Best Paper Award), Hamburg, Germany.June,2006:27-29
    [109] P.Yeatman, B.Armstrong. Constructive Use of Acoustic Interactions in a Multi ElementProjector Array. Proc. Conference of Institute of Acoustics Sonar Transducer andNumerical Modeling in Underwater Acoustics, London, UK.2005, Vol27(1):156-163
    [110] P.Yeatman, B.Armstrong. A Modular projector System for Diverse Applications. UDTEurope,2005
    [111] M.Trevorrow, D.Smart, S.De Belie. The Towed Torpedo Emulator(TOTEM):A Tool forTesting and Training of Surface Ship Torpedo Defence Systems. Sea Technology.March2007, Vol48(3):41
    [112]顾磊,胡健辉,王艳,陈光华,张睿,陈庆瑞.新型弯曲圆盘换能器阵的研究.声学与电子工程.2011Vol101:10-12
    [113]梁丽辉.一种低频便携式声源换能器的性能及应用研究.声学技术.2011,vol30(4):29-31
    [114]刘继伍,刘海燕,罗泷.过盈联接在新型弯曲盘换能器上的应用.声学技术.2009,Vol28(5):325-326
    [115]李邓化,居伟骏,贾美娟,许晓飞.新型压电复合换能器及其应用.科学出版社,北京.2007:65-70
    [116] C. L. Sun, S.S.Guo, W.P. Li a, Z.B. Xing, G.C. Liu, X.Z. Zhao. Displacementamplification and resonance characteristics of the Cymbal transducers. Sensors andActuators.2005, VolA121:213–220
    [117] R.E. Newnham, A. Dogan, D.C. Markley, J.F. Tressler, J.Zhang, E. Uzgur, R.J.Meyer, Jr., A.C. Hladky-Hennion, W.J. Hughes. Size effects in capped ceramicunderwater sound projectors. Proceedings of the MTS/IEEE Oceans2002Conferenceand Exhibition. Biloxi.2002, pp.2315–2321.
    [118]李邓化,张良莹,姚熹.金属端帽压电复合执行器的等静压性能研究.压电与声光.1999,Vol21(6):446-448
    [119]吴石林,张玘,黄芝平. Spherical-Cymbal换能器静水压性能研究.国防科技大学学报.2010, Vol32(3):127-132
    [120]苏妍.圆柱形拼镶发射换能器设计.声学与电子工程.2012, Vol106(2):22-24
    [121]刘公侠,陈兴华.低频宽带大功率镶拼圆管换能器.应用声学.2002,Vol21(6):32-35
    [122] John L B. Model for a Ring Transducer with Inactive Segments. The Journal of theAcoustical Society of America.1976, Vol59(2):480-482.
    [123]路德明.水声换能器原理.青岛海洋大学出版社.青岛.2001:205-206
    [124]莫喜平.用ANSYS有限元软件模拟分析声学换能器.2003,1-7
    [125]莫喜平.新型弯张换能器的研究和设计.哈尔滨工程大学博士论文.1998:7-9
    [126] B.F. Hamonic, O. B. WilsonmJ, N. Decarpigny. Power Transducers for Sonics andUltrasonics. Proceedings of the International Workshop, Toulon, France.1990.70-74
    [127]蓝宇.用有限元法设计IV型弯张换能器.哈尔滨工程大学硕士论文.2000:41-42
    [128] James F. Tessler, Wenwu Cao, Kenji Uchino, Robert E. Newnham. Finite ElementAnalysis of the Cymbal-Type Flextensional Transducer. IEEE TRANSACTIONS ONULTRASONICS FERROELEOTRICS AND FREQUENCY CONTROL.1998,Vol45(5):1363-1369
    [129]田丰华,蔡军,吕林夏,钱建平. Cymbal换能器的有限元分析仿真技术研究.鱼雷技术.2007, Vol15(3):51-54
    [130]欧阳哲,徐余,夏铁坚. Ⅴ型弯张换能器的有限元设计.声学技术.2009,Vol28(5):323-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700