用户名: 密码: 验证码:
土壤中全氟化合物的生物可利用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全氟化合物(perfluoroalkyl substances, PFASs)因其独特的疏水和疏油特性而被广泛应用于工业和日常生活产品中,如表面活性剂、制冷剂、润滑剂、涂料、泡沫灭火剂和化妆品等。含有PFASs及其前体化合物的产品在生产、应用、运输和处置过程中会释放到环境介质大气、水、土壤和沉积物中。PFASs具有较强的蛋白质结合能力,能在发生生物富集和生物放大效应,从而对生物和人体健康等产生不利影响。因此,近年来关于PFASs在生物体内的富集研究一直是环境科学研究领域的热点问题。
     以蚯蚓(Eisenia fetida)为受试生物,通过10个PFASs(7个全氟羧酸(PFCAs)和3个全氟磺酸(PFSAs))在人工染毒土壤中的富集与清除实验,研究土壤中PFASs的生物可利用性。所有测试PFASs都可以被蚯蚓吸收。PFASs在蚯蚓体内的富集与清除动力常数与全氟碳链的长度密切相关。蚯蚓对PFASs的吸收速率常数(ku)为0.016(全氟己酸,PFHxA)~0.102d-1(全氟十二酸,PFDoA)和0.003(全氟丁烷磺酸,PFBS)~0.030d-1(全氟己烷磺酸,PFOS)。清除速率常数(ku)为0.030(PFDoA)~0.187(PFHxA) d-1和0.039(PFOS)~0.072d-1(PFBS)。长碳链的PFASs显示出较高的吸收速率常数(ku),较高的半衰期(t1/2),达到吸收平衡所需要的时间(tss)也较长,但是其清除速率常数(ke)却较低。并且,全氟磺酸(PFSAs)的ku,t1/2,和tss值要比相同全氟碳链长度的全氟羧酸(PFCAs)的高,而ke值却较低。说明蚯蚓更易于吸收长碳链的PFASs,同等全氟碳链长度时,更易于吸收PFSAs,清除规律则恰好相反,即短碳链的PFASs更易于从蚯蚓体内排除,相同全氟碳链长度的PFASs, PFCAs比PFSAs更易清除。蚯蚓能从染毒土壤中高效富集PFASs,即使是全氟碳链长度小于等于7的PFHxA、全氟庚酸(PFHpA)、全氟辛酸(PFOA)、PFBS和全氟己烷磺酸(PFHxS)等,均有很好的生物富集效应。PFASs在蚯蚓从土壤中的富集因子(BSAFs)与全氟碳链长度呈现显著的正线性相关性。并且,相同全氟碳链长度的PFSAs比PFCAs具有更高的BSAFs,说明蚯蚓更容易从土壤中富集长碳链的PFASs,相较于PFCAs也更易于富集PFSAs。蚯蚓从土壤中富集PFASs的BSAFs具有浓度依赖性,BSAFs随着土壤中暴露浓度的增加而降低。
     以小麦(Triticum aestivum)为受试生物,通过温室培养盆栽实验研究了11个PFASs(8个PFCAs和3个PFSAs)在小麦中的吸收累积。PFASs能被小麦根从土壤中吸收富集,并且发生根部向茎叶部分的迁移。PFASs在小麦根中的富集因子(RCFs)以及在整个小麦中的富集因子(BCF)均随着全氟碳链长度增加而降低,呈现负线性相关性,并且RCFs随土壤—水分配系数(Koc)的增加而降低。PFASs在小麦中从根到茎叶的传输因子(TFs)以PFHxA为界限,先增加后再指数降低。在三个PFSAs中,PFHxS显示最高的TF。小麦从土壤中富集PFASs的趋势与蚯蚓从土壤中富集PFASs'恰好相反,而PFHpA在植物体内的BCFs与在蚯蚓体内的BSAF非常相似。以PFHpA为界限,当全氟碳链长度≥7时,PFASs在蚯蚓体内的BSAFs值大于在植物体内的BCFs,而当全氟碳链长度<7时,蚯蚓的富集因子(BSAFs)小于植物的富集因子(BCFs). PFASs在植物体内的富集受其在土壤—土壤孔隙水中的分配能力、穿透植物表皮的能力及其水溶解度和疏水性的影响。
     通过实验室盆栽培养实验,模拟动物—植物联合生境,研究蚯蚓与小麦共存时对PFASs的生物富集的相互影响。当蚯蚓与小麦联合时,蚯蚓对所有供试PFASs的富集能力都显著增强,而小麦对PFASs富集变化表现为,短碳链(≤7) PFCAs的富集能力提高,而长碳链(>7) PFCAs以及PFSAs的富集能力均减弱。但是,总体来说,蚯蚓与小麦共存时土壤中PFASs总的生物可利用性都有所提高。
     通过对蚯蚓在N-乙基全氟辛基磺酰胺基乙醇(N-EtFOSE)与氟调醇(FTOHs,8:2FTOH(2-全氟辛基乙醇),10:2FTOH(2-全氟癸基乙醇))染毒土壤中暴露实验,研究了PFASs前体物质在蚯蚓体内的富集及清除动力学,以及可能发生的生物转化,并且测定了降解产物。N-EtFOSE与FTOHs及其代谢产物在蚯蚓体内富集效果显著,并且能够发生生物转化和降解。N-EtFOSE在土壤—蚯蚓系统能够降解成其它中间代谢产物,如N-EtFOSE^N-乙基全氟辛基磺酰胺乙酸(N-EtFOSAA,52.4%)→全氟磺酰胺乙酸(FOSAA,2.0%)→全氟辛基磺酰胺(FOSA,22.4%),并最终降解成稳定的PFOS (23.3%),主要代谢产物为N-EtFOSAA。8:2FTOH在土壤—蚯蚓系统主要的最终代谢产物为全氟辛酸(PFOA),10:2FTOH在土壤—蚯蚓系统主要的最终代谢产物为全氟癸酸(PFDA)。研究结果说明全氟前体物质的降解是环境中的PFSAs和PFCAs一个重要来源。
Perfluoroalkyl substances (PFASs) are a group of synthetic compounds which have been widely applied in a variety of commercial and industrial products, such as surfactants, refrigerants, lubricants, paints, fire fighting foams, cosmetics and so on. PFASs have unique water and oil repelling characteristics due to the hydrophobic fluorinated carbon chain and hydrophilic sulfonate or carboxylate end groups. PFASs are released into the environment during the production, application, transport and disposal of PFAS containing products or by degradation of their precursors, and they are ubiquitous in environmental matrices such as air, water, soil and sewage sludge. PFASs can be bioaccumulated and biomagnified throughout the food chain due to their strong binding potential to proteins and may have dverse effects to individual organisms, food webs and human health. The bioaccumulation of PFASs has become a major concern of the international community.
     Earthworms were exposed to artificially contaminated soils with ten PFASs to investigate the bioaccumulation and bioavailabiliry of PFASs. All the test PFASs in soil are bioaccumulative to earthworms. The uptake rate coefficients () of PFASs in the range of0.016(perfluorohexanoate, PFHxA)-0.102d-1(perfluorododecanoate, PFDoA) for PFCAs and0.003(perfluorobutane sulfonate, PFBS)-0.030d-1(perfluorooctane sulfonate, PFOS) for PFSAs. The elimination rate coefficients (ke) of PFASs in the range of0.030(PFDoA)-0.187d-1(PFHxA) for PFCAs and0.039(PFOS)-0.072d'1(PFBS) for PFSAs. PFASs with longer perfluorinated carbon chain displayed higher uptake rate coefficients (ku), longer half-life (t1/2) and time to steady-state (tss) but lower elimination rate coefficients (ke) than the shorter ones. Similarly, perfiorosulfonates acids (PFSAs) displayed higher ku, longer t1/2and tss but lower ke than perflurocarboxylic acids (PFCAs) with the same perfluorinated chain length. The results indicate that the uptake of PFASs in the earthworms becomes much easier while the elimination becomes more difficult as the perfluorinated chain length increases and PFCAs are much easier to eliminate from earthworm than PFCAs of equivalent perfluorinated chain length. All the studied PFASs, including those with seven or less perfluorinated carbons, such as PFHxA, perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), PFBS and perfluorohexane sulfonate (PFHxS), were bioaccumulated in the earthworms and the biota-to-soil accumulation factors (BSAFs) increased with perfluorinated carbon chain length and were greater for PFSAs than for PFCAs of equal perfluoroalkyl chain length. The BSAFs were found to be dependent on the concentrations of PFASs in soil and decreased as the level of PFASs in soil increased.
     Wheats were exposed to soils contaminated with11PFASs. Wheat could uptake PFASs from soil by wheat root and translocated to wheat shoot with root concentration factors and bioconcentration factors that decreased as the number of perfluorinated carbons in the molecule increased. And the RCFs of PFASs decreased with the distribution coefficient values between soil and interstitial water (Koc) increased. Translocation factors (TF) of PFCAs in wheat peaked at PFHxA and decreased significantly as the number of carbons increased or decreased. PFHxS produced the greatest TF of the threePFSAs examined. Since PFASs displayed opposite accumulation potentials in earthworms compared to wheat, the accumulation factors of PFASs in earthworms and wheat crossed at around PFHpA, which displayed similar BSAFs in earthworms and BCF in wheat. When the number of perfluorinated carbon is>7, the BSAFs of PFASs in earthworms were larger than their BCFs in plants, while the BSAFs in earthworms were lower than plant BCFs if the number of perfluorinated carbons was<7. The bioaccumulation of PFASs in plant was dependent on the distribution coefficients between soil and interstitial water, ability to cross plant membranes and their water solubility and hydrophobicity.
     Wheats and earthworms were exposed together to soils contaminated with11PFASs to investigate the mutual impacts of wheat and earthworm on their bioaccumulation of PFASs from soil. Wheat increased the bioaccumulation of all11PFASs in earthworms and earthworms increased the bioaccumulation in wheat of PFCAs containing seven or less perfluorinated carbons, decreased bioaccumulation of PFCAs with more than seven carbons, and decreased bioaccumulation of PFSAs. In general, the co-presence of wheat and earthworms enhanced the bioavailability of PFASs in soil. When earthworms and wheat are both present in soil, they may affect the accumulation of PFASs within each other by competition or by changing the bioavailability of the contaminants.
     The bioaccumulation and metabolism of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) and two fluorotelomer alcohols (FTOH, perfluorooctylethanol,(8:2FTOH), perfluorodecylethanol,(10:2FTOH)) in earthworm from soil were investigated. N-EtFOSE in earthworm could be degraded to PFOS via some stable intermediate metabolites, N-EtFOSE->N-ethylperfluorooctane sulfonamide acetate (N-EtFOSAA,52.4%)→perfluorooctane sulfonamide acetate (FOSAA,2.0%)→perfluorooctane sulfonamide (FOSA,22.4%)→PFOS (23.3%). N-EtFOAA was the major metabolite and PFOS was the terminal product of N-EtFOSE. PFOA was the major terminal metabolitesof8:2FTOH and perfluorodecanoate (PFDA) was the major terminal metabolite of10:2FTOH. The results suggested that the biotic degradation of PFAS precursors is an important source of PFCAs and PFSAs in the environment.
引文
[1]Prevedouros K., Cousins I.T., Buck R.C., et al. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol.2006,40(1):32-44.
    [2]Kissa E. Toxicology and environmental aspects. In fluorinated surfactants and repellents,2nd ed. Marcel Dekker:New York.2001,97:456-461.
    [3]Buck R.C., Franklin J., Berger U., et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology, classification, and origins. Integrated Environmental Assessment and Management.2011,7(4):513-541.
    [4]Perez F., Nadal M., Navarro-Ortega A., et al. Accumulation of perfluoroalkyl substances in human tissues. Environ. Int.2013,59:354-362.
    [5]Giesy J.P., Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol.2001,35:1339-1342.
    [6]Butt C.M., Berger U., Bossi R., et al. Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ.2010,408(15):2936-2965.
    [7]Houde M., Martin J.W., J.Letcher R., et al. Biological monitoring of polyfluoroalkyl substances a review. Environmental Science and Technology.2006,40:3463-3473.
    [8]Paul A.G., Jones K.C., Sweetman. A.J. A first global production, emission and environmental inventory for perfluorooctane sulfonate. Environmental Science and Technology.2009, 43:386-392.
    [9]Powley C.R., George S.W., Russell M.H., et al. Polyfluorinated chemicals in a spatially and temporally integrated food web in the western arctic. Chemosphere.2008,70(4):664-672.
    [10]Loi E.I.H., Leo W Y.Y., Taniyasu S., et al. Trophic magnification of poly-and perfluorinated compounds in a subtropical food web. Environmental Science and Technology.2011, 45:5506-5513.
    [11]Lau C., Anitole K., Hodes C., et al. Perfluoroalkyl acids a review of monitoring and toxicological findings. Toxicological Sciences.2007:1-114.
    [12]Lindstrom A.B., Strynar M.J., Libelo E.L. Polyfluorinated compounds:Past, present, and future. Environ. Sci. Technol.2011,45(19):7954-7961.
    [13]Felizeter S., Mclachlan M.S., De Voogt P. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (lactuca sativa). Environ. Sci. Technol.2012, 46(21):11735-11743.
    [14]Wang Z., Macleod M., Cousins I.T., et al. Using cosmotherm to predict physicochemical properties of poly-and perfluorinated alkyl substances (PFASs). Environ. Chem.2013, 8(4):389-398.
    [15]Deng S., Zhang Q., Nie Y., et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environ.Pollut.2012,168:138-144.
    [16]Zhao L., Zhu L., Yang L., et al. Distribution and desorption of perfluorinated compounds in fractionated sediments. Chemosphere.2012,88(11):1390-1397.
    [17]Bhhatarai B., Gramatica P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals. Environmental Science and Technology.2010.
    [18]Higgins C.P., Luthy R.G. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol.2006,40(23):7251-7256.
    [19]NICNAS. Potassium perfluorobutane sulfonate. Existing chemical hazard assessment report. Department of health and ageing, national industrial chemicals notification and assessment scheme (NICNAS), australian government, sidney, australia.2005.
    [20]Kelly B.C., IKonomou M.G., Blair J.D., et al. PFCs in an arctic marine food web trophic magnification and wildlife exposure. Environmental Science and Technology.2009, 43:4037-4043.
    [21]Ellis D.A., Martin J.W., Silva A.O.D., et al. Degradation of fluorotelomer alcohols□ a likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol.2004, 38:3316-3321.
    [22]D. A. Ellis J.W.M., Mabury S.A. Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol.2003,37:3816-3820.
    [23]James M. Armitage U.S., Scheringer M., Martin J.W., et al. Modeling the global fate and transport of perfluorooctane sulfonate (PFOS) and precursor compounds in relation to temporal trends in wildlife exposure. Environ. Sci. Technol.2009,43:9274-9280.
    [24]Martin J.W., Asher B.J., Beesoon S., et al. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure. J. Environ. Monit.2010,12:1979-2004.
    [25]Scott B., Spencer C., Mabury S., et al. Poly and perfluorinated carboxylates in north american precipitation. Environ. Sci. Technol.2006,40(23):7167-7174.
    [26]Lasier P.J., Washington J.W., Hassan S.M., et al. Perfluorinated chemicals in surface waters and sediments from northwest georgia, USA, and their bioaccumulation in lumbriculus variegatus. Environmental Toxicology and Chemistry.2011,30(10):2194-2201.
    [27]Tomy G.T., Tittlemier S.A., Palace V.P., et al. Biotransformation of n-ethyl perfluorooctanesulfonamide by rainbow trout (onchorhynchus mykiss) liver microsomes. Environ. Sci. Technol.2004,38:758-768.
    [28]Conder J.M., Wolf R.a.H.W.D., Russell M.H., et al. Are PFCAs bioaccumulative. Environmental Science and Technology.2007,42(4):995-1003.
    [29]Zhang T., Sun H., Lin Y., et al. Perfluorinated compounds in human blood, water, edible freshwater fish, and seafood in China:Daily intake and regional differences in human exposures. Journal of Agricultural and Food Chemistry.2011,59(20):11168-11176.
    [30]Giesy J.P., Naile J.E., Khim J.S., et al. Aquatic toxicology of perfluorinated chemicals. Reviews of Environmental Contamination and Toxicology.2010,202:1-52.
    [31]Bavarian environment agency.Compulsory PFC analysis:Information on data yransmission (in German). Bavarian Environment Agency Web site. https://www.klaerschlamm.bavern.de/doc/pft.pdf(accessed Sep 7,2011).
    [32]Washington J.W., Yoo H., Ellington J.J., et al. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA Environ. Sci. Technol. 2010,44:8390-8396.
    [33]Li F., Zhang C., Qu Y., et al. Quantitative characterization of short-and long-chain perfluorinated acids in solid matrices in shanghai, China. Sci Total Environ.2010, 408:617-623.
    [34]Moody C., Martin J.W., Kwan W.C., et al. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into etobicoke creek. Environ. Sci. Technol.2002,36(4):545-551.
    [35]Awad E., Zhang X., Bhavsar S.P., et al. Long-term environmental fate of perfluorinated compounds after accidental release at toronto airport. Environ. Sci. Technol.2011, 45(19):8081-8089.
    [36]Collins C., Fryer M., Grosso A. Plant uptake of non-ionic organic chemicals. Environmental Science and Technology.2006,40:45-52.
    [37]Hsu F.C., Marxmiller R.L., Yang A.Y.S. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol.1990,93:1573-1578.
    [38]P L., D B., M L., et al. Soil function in a changing world:The role of invertebrate ecosystem engineers. Eur J Soil Biol 1997,33:159-193.
    [39]Devliegher W., Verstraete W. The effect of lumbricus terrestris on soil in relation to plant growth effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol. Biochem.1997,29:341-346.
    [40]Ehlers L.J., Luthy R.G. Contaminant bioavailability in soil and sediment. Environ. Sci. Technol.2003:295-302.
    [41]Gobas F.a.P.E., Morrison H.A. Bioconcentration and biomagnifications in the aquatic environment. Lewis Publishers:Boca Raon, FL, USA.2000.
    [42]Sijm D., Kraaij R., Belfroid A, Bioavailability in soil or sediment-exposure of different organisms and approaches to study it. Environmental Pollution.2000,108:113-119.
    [43]Shea D. Developing national sediment quality criteria. Environ. Sci. Technol.1988, 22(11):1256-1241.
    [44]Toro D.M.D., Zarba C.S., Hansen D.J., et al. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicolo Chem.1991,10(12):1541-1583.
    [45]C. J. A. F. Kwanijk P.K.A., A. A. Koelmans. Distribution of perfluorinated compounds in aquatic systems in the netherlands. Environ. Sci. Technol.2010,44:3746-3751.
    [46]Magali Houde A.O.D.S., Derek C. G. Muir, Robert J.Letcher. Monitoring of perfluorinated compounds in aquatic biota an updated review. Environ. Sci. Technol.2011,45:7962-7973.
    [47]Kannan K., Tao L., Sinclair E., et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a great lakes food chain. Arch Environ Contam Toxicol 2005,48(4):559-566.
    [48]Liu C., Gin K.Y.H., Chang V.W.C., et al. Novel perspectives on the bioaccumulation of PFCs-the concentration dependency. Environmental Science and Technology.2011, 45(22):9758-9764.
    [49]Xia X., Chen X., Zhao X., et al. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals bychironomus plumosuslarvae in sediment. Environmental Science and Technology.2012,46(22):12467-12475.
    [50]Dai Z., Xia X., Guo J., et al. Bioaccumulation and uptake routes of perfluoroalkyl acids in daphnia magna. Chemosphere.2012.
    [51]Houde M., Bujas T.D., Small J., et al. Biomagnification of perfluoroalkyl compounds in the bottlenose dolphin. Environ. Sci. Technol.2006,40:4138-4144.
    [52]Martin J.W., Mabury S.A., Solomon K.R., et al. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus Mykiss). Environmental Toxicology and Chemistry. 2003,22:189-195.
    [53]Morikawa A., Kamei N., Harada K., et al. The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (trachemys scripta elegans and chinemys reevesii):An ai river ecological study in Japan. Ecotoxicol Environ Saf 2006,65(1):14-21.
    [54]Wang J., Zhang Y., Zhang F., et al. Age-and gender-related accumulation of perfluoroalkyl substances in captive Chinese alligators?(alligator sinensis). Environ. Pollut.2013,179:61-67.
    [55]Yeung L.W.Y., Yamashita N., Taniyasu S., et al. A survey of perfluorinated compounds in surface water and biota including dolphins from the ganges river and in other waterbodies in india. Chemosphere.2009,76(1):55-62.
    [56]Jeon J., Kannan K., Han Kyu Lim H.B.M., et al. Bioaccumulation of perfluorochemicals in pacific oysterunder different salinity gradients. Environ. Sci. Technol.2010,44:2695-2701.
    [57]Martin J.W., Mabury S.A., Solomon K.R., et al. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout(Oncorhynchus Mykiss). Environmental Toxicology and Chemistry.2003,22(1):196-203.
    [58]Higgins C.P., Mcleod P.B., Macmanus-Spencer L.A., et al. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete lumbriculds variegatus. Environmental Science and Technology.2007,41:4600-4606.
    [59]Miiller C.E., De Silva A.O., Small J., et al. Biomagnification of perfluorinated compounds in a remote terrestrial food chain:Lichen-caribou-wolf. Environ. Sci. Technol.2011, 45(20):8665-8673.
    [60]Dai J., Li M., Jin Y., et al. Perfluorooctanesulfonate and perfluorooctanoate in red panda and giant panda from China. Environ. Sci. Technol.2006,40:5647-5652.
    [61]Li X., Yeung L.W.Y., Taniyasu S., et al. Perfluorooctanesulfonate and related fluorochemicals in the amur tiger(panthera tigris altaica) from China. Environ. Sci. Technol.2008, 42:7078-7083.
    [62]Li X., Yeung L.W.Y., Taniyasu S., et al. Accumulation of perfluorinated compounds in captive bengal tigers(panthera tigris tigris) and african lions(panthera leo linnaeus) in China. Chemosphere.2008,73(10):1649-1653.
    [63]Stahl T., Falk S., Failing K., et al. Perfluorooctanoic acid and perfluorooctane sulfonate in liver and muscle tissue from wild boar in hesse, germany. Arch Environ Contam Toxicol.2011, 62(4):696-703.
    [64]Martin J.W., Smithwick M.M., Braune B.M., et al. Identification of long-chain perfluorinated acids in biota from the canadian arctic. Environ. Sci. Technol.2004,38:373-380.
    [65]Zhang T., Sun H., Wu Q., et al. Perfluorochemicals in meat, eggs and indoor dust in China: Assessment of sources and pathways of human exposure to perfluorochemicals. Environ. Sci. Technol.2010,44:3572-3579.
    [66]Chen Y.-M., Guo L.-H. Fluorescence study on site-specific binding of perfluoroalkyl acids to human serum albumin. Arch Toxicol.2008,83(3):255-261.
    [67]Han X., Snow T.A., Kemper R.A., et al. Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem Res Toxicol.2003,16:775-781.
    [68]Bischel H., Spencer L.M., Luthy R. Noncovalent interactions of long-chain perfluoroalkyl acids with serum albumin. Environ. Sci. Technol.2010,44:5263-5269.
    [69]Brede E., Wilhelm M., Goen T., et al. Two-year follow-up biomonitoring pilot study of residents'and controls'PFC plasma levels after PFOA reduction in public water system in arnsberg, germany. Int J Hyg Environ Health.2010,213(3):217-223.
    [70]Calafat A.M., Wong L.-Y., Kuklenyik Z., et al. Polyfluoroalkyl chemicals in the u.S. Population:Data from the national health and nutrition examination survey (nhanes) 2003-2004 and comparisons with nhanes 1999-2000. Environ Health Perspect.2007, 115(11):1596-1602.
    [71]Yoo H., Washington J.W., Jenkins T.M., et al. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS. Environmental Science and Technology.2011:7985-7990.
    [72]Lechner M., Knapp H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (daucus carotassp.Sativus), potatoes (solanum tuberosum), and cucumbers (cucumis sativus). Journal of Agricultural and Food Chemistry.2011, 59(20):11011-11018.
    [73]Fischer R., Kordel W., Weinfurtner K. Final report on the project "investigations on the carry over of PFC fromcontaminated soil to plants" (in German). North Rhine-Westphalia State Office for Nature, Environment, and Consumer Protection (LANUV) Web site.http://www.lanuv.nrw.de/verbraucher/pdf/transfer pft.pdf (accessed Sep 7,2011)..2008.
    [74]Zhao H., Guan Y., Zhang G., et al. Uptake of perfluorooctane sulfonate (PFOS) by wheat (triticum aestivum l.) plant. Chemosphere.2013,91(2):139-144.
    [75]Zhang S., Szostek B., Mccausland P.K., et al.6:2 and 8:2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions. Environ. Sci. Technol.2013,47(9):4227-4235.
    [76]Plumlee M., Mcneill K., Reinhard M. Indirect photolysis of perfluorochemicals:Hydroxyl radical-initiated oxidation of n-ethyl perfluorooctane sulfonamido acetate (n-etfosaa) and other perfluoroalkanesulfonamides. Environ. Sci. Technol.2009,43:3662-3668.
    [77]Wania F. A global mass balance analysis of the source of perfluorocarboxylic acids in the arctic ocean. Environ. Sci. Technol.2007,41:4529-4535.
    [78]Armitage J., Cousins I., Buck R.C., et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Technol.2006,40:6969-6975.
    [79]Renner R. Perfluorinated sources outside and inside. Environ. Sci. Technol.2004, 38(5):80A-80A.
    [80]Haug L.S., Huber S., Schlabach M., et al. Investigation on per-and polyfluorinated compounds in paired samples of house dust and indoor air from norwegian homes. Environ. Sci. Technol. 2011,45(19):7991-7998.
    [81]Ericson Jogsten I., Nadal M., Van Bavel B., et al. Per- and polyfluorinated compounds (PFCs) in house dust and indoor air in catalonia, spain:Implications for human exposure. Environ. Int. 2012,39(1):172-180.
    [82]Lange C.C. The aerobic biodegradation of N-EtFOSE alcohol by the microbial activity present in municipal wastewater treatment sludge,U.S. EPA docket ar-226-058; 3M environmental laboratory:St. Paul, mn.2000.
    [83]Benskin J.P., Ikonomou M.G., Gobas F.a.P.C., et al. Biodegradation ofn-ethyl perfluorooctane sulfonamido ethanol (EtFOSE) and EtFOSE-based phosphate diester (sampap diester) in marine sediments. Environmental Science & Technology.2013:130124105700000.
    [84]Rhoads K.R., Janssen E.M.L., Luthy R.G., et al. Aerobic biotransformation and fate ofn-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. Environ. Sci. Technol. 2008,42:2873-2878.
    [85]Xu L., Krenitsky D.M., Seacat A.M., et al. Biotransformation of n-ethyl-n-(2-hydroxyethyl) perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chem. Res. Toxicol.2004,17:767-775.
    [86]Lindstrom A.B., Strynar M.J., Delinsky A.D., et al. Application of WWTP biosolids and resulting perfluorinated compound contamination of surface and well water in Decatur, Alabama, USA. Environ. Sci. Technol.2011,45(19):8015-8021.
    [87]Yoo H., Washington J.W., Jenkins T.M., et al. Concentrations, distribution, and persistence of fluorotelomer alcohols in sludge-applied soils near Decatur, Alabama, USA. Environmental Science and Technology.2010,44:8397-8402.
    [88]Liu J., Lee L., Nies L.F., et al. Biotransformation of 8:2 fluorotelomer alcohol in soil and by soil bacteria isolates. Environ. Sci. Technol.2007,41:8024-8030.
    [89]Wellington T.J., Hurley M.D., Xia J., et al. Formation of c7fi5cooh (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ. Sci. Technol.2006,40(3):924-930.
    [90]Butt C.M., Muir D.C.G., Mabury S.A. Biotransformation of the 8:2 fluorotelomer acrylate in rainbow trout.1. In vivo dietary exposure. Environmental Toxicology and Chemistry.2010, 29(12):2726-2735.
    [91]Wang N., Szostek B., Buck R.C., et al.8-2 fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and metabolite yields. Chemosphere.2009,75(8):1089-1096.
    [92]Wang N., Liu J., Buck R.C., et al.6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere.2011,82(6):853-858.
    [93]Qin P., Liu R., Pan X., et al. Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods. J. Agric. Food Chem.2010, 58(9):5561-5567.
    [94]Luebker D.J., Hansen K.J., Bass N.M., et al. Interactions of flurochemicals with rat liver fatty acid-binding protein. Toxicology.2002,176:175-185.
    [95]Han X., Nabb D.L., Russell M.H., et al. Renal elimination of perfluorocarboxylates (PFCAs). Chemical Research in Toxicology.2012,25(1):35-46.
    [96]Bischel H.N., Macmanus-Spencer L.A., Zhang C., et al. Strong associations of short-chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms. Environ Toxicolo Chem.2011,30(11):2423-2430.
    [97]D'eon J.C., Mabury S.A. Is indirect exposure a significant contributor to the burden of perfiuorinated acids observed in humans. Environmental Science and Technology.2011, 45:7974-7984.
    [98]Jager T., Wal L.D., Fleuren R.H.L.J., et al. Bioaccumulation of organic chemicals in contaminated soils evaluation of bioassays with earthworms. Environ. Sci. Technol.2005, 39:293-298.
    [99]Krauss M., Wilcke W., Zech. W. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environmental Science and Technology.2000,34:4335-4340.
    [100]Jager T., Baerselman R., Dijkman E., et al. Avalability of polycyclic aromatic hydrocarbons to earthworms (eisenla anderi, oligochaeta) in field-polluted soils and soil-sediment mixtures. Environmental Toxicology and Chemistry.2003,22(4):767-775.
    [101]Ma W.-C., Kleunen A.V., Immerzeel J., et al. Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms assessment of equilibrium partitioning theory in insitu studies and water experiments. Environmental Toxicology and Chemistry.1998,17(9):1730-1737.
    [102]Ma W.-C., Immerzeel J., Bodt. J. Earthworm and foodinteractions on bioaccumulation and disappearance in soil of polycyclic aromatic hydrocarbons:Studies on phenanthrene and fluoranthene. Ecotoxicology and Environmental Safety.1995,32:226-232.
    [103]Liang X., Zhu S., Chen P., et al. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil. Environmental Pollution.2010,158(7):2387-2392.
    [104]Qi Y., Chen W. Comparison of earthworm bioaccumulation between readily desorbable and desorption-resistant naphthalene implications for biouptake routes. Environmental Science and Technology.2010,44:323-328.
    [105]Wen B., Huang R., Wang P., et al. Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida. Environmental Science and Technology.2011,45:4339-4345.
    [106]Tao Y., Zhang S., Zhu Y., et al. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (triticum aestivum 1.) grown in field-contaminated soil. Environmental Science and Technology.2009,43:3556-3560.
    [107]Huang H., Zhang S., Christie P., et al. Behavior of decabromodiphenyl Ether (BDE-209) in the soil-plant system. Environmental Science and Technology.2010,44:663-667.
    [108]Taniyasu S., Kannan K., So M.K., et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short-and long-chain perfluorinated acids in water and biota. Journal of Chromatography A.2005,1093(1-2):89-97.
    [109]Yang L., Zhu L., Liu Z. Occurrence and partition of perfluorinated compounds in water and sediment from liao river and taihu lake, China. Chemosphere.2011,83(6):806-814.
    [110]Landrum P.F., Lydy M.J., Ii H.L. Toxicokinetics in aquaticsystems:Model comparisons and use in hazard assessment. Environmental Toxicology and Chemistry.1992,11:1709-1725.
    [111]Tolls J., Kloepper-Sams P., Sijm D.T.H.M. Sufactant bioconcentration-a critical review. Chemosphere.1994,29(4):693-717.
    [112]Rayne S., Forest. K. An assessment of organic solvent based equilibrium partitioning methods for predicting the bioconcentration behavior of perfluorinated sulfonic acids, carboxylic acids, and sulfonamides. Nature Precedings.2009,1:1-60.
    [113]Li L., Xu Z.S., Song G.W. Study on the langmuir aggregation of fluorinated surfactants on protein. Journal of Fluorine Chemistry.2009,130(2):225-230.
    [114]Woodcroft M.W., Ellis D.A., Rafferty S.P., et al. Experimental characterization of the mechanism of perfluorocarboxylic acids'liver protein bioaccumulation:The key role of the neutral species. Environmental Toxicology and Chemistry.2010:1669-1677.
    [115]Inoue Y., Hashizume N., Yakata N., et al. Unique physicochemical properties of perfluorinated compounds and their bioconcentration in common carp cyprinus carpio 1. Archives of Environmental Contamination and Toxicology.2011,62(4):672-680.
    [116]Kudo N., Suzuki E., Katakura M., et al. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats. Chemico-Biological Interactions.2001,134:203-216.
    [117]Ohmori K., Kudo N., Katayama K., et al. Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology.2003,184:135-140.
    [118]Sundstrom M., Bogdanska J., Pham H.V., et al. Radiosynthesis of perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate (PFBS), including solubility, partition and adhesion studies. Chemosphere.2012,87(8):865-871.
    [119]Belfroid A.C., Sijm D.T.H.M., Gestel C.a.M.V. Bioavailability and toxicokinetics of hydrophobic aromatic compounds in benthic and terrestrial invertebrates. Environ. Rev.1996, 4(4):276-299.
    [120]Tian S., Zhu L., Bian J., et al. Bioaccumulation and metabolism of polybrominated diphenyl ethers in carp (cyprinus carpio) in a water/sediment microcosm:Important role of particulate matter exposure. Environmental Science and Technology.2012:2951-2958.
    [121]Sijm D.T.H.M., Linde A.V.D. Size-dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transferand allometric relationships. Environmental Science and Technology.1995,29:2769-2777.
    [122]Weston D.P., Penry D.L., Gulmann L.K. The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete. Archives of Environmental Contamination and Toxicology.2000,38(4):446-454.
    [123]Oleszczuk P., Baran S. Degradation of individual polycyclic aromatic hydrocarbons (PAHs) in soil polluted with aircraft fuel. Polish Journal of Environmental Studies.2003, 12(4):431-437.
    [124]Lisa A. Totten P. Measurement of poly-brominated diphenyl ethers (PBDEs) in the air and water of the hudson river estuary (HRE). Department of Environmental Sciences, Rutgers University.2006:1-67.
    [125]Hoff P.T., Vijver K.V.D., Dongen W.V., et al. Perfluorooctane sulfonic acid in bib (trisopterus luscus) and plaice (pleuronectes platessa) from the western Scheldt and the belgian north sea:Distribution and biochemical effects. Environmental Toxicology and Chemistry. 2003,22(3):608-614.
    [126]Cretney W.J., Yunker. M. Concentration dependency of biota-sediment accumulation factors for chlorinated dibenzo-p-dioxins and dibenzofurans in dungeness crab (cancer magister) at marine pulp mill sites in british columbia, canada. Environmental Toxicology and Chemistry. 2000,19(12):3012-3023.
    [127]Landrum P.F., Lotufo G.R., C.Gossiaux D., et al. Bioaccumulation and critical body residue of PAHs in the amphipod, diporeia spp.:Additional evidence to support toxicity additivity for PAH mixtures. Chemosphere.2003,51(6):481-489.
    [128]Leppanen M.T., Landrum P.F., Kukkonen J.V.K., et al. Investigating to role of desorption on the bioavailability of sediment-associated 3,4,3',4'-tetrachlorobiphenyl in benthic invertebrates. Environmental Toxicology and Chemistry.2003,22(12):2861-2871.
    [129]Stahl T., Heyn J., Thiele H., et al. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Archives of Environmental Contamination and Toxicology.2008,57(2):289-298.
    [130]Lin D., Zhu L., He W., et al. Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air. J. Agric. Food Chem.2006,54:3658-3662.
    [131]Ahrens L., Yanmashita N., Yeung L.W.Y., et al. Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay. Environmental Science and Technology.2009,43:6969-6975.
    [132]Chung N., Alexander M. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere.2002,48:109-115.
    [133]Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol.2000,34(20):4259-4265.
    [134]Perez Bejarano A., Mataix Solera J., Zornoza R., et al. Influence of plant species on physical, chemical and biological soil properties in a mediterranean forest soil. Eur J For Res.2008, 129(1):15-24.
    [135]Sizmur T., Hodson M.E. Do earthworms impact metal mobility and availability in soil?-a review. Environ. Pollut.2009,157(7):1981-1989.
    [136]Wen B., Hu X.-Y., Liu Y., et al. The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biology and Fertility of Soils.2004,40(3).
    [137]Liu X., Hu C., Zhang S. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge. Environment International.2005,31(6):874-879.
    [138]Kelsey J., White J. Multi-species interactions impact the accumulation of weathered 2,2-bis (-chlorophenyl)-1,1-dichloroethylene (,'-DDE) from soil. Environmental Pollution.2005, 137(2):222-230.
    [139]Kelsey J.W., Slizovskiy I.B., Petriello M.C., et al. Influence of plant-earthworm interactions on SOM chemistry and p,p'-DDE bioaccumulation. Chemosphere.2011,83(7):897-902.
    [140]Calderon-Preciado D., Renault Q., Matamoros V., et al. Uptake of organic emergent contaminants in spath and lettuce:An in vitro experiment. J. Agric. Food Chem.2012, 60(8):2000-2007.
    [141]Topp E., Scheunert I., Attar A., et al. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil. Environmental Science and Technology.1986,11:219-228.
    [142]Gao Y., Ling W. Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biol. Fertil. Soils.2006,42(5):387-394.
    [143]Gao Y., Zhu L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere.2004,55(9):1169-1178.
    [144]Hickman Z.A., Reid B.J. Earthworm assisted bioremediation of organic contaminants. Environ. Int.2008,34(7):1072-1081.
    [145]Luo L., Zhang S., Shan X.-Q., et al. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils. Chemosphere.2006,63(8):1273-1279.
    [146]White J.C., Mattina M.I., Lee W.-Y., et al. Role of organic acids in enhancing the desorption and uptake of weathered p,p'-DDE by cucurbita pepo. Environmental Pollution.2003, 124(1):71-80.
    [147]Smithwick M., Mabury S.A., Solomon K.R., et al. Circumpolar study of perfluoroalkyl contaminants in polar bears (ursus maritimus). Environ. Sci. Technol.2005,39:5517-5523.
    [148]Nguyen T.V., Reinhard M., Gin K.Y.-H. Rate laws and kinetic modeling of n-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) transformation by hydroxyl radical in aqueous solution. Water Research.2013,47(7):2241-2250.
    [149]Asher B.J., Wang Y., De Silva A.O., et al. Enantiospecific perfluorooctane sulfonate (PFOS) analysis reveals evidence for the source contribution of PFOS-precursors to the lake Ontario foodweb. Environmental Science & Technology.2012,46(14):7653-7660.
    [150]Liu J., Lee L.S. Effect of fluorotelomer alcohol chain length on aqueous solubility and sorption by soils. Environ. Sci. Technol.2007,41(15):5357-5362.
    [151]Nabb D.L., Szostek B., Himmelstein M.W., et al. In vitro metabolism of 8:2 fluorotelomer alcohol:Interspecies comparisons and metabolic pathway refinement. Toxicol. Sci.2007, 100(2):333-344.
    [152]Martin J.W., Mabury S.A., O'brien P.J. Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes. Chem-Biol Interact.2005,155(3):165-180.
    [153]Kudo N. Induction of hepatic peroxisome proliferation by 8:2 telomer alcohol feeding in mice: Formation of perfluorooctanoic acid in the liver. Toxicol. Sci.2005,86(2):231-238.
    [154]Zhang T., Sun H., Gerecke A.C., et al. Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge. J. Chromatogr. A.2010, 1217(31):5026-5034.
    [155]Brandsma S.H., Smithwick M., Solomon K., et al. Dietary exposure of rainbow trout to 8:2 and 10:2 fluorotelomer alcohols and perfluorooctanesulfonamide:Uptake, transformation and elimination. Chemosphere.2011,82(2):253-258.
    [156]Nilsson H., Karrman A., Rotander A., et al. Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans. Environ. Int.2013,51:8-12.
    [157]Sinclair E., Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ. Sci. Technol.2006,40(5):1408-1413.
    [158]Fasano W.J., Carpenter S.C., Gannon S.A., et al. Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat. Toxicol. Sci.2006,91(2):341-355.
    [159]Zhao S., Zhu L., Liu L., et al. Bioaccumulation of perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) by earthworms(eisenia fetida) in soil. Environ. Pollut. 2013,179:45-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700