用户名: 密码: 验证码:
溶解性有机质分组及各组分对芘的生物有效性及其吸附解吸的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然溶解性有机质(dissolved organic matter,DOM)存在于所有的水环境中,它通常定义为可以通过0.45μm孔径滤膜的、大小和结构不同的、有机分子的连续统一体,其分子量在几百到几万道尔顿之间变化,这使得DOM具有异质性。DOM含有酚基、羟基、羧基、羰基和硫醇基等多种官能团,是水环境中重要的配位体和吸附载体,对重金属元素和疏水性有机污染物(hydrophobic organic contaminants,HOCs)在水环境中的迁移,归宿和生物有效性具有重要影响。
     多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是国际上广泛关注的持久性有机污染物(persistent organic pollutants,POPs),其经大气沉降、地表累积、雨水冲刷等过程,可迁移至湖泊、海洋,对各种水生生物造成影响。PAHs在水环境中的迁移转化行为以及对水生生物的影响与DOM等因素有关,其机理十分复杂。因此,本论文以河口沉积物提取的DOMbulk为对象,分别按照分子量和极性分组,研究了不同组分的DOM对芘的结合系数、生物有效性及吸附/解吸行为等的影响。
     本文取得了以下有价值的研究成果:
     (1)利用水提法从沉积物中提取出DOMbulk,按照分子量(molecularweight,MW)大小将其分为<1000D(aDOM<1000)、1000-14000D(aDOM1000-14000)和>14000Da(DOM>14000)三组分,按照极性特性将其分为疏水性酸性有机质(hydrophobic acid,HOA)、疏水性碱性有机质(hydrophobic base,HOB)、疏水性中性有机质(hydrophobic neutral,HON)、亲水性酸性有机质(hydrophilicacid,HIA)、亲水性碱性有机质(hydrophilic base,HIB)和亲水性中性有机质(hydrophilic neutral,HIN)六组分。各组分的光学性质、元素比、官能团含量之间存在着良好的相关性。
     (2)阳离子可显著影响芘与DOM的结合。利用荧光猝灭法测定芘与DOM的结合系数,KDOM,其随离子强度的变化趋势呈现出“四阶段变化模式”:先减少,后增加,最后趋于平衡。表明离子强度对芘与DOM结合作用的影响机制非常复杂,本文分别对盐析效应及DOM构象的变化进行了深入的讨论。不同种类阳离子对KDOM值造成不同程度的影响,与电荷密度具有密切关系。电荷密度越大,KDOM达到最小值时所需浓度(cmin)越小,而KDOM从最小值到稳定值的变化斜率(KDOM-I)越大。由于DOM本身大多具有负电荷的官能团,所以阴离子对KDOM值的影响不显著。
     (3)大分子量DOM(DOM14000)比小分子量DOM(DOM<1000和DOM1000-14000)的结合能力要强,这是因为前者具有更小的极性,更大的芳香性,更强的作用力。DOM不同分子量组分结合芘的KDOM值在阳离子作用下的变化趋势也符合“四阶段模型”。此外pH增加导致KDOM发生先增加后减少的变化。KDOM随水化学条件变化而变化的现象可以通过DOM构象的变化来阐述原因。聚合态DOM减少了吸附位点,但当聚合体变大形成疏水性结构又可以增加对芘的结合,而聚合体进一步增大一些内部位点不易到达,结合能力便稳定在一定水平上。
     (4)对于DOM不同极性组分的研究表明,DOM结合芘的能力与其自身大分子构象上的芳香结构密切相关。KDOM与ε280正相关,但是C/H比并不能充当芳香度的指示剂。而KDOM与(N+O)/C比负相关,这说明极性也会对其产生影响。疏水性(hydrophobic,HO)组分结合芘的能力强于亲水性(hydrophilic,HI)组分,其中以HON的能力最强。HO组分的Stern-Volmer plots线性更强。HON与芘结合,除了疏水性作用力之外,还存在电子-供体-受体(electron-donor-acceptor,EDA)作用力。DOM的构象也会影响其对PAHs的结合能力。如果减少DOM表面的极性组分,HOCs可以更容易进入DOM的疏水性内核,从而增加DOM对HOCs的结合量。
     (5)本研究使用了一种新型的基于半透膜被动采样技术SPMD的微萃取方法(semi-permeable membrane based micro-extraction,SPM-ME)。DOM减少了SPM-ME对芘的富集,分子量越大,减少量越大;液相扩散层及鱼体自身的活动影响下,DOM增加锦鲤对芘的富集,其中增加了芘在鱼鳃和内脏上的富集,而减少了芘在肌肉上的富集。分子量越大,变化值越大。DOM结合态的芘部分部鱼体利用,但富集量主要还是主自由态芘的浓度决定。DOM只是影响了锦鲤对芘的富集速率,并不会影响其BCF值。SPM-ME对芘的富集量远小于传统半透膜被动采样技术(semi-permeable membrane device,SMPD),减少了与锦鲤富集量的差异,能更好地模拟锦鲤对芘的富集。锦鲤体内芘的释放速度较快,在24h内释放绝大部分,其释放行为可以用双区一级动力学描述。DOM能加快芘的释放。
     (6)芘在DOM上的结合-解离是完全可逆的过程。加入DOM抑制了泥炭对芘的吸附,促进了芘的解吸,但DOM不同分子量组分产生的抑制和促进效应不一样,DOM不同分子量组分之间所产生的抑制和促进效应存在着显著差异。DOM对芘的抑制和促进效应随着其分子量的增加而增强。加入DOM促进了高岭土对芘的吸附,亦促进了芘的解吸,但DOM不同分子量组分产生的促进效应不一样,DOM不同分子量组分之间所产生的促进效应存在着显著差异。DOM对芘的促进效应随着其分子量的增加而增强。这些抑制或促进效应是多种因素共同作用的结果,如芳香度,极性,分子结构等。
Dissolved organic matter (DOM) is widely present in the aquatic environment,which is often defined operationally as a continuum of organic molecules ofdifferent sizes and structures that passes through a filter of0.45μm pore size, withthe molecular weight from several hundred to several ten thousand Da, which resultsin its heterogeneous nature. It contains carboxyl, phenol, ethanol, hydroxyl, carbonyl,amine and thiol functional groups and has been shown to be one of the key factorsaffecting the fate, transport, bioavailability, and chemical and biological reactivity ofHOCs as the result of combining with them.
     Polycyclic aromatic hadrocarbons (PAHs), the representative persistent organicpollutants (POPs), have drawn the world-wide concern. A proportion of PAHs endup in lakes or oceans, bind to DOM, and exert hazardous effects on aquaticorganism via atmospheric sedimentation, accumulation on land surface, and rainwashing. The transport and transformation behaviours of PAHs and its influence onthe aquatic organism are affected by DOM, which mechanism is quite complicated.In this study, DOM fractions with different molecular weight and polarity wereselected to study the binding coefficient with pyrene and its influence on thebioavailability and sorption/desorption behaviours.
     The main conclusions drawn in this dissertation are as following:
     (1)The DOMbulkwas extracted by water from the sediment of the BeitangEstuary,Tianjin,China. Then it was separated into three different molecular weight(MW) fractions by dialysis technique,<1000Da (DOM<1000),1000-14000Da(DOM1000-14000) and>14000Da (DOM>14000). Additionally, six hydrophobic andhydrophilic fractions, i.e. hydrophobic acid (HOA), hydrophobic base (HOB),hydrophobic neutral (HON), hydrophilic acid (HIA), hydrophilic base (HIB),hydrophilic neutral (HIN), were isolated using resins. All the fractions have good relationships with its optical properties, elemental ratio and the content of functionalgroups.
     (2) KDOMvalues of pyrene were measured using fluorescence quenchingmethod, and possible binding mechanisms were discussed. Different cationic ionshad varied impacts on KDOMof pyrene, which has relation with the charge-density.With increasing concentration of cationic ions, KDOMof pyrene showed a complexpattern of increasing initially, then decreasing, and finally stabilizing at a plateau,which followed four-stage variation model.It is showed that the ion strength has ancomplex effect on the pyrene binding to DOM, which is explained by the salt-outeffect and DOM conformation. The tested anionic ions did not show significantinfluence since the DOM itself are negatively charged.
     (3) DOM fraction with larger MW (14000Da) showed a greater bindingcapacity (KDOM=2.02×105) as compared to those of smaller MW, with KDOMbeing1.16×105for the fraction with MW of100014000Da,1.13×105for the fractionwith MW of1000Da. Positive correlation was acquired between KDOMand ε280and negative for KDOMand (O+C)/N, indicating the positive effect of DOMaromacity and negative effect of DOM polarity. Infrared spectroscopy revealedstronger interaction between pyrene and DOM fraction with larger MW. KDOMvaried in a complex pattern with increasing pH and cation concentration, and thiscould be ascribed to the change in DOM conformation. Aggregation leads to areduction in binding sites. however when aggregate acts as an hydrophobic moiety,its binding capacity increases; further increase in aggregation makes interior sitesless accessed and binding capacity does not increase further. The changing of KDOMof different DOM MW fractions is of similar pattern, but with different rates.
     (4) The KDOMof pyrene binding to the six DOM fractions with various polaritywere determined by fluorescence quenching. The KDOMvalues binding to thehydrophobic fractions were larger than those to the hydrophilic fractions, with thelargest value for HON. Besides hydrophobic interaction, there is π-π electron donoracceptor interactions. A significant correlation of KDOMwith ε280was observed,while atomic ratio of C/H was found to be a poor indicator for aromaticity. Otherstructural properties, such as polarity influenced the DOM-fraction ability to bind pyrene. If the hydrophobic domains were less covered by the surface polarcomponents, the PAHs may have accessed to more alkyl and aromatic domains inthe DOM-fractions, resulting in a high sorption capacity.
     (5) The effect of different MW DOM on the bioaccumulation of pyrene inBrocarded Carp and semi-permeable membrane (SPM) was studied. DOM reducedthe accumulation of pyrene in SPM and the muscles of fish and enhanced those inthe gills and guts of fish, and as a whole enhanced pyrene accumulation in fish.DOM with larger MW exhibited stronger influence. Additionally, the bound pyreneby DOM was partly available for accumulation by fish but the free dissolved form isthe primarily source. The accumulation of pyrene in SPM-ME (Semipermeablemembrane-microextraction) accumulation of pyrene compared with the traditionalSPM and it can be preferably applied to simulate the fish accumulation of freeHOCs in aqueous environment. The release rate of pyrene in fish is very fast, andmost of the accumulated pyrene was released in24h. DOM can make the stepquicker.
     (6) DOM significantly reduce the sorption capacity of peat for pyrene andaccelerated desorption of pyrene from peat. However, the sorption and desorption ofpyrene on kaolinte was accelerated by DOM. The larger MW DOM, the strongereffect, which is affected by many factors, such as aromaticity, polarity, molecularconformation.
引文
[1] McKnight D M and Aiken G R. Sources and Age of Aquatic Humus. In: Hessen D O andTranvik L J, Eds. Aquatic Humic Substances: Ecology and Biogeochemistry. Berlin Heideiberg:Springer, Verlag,1998,9-39
    [2] vanLoon G W and Duffy S J. Environmental Chemistry, New York: Oxford University Press,2000,239-257
    [3] Wang X, Goual L, Colberg P J S. Characterization and treatment of dissolved organic matterfrom oilfield produced waters. J Hazard Mater,2012,217-218:164-170
    [4] Hansell D and Carlson C. Biogeochemistry of Marine Dissolved Organic Matter, New York:Academic Press,2002,774
    [5] Bolin B. Requirement for a Satisfactory Model of the Global Carbon Cycle and Current Statusof Modeling Efforts. In: Trabalka J R and Reichle D E, Eds. The Changing Carbon cycle: AGlobal Analysis. New York: Springer,1986
    [6] Kalbitz K and Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soilsand its dependence on dissolved organic matter. Sci Total Environ,1998,209(1):27-39
    [7] Moore T R, Souza W D, Koprivnjak J F. Control Geochemistry of Natural Waters, Boston: Junk,1985
    [8] Dawson H J, Ugolini F C, Hrutfiord B F, et al. Role of soluble organic in the soil processes of apodzol, central Carcades, Washington. Soil Sci,1978,126(5):290-296
    [9] Kalbitz K, Popp P, Geyer W, et al. β-HCH mobilization in polluted wetland soils as influencedby dissolved organic matter. Sci Total Environ,1997,204(1):37-48
    [10] Raulund-Rasmussen K, Borggaard O K, Hansen H C B, et al. Effect of natural organic soilsolutes on weathering rates of soil minerals. Eur J Soil Sci,1998,49(3):397-406
    [11] Heyes A and Moore T R. The influence of dissolved organic carbon and anaerobic conditions onmineral weathering. Soil Sci,1992,154(3):226-236
    [12] Butt T L, Kaplan L A, Kuserk F T. Benthic biomass supported by stream water dissolved organicmatter. Microbiol Ecol,1984,10(4):335-344
    [13] Meyer J L, Edwards R T, Risley R. Bacterial growth on dissolved organic carbon fromblackwater river. Microbiol Ecol,1987,13(1):13-29
    [14] Schoenau J J and Bettany J R. Organic matter leaching as a component of carbon, nitrogen,phos-phorus and sulfur cycles in a forest grassland and gleyed soils. Soil Sci Soc Am J,1987,51:646-651
    [15]王艮梅,周立祥.陆地生态系统中水溶性有机物动态及其环境学意义.应用生态学报,2003,14(11):2019-2025
    [16] Pizzeghello D, Zanella A, Carletti P, et al. Chemical and biological characterization of dissolvedorganic matter from silver fir and beech forest soils. Chemosphere,2006,65(2):190-200
    [17] Zsolnay A. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma,2003,113(3-4):187-209
    [18]唐东民.溶解性有机质的动态变化及其对有机物吸附解吸的影响:[硕士学位论文].四川雅安:四川农业大学,2008
    [19] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter insoils: A review. Soil Sci,2000,165(4):277-304
    [20] Thurman E M. Organic Geochemistry of Natural Waters, Dordreeht, The Netherlands: MartinusNijhoff/W. Junk Publisher,1985
    [21] D ring U M and Marschner B. Water solubility enhancement of benzo(a)pyrene and2,2',5,5'-terachlorobiphenyl by dissolved organic matter (DOM). Phys Chem Earth,1998,23(2):193-197
    [22] Yan M, Korshin G, Wang D, et al. Characterization of dissolved organic matter usinghigh-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with amultiple wavelength absorbance detector. Chemosphere,2012,87(8):879-885
    [23] Leenheer J A and Croué J-P. Peer reviewed: Characterizing aquatic dissolved organic matter.Environ Sci Technol,2003,37(1):18A-26A
    [24] Wershaw R. Model for humus in soils and sediments. Environ Sci Technol,1993,27(5):814-816
    [25] Park J H, Kalbitz K, Matzner E. Resource control on the production of dissolved organic carbonand nitrogen in a deciduous forest floor. Soil Biol Biochem,2002,34(6):813-822
    [26] Guggenberger G and Zech W. Composition and dynamics of dissolved carbohydrates andlignin-degradation products in two coniferous forests, N.E. Bavaria, Germany. Soil BiolBiochem,1994,26(1):19-27
    [27] William H M. Dissolved organic matter in soils: Future directions and unanswered questions.Geoderma,2003,113(3-4):179-186
    [28] Guggenberger G, Zech W, Schulten H R. Formation and mobilization pathways of dissolvedorganic matter: Evidence from chemical structural studies of organic matter fractions in acidforest floor solutions. Org Geochem,1994,21(1):51-66
    [29] McDowell W H and Likens G E. Origin, composition, and flux of dissolved organic carbon inthe hubbard Brook Valley. Ecol Monogr,1988,58(3):177-195
    [30]迟杰,赵旭光,董林林.有机质和低相对分子质量有机酸对沉积物中磷吸附/解吸行为的影响.天津大学学报,2011,44(11):958-962
    [31] McDowell W H. Dissolved organic matter in soils-future directions and unanswered questions.Geoderma,2003,113(3-4):179-186
    [32] Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy thesources of dissolved organic matter in soils subjected to drying. Chemosphere,1999,38(1):45-50
    [33] Qualls R G, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humicsubstances in a deciduous forest. Ecology,1991,72(1):254-266
    [34] Zhou J, Chen H, Huang W. Effects of rice straw–derived dissolved organic matter on pyrenesorption by soil. Environ Toxicol Chem,2010,29(9):1967-1975
    [35] Liang B C, MacKenzie A F, Schnitzer M, et al. Management-induced change in labile soilorganic matter under continuous corn in eastern Canadian soils. Biol Fert Soils,1997,26(2):88-94
    [36]代静玉,周江敏,秦淑平.几种有机物料分解过程中溶解性有机物质化学成分的变化.土壤通报,2004,35(6):724-727
    [37] Williams B L and Edwards A C. Processes influencing dissolved organic nitrogen, phosphorusand sulphur in soils. Chemical Ecology,1993,8(3):203-215
    [38] Huang W Z and Schoenau J J. Fluxes of water-soluble nitrogen and phosphorus in the forestfloor and surface mineral soil of a boreal aspen stand. Geoderma,1998,81(3-4):251-264
    [39] James L P. The role of nutrient loading and eutrophication in estuarine ecology. Environ HealthPersp,2001,109(5):699-706
    [40]梁重山.疏水性有机污染物的非线性吸附过程及滞后现象的研究:[博士学位论文].广东广州:中国科学院地球化学研究所,2002
    [41] Kujawinski E B, Freitas M A, Zang X, et al. The application of electrospray ionization massspectrometry (ESI MS) to the structural characterization of natural organic matter. Org Geochem,2002,33(3):171-180
    [42] Hockaday W C, Grannas A M, Kim S, et al. Direct molecular evidence for the degradation andmobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolvedorganic matter from a fire-impacted forest soil. Org Geochem,2006,37(4):501-510
    [43] Dittmar T, Whitehead K, Minor E C, et al. Tracing terrigenous dissolved organic matter and itsphotochemical decay in the ocean by using liquid chromatography/mass spectrometry. MarChem,2007,107(3):378-387
    [44] Adahchour M, Beens J, Vreuls R J J, et al. Recent developments in comprehensivetwo-dimensional gas chromatography (GC×GC): I. Introduction and instrumental set-up. TrACTrends Anal Chem,2006,25(5):438-454
    [45] Hertkorn N, Benner R, Frommberger M, et al. Characterization of a major refractory componentof marine dissolved organic matter. Geochim Cosmochim Ac,2006,70(12):2990-3010
    [46] Leenheer J A. Comprehensive approach to preparative isolation and fractionation of dissolvedorganic carbon from natural waters and wastewaters. Environ Sci Technol,1981,15(5):578-587
    [47] Plechanov N. Studies of molecular weight distributions of fulvic and humic acids by gelpermeation chromatography. Examination of the solute molecular composition using RI, UV,fluorescence and weight measurement as detection techniques. Org Geochem,1983,5(3):143-149
    [48] Schulten H R and Schnitzer M. A state of the art structural concept for humic substances.Naturwissenschaften,1993,80(1):29-30
    [49] Schulten H R. Three-dimensional, molecular structures of humic acids and their interactionswith water and dissolved contaminants. Int J Environ An Ch,1996,64(2):147-162
    [50] Thurman E M, Wershaw R L, Malcolm R L, et al. Molecular size of aquatic humic substances.Org Geochem,1982,4(1):27-35
    [51] Herbert B E and Bertsch P M. ed. Characterization of Dissolved and Colloidal Organic Matter inSoil Solution: A Review, In: Kelly J M and Mcfee W W eds. Carbon from and Functions inForest Soils, Soil Science Society of America: Madson, Inc.,1995,63-88
    [52]周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及环境意义.农业环境科学学报,2003,22(6):731-735
    [53] Baham J and Sposito G. Chemistry of water-soluble, metal-complexing ligands extracted froman anaerobically-digested sewage sludge. J Environ Qual,1983,12(1):96-100
    [54] Blaser P, Sposito G, Holtzclaw K M. Composition and acidic functional group chemistry of anaqueous chestnut leaf litter extract. Soil Sci Soc Am J,1984,48(2):278-283
    [55] Baham J and Sposito G. Proton and metal-complexation by water-soluble ligands extracted fromanaerobically digested sewage sludge. J Environ Qual,1986,15(3):239-244
    [56] Klaus K. Sorption of natural organic matter fractions to goethite (α-FeOOH): Effect of chemicalcomposition as revealed by liquid-state13C NMR and wet-chemical analysis. Org Geochem,2003,34(11):1569-1579
    [57] Kramer G D, Pausz C, Herndl G J. Elemental composition of dissolved organic matter andbacterioplankton production in the Faroe-Shetland Channel (North Atlantic). Deep-sea Res Pt I,2005,52(1):85-97
    [58] Paaso N, Peuravuori J, Lehtonen T, et al. Sediment-dissolved organic matter equilibriumpartitioning of pentachlorophenol: The role of humic matter. Environ Int,2002,28(3):173-183
    [59] Kaiser K, Guggenberger G, Haumaier L, et al. The composition of dissolved organic matter inforest soil solutions: Changes induced by seasons and passage through the mineral soil. OrgGeochem,2002,33(3):307-318
    [60] Buffle J, Deladoey P, Haerdi W. The use of ultrafiltration for the separation and fractionation oforganic ligands in fresh waters. Anal Chim Acta,1978,101(2):339-357
    [61] Pohlman A A and McColl J G. Soluble organics from forest litter and their role in metaldissolution. Soil Sci Soc Am J,1987,52(1):265-271
    [62] Dawson H J, Hrutfiord B F, Zachara J. The molecular weight and origin of yellow organic acids.Soil Sci,1981,132(3):191-199
    [63] Kuiters A T and Mulder W. Water-soluble organic matter in forest soils. Plant Soil,1993,152(2):225-235
    [64] Suba J D and Essington M E. Adsorption of fluometuron and norflurazon: Effect of tillage anddissolved organic carbon. Soil Sci,1999,164(3):145-155
    [65] Martin J P and Haider K. ed. Influence of Mineral Colloids on Turnover Rates of Soil OrganicCarbon, In: Huang P M and Schnitzer M eds. Interactions of Soil Minerals with NaturalOrganics and Microbes, Soil Science Society of America: Madison, Inc.,1986
    [66] Morris J C and Baum B. ed. Precursors and Mechanisms of Haloform Formation in theChlorination of Water Supplies, In: Jolley R L, Gorchev H, and Hamilton D H eds.WaterChlorination: Enviromental Impact and Health Effects. Vol.2, Ann Arbor SciencePublishers: Ann Arbor, MI, Inc.,1978,29-48
    [67] Briley K F, Williams R F, Longley K E, et al. ed. Trihalomethane Production from AlgalPrecursors, In: Jolley R L, Brungs W A, Cumming R B, et al. eds. Water Chlorination:Environmental Impactand Health Effects. Vol.3, Ann Arbor Science: Ann Arbor, Michigan, Inc.,1980,117-129
    [68] Onodera S, Yamada K, Yamaji Y, et al. Chemical changes of organic compounds in chlorinatedwater: IX. Formation of polychlorinated phenoxyphenols during the reaction of phenol withhypochlorite in dilute aqueous solution. J Chromatogr A,1984,288:91-100
    [69] Trehy M L, Yost R A, Miles C J. Chlorination byproducts of amino acids in natural waters.Environ Sci Technol,1986,20(11):1117-1122
    [70] Zsolnay A. Chapter4: Dissolved humus in soil waters, Humic Substances in TerrestrialEcosystems, ed. Piccolo A1996,171-223
    [71] Cheng K Y and Wong J W C. Combined effect of nonionic surfactant Tween80and DOM onthe behaviors of PAHs in soil-water system. Chemosphere,2006,62(11):1907-1916
    [72] Raber B and Gel-Knabner I. Influence of origin and properties of dissolved organic matter onthe partition of polycyclic aromatic hydrocarbons (PAHs). Eur J Soil Sci,1997,48(3):443-455
    [73] Homann P S and Grigal D F. Molecular weight distribution of soluble organics fromlaboratory-manipulated surface soils. Soil Sci Soc Am J,1992,56(4):1305-1310
    [74] Leenheer J A and Huffman E W D. Classification of organic solutes in water by usingmacroreticular resins. J Res U S Geol Surv,1976,4(6):737-751
    [75] Guggenberger G, Glaser B, Zech W. Heavy metal binding by hydrophobic and hydrophilicdissolved organic carbon fractions in a Spodosol A and B horizon. Water Air Soil Poll,1994,72(1):111-127
    [76] Qualls R G and Haines B L. Geochemistry of dissolved organic nutrients in water percolatingthrough a forest ecosystem. Soil Sci Soc Am J,1991,55(4):1112-1123
    [77] Dahlgren R A and Ugolini F C. Aluminum fractionation of soil solutions from unperturbed andtephra-treated Spodosols, Cascade Range, Washington, USA. Soil Sci Soc Am J,1989,53(2):559-566
    [78]Leenheer J A and Huffman E W D. Analytical method for dissolved organic carbon fractionation,Denver, Colorado: US Geol Survey Water Res Invest,1979,79-84
    [79] Vance G F and David M B. Effect of acid treatment on dissolved organic carbon retention by aSpodic horizon. Soil Sci Soc Am J,1988,53(4):1242-1247
    [80] Morrison R T and Boyd R N. Organic Chemistry, Neston, Massachusetts, USA: Allyn andBacon Inc,1983
    [81] Kaiser K and Zech W. Natural organic matter sorption on different mineral surfaces studies byDRIFT spectroscopy. Sci Soils,1997,2:71-74
    [82] Lguirati A, Ait Baddi G, El Mousadik A, et al. Analysis of humic acids from aerated andnon-aerated urban landfill composts. Int Biodeter Biodegr,2005,56(1):8-16
    [83] Kang K H, Shin H S, Park H. Characterization of humic substances present in landfill leachateswith different landfill ages and its implications. Water Res,2002,36(16):4023-4032
    [84] Sierra M M D, Giovanela M, Parlanti E, et al. Structural description of humic substances fromsubtropical coastal environments using elemental analysis, FT-IR and13C-Solid State NMR Data.J Coastal Res,2005,42:219-231
    [85] Smidt E and Meissl K. The applicability of Fourier transform infrared (FT-IR) spectroscopy inwaste management. Waste Manage,2007,27(2):268-76
    [86] Huo S, Xi B, Yu H, et al. Characteristics of dissolved organic matter (DOM) in leachate withdifferent landfill ages. J Environ Sci-China,2008,20(4):492-498
    [87]占新华,周立祥,杨红等.水溶性有机物与多环芳烃结合特征的红外光谱学研究.土壤学报,2007,44(1):47-53
    [88] Chiou C T, Malcolm R L, Brinton T I, et al. Water solubility enhancement of some organicpollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol,1986,20(5):502-508
    [89] McCarthy J F and Jimenez B D. Interactions between polycyclic aromatic hydrocarbons anddissolved humic material: Binding and dissociation. Environ Sci Technol,1985,19(11):1072-1076
    [90] Merkelbach R C M, Leeuwangh P, Deneer J. The role of hydrophobicity in the association ofpolychlorinated biphenyl congeners with humic acid. Sci Total Environ,1993,134, Supplement1:409-415
    [91] Backhus D A and Gschwend P M. Fluorescent polycyclic aromatic hydrocarbons as probes forstudying the impact of colloids on pollutant transport in groundwater. Environ Sci Technol,1990,24(8):1214-1223
    [92] Mott H V. Association of hydrophobic organic contaminants with soluble organic matter:Evaluation of the database of Kdocvalues. Adv Environ Res,2002,6(4):577-593
    [93] Lee D-Y and Farmer W J. Dissolved organic matter interaction with napropamide and four othernonionic pesticides. J Environ Qual,1989,18(4):468-474
    [94] Carter C W and Suffet I H. Binding of DDT dissolved humic materials. Environ Sci Technol,1982,16(11):735-740
    [95] Doll T E, Frimmel F H, Kumke M U, et al. Interaction between natural organic matter (NOM)and polycyclic aromatic compounds (PAC)-comparison of fluorescence quenching and solidphase micro extraction (SPME). Fresen J Anal Chem,1999,364(4):313-319
    [96] Chin Y, Aiken G R, Danielsen K M. Binding of pyrene to aquatic and commercial humicsubstances: The role of molecular weight and aromaticity. Environ Sci Technol,1997,31(6):1630-1635
    [97]Kukkonen J and Pellinen J. Binding of organic xenobiotics to dissolved organic macromolecules:Comparison of analytical methods. Sci Total Environ,1994,152(1):19-29
    [98] P rschmann J, Kopinke F-D, Pawliszyn J. Solid-phase microextraction for determining thebinding state of organic pollutants in contaminated water rich in humic organic matter. JChromatogr A,1998,816(2):159-167
    [99] Peuravuori J. Binding of pyrene on lake aquatic humic matter: The role of structural descriptors.Anal Chim Acta,2001,429(1):75-89
    [100] Herbert B E, Bertsch P M, Novak J M. Pyrene sorption by water-soluble organic carbon.Environ Sci Technol,1993,27(2):398-403
    [101] Magee B R, Lion L W, Lemley A T. Transport of dissolved organic macromolecules and theireffect on the transport of phenanthrene in porous media. Environ Sci Technol,1991,25(2):323-331
    [102] Kukkonen J, McCarthy J F, Oikari A. Effects of XAD-8fractions of dissolved organic carbonon the sorption and bioavailability of organic micropollutants. Arch Environ Con Tox,1990,19(4):551-557
    [103] Jota M A T and Hassett J P. Effects of environmental variables on binding of a PCB congenerby dissolved humic substances. Environ Toxicol Chem,1991,10(4):483-491
    [104] Maxin C R and Kogel-Knabner I. Partitioning of polycyclic aromatic hydrocarbons (PAH) towater-soluble soil organic matter. Eur J Soil Sci,1995,46(2):193-204
    [105] Paolis F D and Kukkonen J. Binding of organic pollutants to humic and fulvic acids: Influenceof pH and the structure of humic material. Chemosphere,1997,34(8):1693-1704
    [106] Brian W. The effects of dissolved organic matter on the aqueous partitioning of polynucleararomatic hydrocarbons. Estuar Coast Shelf S,1985,20(4):393-402
    [107] Lee C L and Kuo L J. Quantification of the dissolved organic matter effect on the sorption ofhydrophobic organic pollutant: Application of an overall mechanistic sorption model.Chemosphere,1999,38(4):807-821
    [108] Gauthier T D, Shane E C, Guerin W F, et al. Fluorescence quenching method for determiningequilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humicmaterials. Environ Sci Technol,1986,20(11):1162-1166
    [109]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry,2nd ed.,Hoboken, New Jersey: John Wiley&Sons, Inc.,2003,203-208
    [110] Webster G R B, Muldrew D H, Graham J J, et al. Dissolved organic matter mediated aquatictransport of chlorinated dioxins. Chemosphere,1986,15(9-12):1379-1386
    [111] Gevao B, Semple K T, Jones K C. Bound pesticide residues in soils: A review. Environ Pollut,2000,108(1):3-14
    [112] Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organiccompounds between soil organic matter and water. Environ Sci Technol,1983,17(4):227-231
    [113] McCarthy J F and Jimenez B D. Interactions between polycyclic aromatic hydrocarbons anddissolved humic material: binding and dissociation. Environ Sci Technol,1985,19(11):1072-1076
    [114] Gauthier T D, Seitz W R, Grant C L. Effects of structural and compositional variations ofdissolved humic materials on pyrene Kocvalues. Environ Sci Technol,1987,21(3):243-248
    [115] McCarthy J F, Roberson L E, Burrus L W. Association of benzo(a)pyrene with dissolvedorganic matter: Prediction of KDOMfrom structural and chemical properties of the organic matter.Chemosphere,1989,19(12):1911-1920
    [116] Senesi N, Testini C, Miano T M. Interaction mechanisms between humic acids of differentorigin and nature and electron donor herbicides: A comparative IR and ESR study. OrgGeochem,1987,11(1):25-30
    [117] Sposito G, Martin-Neto L, Yang A. Atrazine complication by soil humic acids. J Environ Qual,1996,25:1203-1209
    [118] Klaus U, Mohamed S, Volk M, et al. Interaction of aquatic substances with anilazine and itsderivatives: The nature of the bound residues. Chemosphere,1998,37(2):341-361
    [119] Senesi N, Testini C, Metta D. Binding of chlorophenoxyatkanoic herbicides from aqueoussolution by soil humic acids. Eds. International Conference on Environmental Contamination.London,1984,96-101
    [120] Carringer R D, Weber J B, Monaco T J. Adsorption-desorption of selected pesticides by organicmatter and montmorillonite. J Agr Food Chem,1975,23(3):569-572
    [121] Zhu F D, Choo K H, Chang H S, et al. Interaction of bisphenol A with dissolved organic matterin extractive and adsorptive removal processes. Chemosphere,2012,87(8):857-864
    [122] Caron G, Suffet I H, Belton T. Effect of dissolved organic carbon on the environmentaldistribution of nonpolar organic compounds. Chemosphere,1985,14(8):993-1000
    [123] Hassett J P and Anderson M A. Effects of dissolved organic matter on adsorption ofhydrophobic organic compounds by river-and sewage-borne particles. Water Res,1982,16(5):681-686
    [124] Barriuso E, Baer U, Caivet R. Dissolved organic matters and adsorption-desorption ofdimefuron, atrazine and carbetamide by soils. J Environ Qual,1992,21(3):359-367
    [125] Kogel-Knabner I, Totsche K U, Raber B. Desorption of polycyclic aromatic hydrocarbons fromsoil in the presence of dissolved organic matter: Effect of solution composition and aging. JEnviron Qual,2000,29(3):906-916
    [126] Totsche K U, Danzer J, K gel-Knabner I. Dissolved organic matter-enhanced retention ofpolycyclic aromatic hydrocarbons in soil displacement experiment. J Environ Qual,1997,26(4):1090-1100
    [127] Schlautman M A and Morgan J J. Effects of aqueous chemistry on the binding of polycyclicaromatic hydrocarbons by dissolved humic materials. Environ Sci Technol,1993,27(5):961-969
    [128] Kile D E and Chiou C T. ed. In Aquatic Humic Substances: Influence on Fate and Treatment ofPollutants, In: Suffet I H and MacCarthy P eds. ACS Symposium Series219, AmericanChemical Society: Washington D C, Inc.,1989,131-157
    [129] Myneni S C B, Brown J T, Martinez G A, et al. Imaging of humic substance macromolecularstructures in water and soils. Science,1999,286(5443):1335-1337
    [130] Ragle C S, Engebretson R R, von Wandruszka R. The sequestration of hydrophobicmicropollutants by dissolved humic acids. Soil Sci,1997,162(2):106-114
    [131] Nicola S. Binding mechanisms of pesticides to soil humic substances. Sci Total Environ,1992,123-124:63-76
    [132] Hassett J P and Anderson M A. Association of hydrophobic organic compounds with dissolvedorganic matter in aquatic systems. Environ Sci Technol,1979,13(12):1526-1529
    [133]Wershaw R L, Burcar P J, Goldberg M C. Interaction of pesticides with natural organic material.Environ Sci Technol,1969,3(3):271-273
    [134] Zepp R G, Baughman G L, Schlotzhauer P F. Comparison of photochemical behavior of varioushumic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized byhumic substances. Chemosphere,1981,10(1):109-117
    [135] Cary G A, McMahon J A, Kuc W J. The effect of suspended solids and naturally occurringdissolved organics in reducing the acute toxicities of cationic polyelectrolytes to aquaticorganisms. Environ Toxicol Chem,1987,6(6):469-474
    [136] Haitzer M, Hoss S, Traunspurger W, et al. Effects of dissolved organic matter (DOM) on thebioconcentration of organic chemicals in aquatic organisms: A review. Chemosphere,1998,37(7):1335-1362
    [137] Landrum P F, Nihart S R, Eadie B J, et al. Reduction in bioavailability of organic contaminantsto the amphipod pontoporeia hoyi by dissolved organic matter of sediment interstitial waters.Environ Toxicol Chem,1987,6(1):11-20
    [138] Day K E. Effects of dissolved organic carbon on accumulation and acute toxicity of fenvalerate,deltamethrin and cyhalothrin to Daphnia magna (straus). Environ Toxicol Chem,1991,10(1):91-101
    [139] Black M C and McCarthy J F. Dissolved organic macromolecules reduce the uptake ofhydrophobic organic contaminants by the gills of rainbow trout (Salmo gairdneri). EnvironToxicol Chem,1988,7(7):593-600
    [140] Haitzer M, Abbt-Braun G, Traunspurger W, et al. Effects of humic substances on thebioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic andchemical properties of humic substances. Environ Toxicol Chem,1999,18(12):2782-2788
    [141] Benson W H and Long S F. Evaluation of humic-pesticide interactions on the acute toxicity ofselected organophosphate and carbamate insecticides. Ecotox Environ Safe,1991,21(3):301-307
    [142] Leversee G J, Landrum P F, Giesy J P, et al. Humic acids reduce bioaccumulation of somepolycyclic aromatic hydrocarbons. Can J Fish Aquat Sci,1983,40(S2): s63-s69
    [143] Bejarano A C, Chandler G T, Decho A W. Influence of natural dissolved organic matter (DOM)on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on themeiobenthic estuarine copepod Amphiascus tenuiremis. J Exp Mar Biol Ecol,2005,321(1):43-57
    [144] Oikari A, Kukkonen J, Virtanen V. Acute toxicity of chemicals to Daphnia magna in humicwaters. Sci Total Environ,1992,117-118:367-377
    [145] Evans H E. The influence of natural dissolved organic carbon (DOC) on the uptake of2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) by Daphnia magna. Abstr Paper Am Chem Soc,1990,199:508-512
    [146] Traina S J, McAvoy D C, Versteeg D J. Association of linear alkylbenzenesulfonates withdissolved humic substances and its effect on bioavailability. Environ Sci Technol,1996,30(4):1300-1309
    [147] Kukkonen J and Oikari A. Bioavailability of organic pollutants in boreal waters with varyinglevels of dissolved organic material. Water Res,1991,25(4):455-463
    [148] Kukkonen J, Oikaro A, Johnsen S, et al. Effects of humus concentrations on benzo[a]pyreneaccumulation from water to Daphnia magna: Comparison of natural waters and standardpreparations. Sci Total Environ,1989,79(2):197-207
    [149] Nikkil A and Kukkonen J V K. Effects of dissolved organic material on binding andtoxicokinetics of pyrene in the waterflea Daphnia magna. Arch Environ Con Tox,2001,40(3):333-338
    [150] Servos M R, Muir D C G, Barrie Webster G R. The effect of dissolved organic matter on thebioavailability of polychlorinated dibenzo-p-dioxins. Aquat Toxicol,1989,14(2):169-184
    [151] Qiao P and Farrell A P. Influence of dissolved humic acid on hydrophobic chemical uptake injuvenile rainbow trout. Comp Biochem Phys C,2002,133(4):575-585
    [152] Chen S, Ke R, Zha J, et al. Influence of humic acid on bioavailability and toxicity ofbenzo[k]fluoranthene to Japanese Medaka. Environ Sci Technol,2008,42(24):9431-9436
    [153] Muir D C G, Hobden B R, Servos M R. Bioconcentration of pyrethroid insecticides and DDTby rainbow trout: Uptake, depuration, and effect of dissolved organic carbon. Aquat Toxicol,1994,29(3-4):223-240
    [154] Dai J, Zhou J, Qin S. Binding of pyrene to dissolved organic matters: Fractionation andcharacterization. J Environ Sci-China,2004,16(6):928-933
    [155] Ilani T, Schulz E, Chefetz B. Interactions of organic compounds with wastewater dissolvedorganic matter: Role of hydrophohic fractions. J Environ Qual,2005,34(2):552-562
    [156] Chen G, Lin C, Chen L, et al. Effect of size-fractionation dissolved organic matter on themobility of prometryne in soil. Chemosphere,2010,79(11):1046-1055
    [157] Tejada M and Masciandaro G. Application of organic wastes on a benzo(a)pyrene polluted soil.Response of soil biochemical properties and role of Eisenia fetida. Ecotox Environ Safe,2011,74(4):668-674
    [158] He C, Wang C, Li B, et al. Exposure of Sebastiscus marmoratus embryos to pyrene results inneurodevelopmental defects and disturbs related mechanisms. Aquat Toxicol,2012,116–117(15):109-115
    [159] Dost K and deli C. Determination of polycyclic aromatic hydrocarbons in edible oils andbarbecued food by HPLC/UV–Vis detection. Food Chem,2012,133(1):193-199
    [160] Maher V M and McCormick J J. ed. Mammalian cell mutagenesis by polycyclic aromatichydrocarbons and their derivatives, In: Gelboin A V and Tso O P eds. Polycyclic AromaticHydrocarbons and Cancer. Vol.2, Academic Press: New York, Inc.,1978,137-174
    [161] Keith L and Telliard W. Priority pollutants: I-A perspective view. Environ Sci Technol,1979,13(4):416-423
    [162] Gnandi K, Musa Bandowe B A, Deheyn D D, et al. Polycyclic aromatic hydrocarbons and tracemetal contamination of coastal sediment and biota from Togo. J Environ Monitor,2011,13(7):2033-2041
    [163] Miller J S. Determination of polycyclic aromatic hydrocarbons by spectrofluorimetry. AnalChim Acta,1999,388(1-2):27-34
    [164] Zhang Y, Zhu Y, Kwon K K, et al. Novel method for determining pyrene biodegradation usingsynchronous fluorimetry. Chemosphere,2004,55(3):389-394
    [165] Lazartigues A, Thomas M, Grandclaudon C, et al. Polycyclic aromatic hydrocarbons andhydroxylated metabolites in the muscle tissue of Eurasian perch (Perca fluviatilis) throughdietary exposure during a56-day period. Chemosphere,2011,84(10):1489-1494
    [166] Levengood J and Schaeffer D. Polycyclic aromatic hydrocarbons in fish and crayfish from theCalumet region of southwestern Lake Michigan. Ecotoxicology,2011,20(6):1411-1421
    [167] Wang C, Sun H, Chang Y, et al. PAHs distribution in sediments associated with gas hydrate andoil seepage from the Gulf of Mexico. Mar Pollut Bull,2011,62(12):2714-2723
    [168] Zhang Y, Guo C, Xu J, et al. Potential source contributions and risk assessment of PAHs insediments from Taihu Lake, China: Comparison of three receptor models. Water Res,2012,46(9):3065-3073
    [169] Rodriguez-Delgado M A, Astorga-Espana M S, Corbella R. Determination of polycyclicaromatic hydrocarbons in the fish chromis limbatus by high-performance liquid chromatographywith fluorescence detection. A study of their degree of bioaccumulation. Quim Anal,1999,18(4):313-317
    [170] Solé M, Porte C, Albaigés J. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-seafish Mora moro. Deep-sea Res Pt I,2001,48(2):495-513
    [171] Cho E-a, Bailer A J, Oris J T. Effect of methyl tert-butyl ether on the bioconcentration andphotoinduced toxicity of fluoranthene in fathead minnow larvae (Pimephales promelas).Environ Sci Technol,2003,37(7):1306-1310
    [172] Suess M J. The environmental load and cycle of polycyclic aromatic hydrocarbons. Sci TotalEnviron,1976,6(3):239-250
    [173] Shabad L M. Circulation of carcinogenic polycyclic aromatic hydrocarbons in the humanenvironment and cancer prevention. J Natl Cancer I,1980,64(3):405-410
    [174] Zakaria M P, Takada H, Tsutsumi S, et al. Distribution of polycyclic aromatic hydrocarbons(PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environ SciTechnol,2002,36(9):1907-1918
    [175] Liu S, Tao S, Liu W, et al. Atmospheric polycyclic aromatic hydrocarbons in north China: Awinter-time study. Environ Sci Technol,2007,41(24):8256-8261
    [176] Liu L B, Hashi Y, Liu M, et al. Determination of particle-associated polycyclic aromatichydrocarbons in urban air of Beijing by GC/MS. Anal Sci,2007,23(6):667-71
    [177] Wu S P, Tao S, Zhang Z H, et al. Characterization of TSP-bound n-alkanes and polycyclicaromatic hydrocarbons at rural and urban sites of Tianjin, China. Environ Pollut,2007,147(1):203-210
    [178] Wang X Y, Li Q B, Luo Y M, et al. Characteristics and sources of atmospheric polycyclicaromatic hydrocarbons (PAHs) in Shanghai, China. Environ Monit Assess,2010,165(1-4):295-305
    [179] Lei Y D and Wania F. Is rain or snow a more efficient scavenger of organic chemicals. AtmosEnviron,2004,38(22):3557-3571
    [180] Eiguren-Fernandez A, Miguel A H, Froines J R, et al. Seasonal and spatial variation ofpolycyclic aromatic hydrocarbons in vapor-phase and PM2.5in Southern California urban andrural communities. Aerosol Sci Tech,2004,38(5):447-455
    [181] Dejean S, Raynaud C, Meybeck M, et al. Polycyclic aromatic hydrocarbons (PAHs) inatmospheric urban area: Monitoring on various types of sites. Environ Monit Assess,2009,148(1-4):27-37
    [182] Kishida M, Mio C, Fujimori K, et al. Seasonal change in the atmospheric concentration ofparticulate polycyclic aromatic hydrocarbons in Ho Chi Minh City, Vietnam. Bull EnvironContam Toxicol,2009,83(5):747-751
    [183] Choi S D, Baek S Y, Chang Y S. Influence of a large steel complex on the spatial distribution ofvolatile polycyclic aromatic hydrocarbons (PAHs) determined by passive air sampling usingmembrane-enclosed copolymer (MECOP). Atmos Environ,2007,41(29):6255-6264
    [184] Baumard P, Budzinski H, Garrigues P. PAHs in Arcachon Bay, France: Origin andbiomonitoring with caged organisms. Mar Pollut Bull,1998,36(8):577-586
    [185] Anyakora C, Ogbeche A, Palmer P, et al. Determination of polynuclear aromatic hydrocarbonsin marine samples of Siokolo Fishing Settlement. J Chromatogr A,2005,1073(1-2):323-330
    [186] Meador J P, Stein J E, Reichert W L, et al. Bioaccumulation of polycyclic aromatichydrocarbons by marine organisms. Rev Environ Contam T,1995,143:79-165
    [187] Law R J, Kelly C, Baker K, et al. Toxic equivalency factors for PAH and their applicability inshellfish pollution monitoring studies. J Environ Monitor,2002,4(3):383-388
    [188] Neff J M. Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil WellProduced Water, The Netherlands: Eleviser,2002
    [189] Nizzetto L, Lohmann R, Gioia R, et al. PAHs in air and seawater along a North–South AtlanticTransect: Trends, processes and possible sources. Environ Sci Technol,2008,42(5):1580-1585
    [190]戴树桂主编.环境化学(第二版),北京:高等教育出版社,2008
    [191]鲁如坤主编.土壤农业化学分析方法,北京:中国农业科技出版社,1999
    [192]占新华,周立祥,沈其荣等.污泥堆肥过程中水溶性有机物光谱学变化特征.环境科学学报,2001,21(4):470-474
    [193] He Y Y, Wang X C, Jin P K, et al. Complexation of anthracene with folic acid studied by FTIRand UV spectroscopies. Spectrochim Acta A,2009,72(4):876-879
    [194] Wang X, Cook R, Tao S, et al. Sorption of organic contaminants by biopolymers: Role ofpolarity, structure and domain spatial arrangement. Chemosphere,2007,66(8):1476-1484
    [195] Chefetz B, Hader Y, Chen Y. Dissolved organic carbon fractions formed during composting ofmunicipal solid waste: Properties and significance. Acta Hydroch Hydrob,1998,26(3):172-179
    [196]王中波,何起祥,杨守业等.谢帕德和福克碎屑沉积物分类方法在南黄海表层沉积物编图中的应用与比较.海洋地质与第四纪地质,2008,28(1):1-8
    [197] Shepard F P. Nomenclature based on sand-silt-clay ratios. J Sediment Res,1954,24(3):151-158
    [198] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclaturefor use in New Zealand. New Zeal J Geol Geop,1970,13(4):937-968
    [199] Li X, Xing M, Yang J, et al. Compositional and functional features of humic acid-like fractionsfrom vermicomposting of sewage sludge and cow dung. J Hazard Mater,2011,185(2-3):740-748
    [200] Christensen J B, Jensen D L, Gr N C, et al. Characterization of the dissolved organic carbon inlandfill leachate-polluted groundwater. Water Res,1998,32(1):125-135
    [201] Santos E B H, Esteves V I, Rodrigues J P C, et al. Humic substances' proton-binding equilibria:Assessment of errors and limitations of potentiometric data. Anal Chim Acta,1999,392(2-3):333-341
    [202] Cabaniss S E. Carboxylic acid content of a fulvic acid determined by potentiometry andaqueous Fourier transform infrared spectrometry. Anal Chim Acta,1991,255(1):23-30
    [203] Ritchie J D and Perdue E M. Proton-binding study of standard and reference fulvic acids,humic acids, and natural organic matter. Geochim Cosmochim Ac,2003,67(1):85-96
    [204]文启孝.土壤有机质研究法,北京:农业出版社,1984
    [205] Burdige D J and Gardner K G. Molecular weight distribution of dissolved organic carbon inmarine sediment pore waters. Mar Chem,1998,62(1-2):45-64
    [206] Dryer D J, Korshin G V, Fabbricino M. In situ examination of the protonation behavior offulvic acids using differential absorbance spectroscopy. Environ Sci Technol,2008,42(17):6644-6649
    [207] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbanceas an indicator of the chemical composition and reactivity of dissolved organic carbon. EnvironSci Technol,2003,37(20):4702-4708
    [208]李庆荣等译.土壤有机质的化学,北京:科学出版社,1984
    [209] Angers D A and Giroux M. Recently deposited organic matter in soil water-stable aggregates.Soil Sci Soc Am J,1996,60(5):1547-1551
    [210] Marhaba T F, Van D, Lippincott R L. Changes in NOM fractionation through treatment: Acomparison of ozonation and chlorination. Ozone-sci Eng,2000,22(3):249-266
    [211] Swietlik J, Dabrowska A, Raczyk-Stanis awiak U, et al. Reactivity of natural organic matterfractions with chlorine dioxide and ozone. Water Res,2004,38(3):547-558
    [212] Korshin G V, Benjamin M M, Sletten R S. Adsorption of natural organic matter (NOM) on ironoxide: Effects on NOM composition and formation of organo-halide compounds duringchlorination. Water Res,1997,31(7):1643-1650
    [213] Liu L, Song C, Yan Z, et al. Characterizing the release of different composition of dissolvedorganic matter in soil under acid rain leaching using three-dimensional excitation-emissionmatrix spectroscopy. Chemosphere,2009,77(1):15-21
    [214] Giesler R, Bj rkvald L, Laudon H, et al. Spatial and seasonal variations in stream waterδ34S-dissolved organic matter in northern Sweden. Environ Sci Technol,2009,43(2):447-452
    [215] Abdulla H A N, Minor E C, Hatcher P G. Using two-dimensional correlations of13C NMR andFTIR to investigate changes in the chemical composition of dissolved organic matter along anestuarine transect. Environ Sci Technol,2010,44(21):8044-8049
    [216] Qin X, Sun H, Wang C, et al. Impacts of crab bioturbation on the fate of polycyclic aromatichydrocarbons in sediment from the Beitang estuary of Tianjin, China. Environ Toxicol Chem,2010,29(6):1248-1255
    [217] Wei L, Zhao Q, Xue S, et al. Behavior and characteristics of DOM during a laboratory-scalehorizontal subsurface flow wetland treatment: Effect of DOM derived from leaves and roots.Ecol Eng,2009,35(10):1405-1414
    [218] Brunk B K, Jirka G H, Lion L W. Effects of salinity changes and the formation of dissolvedorganic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping inestuaries. Environ Sci Technol,1997,31(1):119-125
    [219] Polubesova T, Sherman-Nakache M, Chefetz B. Binding of pyrene to hydrophobic fractions ofdissolved organic matter: Effect of polyvalent metal complexation. Environ Sci Technol,2007,41(15):5389-5394
    [220] Jones K D and Tiller C L. Effect of solution chemistry on the extent of binding of phenanthreneby a soil humic acid: A comparison of dissolved and clay bound humic. Environ Sci Technol,1999,33(4):580-587
    [221] Hsieh P C, Lin J H, Lee C L. Mixing of dissolved organic matter from distinct sources: Usingfluorescent pyrene as a probe. J Environ Sci Heal A,2009,44(2):170-178
    [222] Hur J and Schlautman M A. Humic substance adsorptive fractionation by minerals and itssubsequent effects on pyrene sorption isotherms. J Environ Sci Heal A,2006,41(3):343-358
    [223] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone,and macrolide antibiotics in the Haihe River Basin, China. Environ Sci Technol,2011,45(5):1827-1833
    [224] Chi J. Vertical fluxes and accumulation of organochlorine pesticides in sediments of HaiheRiver, Tianjin, China. Bull Environ Contam Toxicol,2009,82(4):510-515
    [225] Landrum P F, Nihart S R, Eadie B J, et al. Reverse phase separation method for determiningpollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters. EnvironSci Technol,1984,18(3):187-192
    [226] Danielsen K M, Chin Y, Buterbaugh J S, et al. Solubility enhancement and fluorescencequenching of pyrene by humic substances: The effect of dissolved oxygen on quenchingprocesses. Environ Sci Technol,1995,29(8):2162-2165
    [227] Jung A V, Frochot C, Villieras F, et al. Interaction of pyrene fluoroprobe with natural andsynthetic humic substances: Examining the local molecular organization from photophysical andinterfacial processes. Chemosphere,2010,80(3):228-234
    [228] Lopez F, Cuomo F, Ceglie A, et al. Quenching and dequenching of pyrene fluorescence bynucleotide monophosphates in Cationic Micelles. J Phys Chem B,2008,112(24):7338-7344
    [229] Lakowicz J R. Principles of Fluorescence Spectroscopy,3rd ed. New York: Plenum Press,2006
    [230] Backhus D A, Golini C, Castellanos E. Evaluation of fluorescence quenching for assessing theimportance of interactions between nonpolar organic pollutants and dissolved organic matter.Environ Sci Technol,2003,37(20):4717-4723
    [231] Chen S, Inskeep W P, Williams S A, et al. Fluorescence lifetime measurements of fluoranthene,1-naphthol, and Napropamide in the presence of dissolved humic acid. Environ Sci Technol,1994,28(9):1582-1588
    [232]邢冠华,薛蓓,胡璟等.荧光猝灭法测定菲、苊、芘与腐殖酸的结合常数.环境化学,2005,24(5):578-581
    [233] Traina S J, Spontak D A, Logan T J. Effects of cations on complexation of Naphthalene bywater-soluble organic carbon. J Environ Qual,1989,18:221-227
    [234] Burkhard L P. Estimating dissolved organic carbon partition coefficients for nonionic organicchemicals. Environ Sci Technol,2000,34(22):4663-4668
    [235]燕启社and孙红文. Fenton氧化对土壤有机质及其吸附性能的影响.农业环境科学学报,2006,25(2):412-417
    [236] Sparks D L. Environmental Soil Chemistry,2nd ed. London: Academic Press,2003
    [237] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry,2nd ed.Hoboken, New Jersey: John Wiley&Sons, Inc.,2003
    [238] Means J C. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons.Mar Chem,1995,51(1):3-16
    [239] Zhou J L and Rowland S J. Evaluation of the interactions between hydrophobic organicpollutants and suspended particles in estuarine waters. Water Res,1997,31(7):1708-1718
    [240] Engebretson R R and von Wandruszka R. Micro-organization in dissolved humic acids.Environ Sci Technol,1994,28(11):1934-1941
    [241] Lee C L, Kuo L J, Wang H L, et al. Effects of ionic strength on the binding of phenanthrene andpyrene to humic substances: Three-stage variation model. Water Res,2003,37(17):4250-4258
    [242] von Wandruszka R, Ragle C, Engebretson R. The role of selected cations in the formation ofpseudomicelles in aqueous humic acid. Talanta,1997,44(5):805-809
    [243] Kang S and Xing B. Phenanthrene sorption to sequentially extracted soil humic acids andhumins. Environ Sci Technol,2005,39(1):134-140
    [244] Akkanen J, Vogt R, Kukkonen J K. Essential characteristics of natural dissolved organic matteraffecting the sorption of hydrophobic organic contaminants. Aquat Sci,2004,66(2):171-177
    [245] Gunasekara A S, Simpson M I, Xing B. Identification and characterization of sorption domainsin soil organic matter using strucuturally modified humic acids. Environ Sci Technol,2003,37(5):852-858
    [246] Sun H and Zhou Z. Impacts of charcoal characteristics on sorption of polycyclic aromatichydrocarbons. Chemosphere,2008,71(11):2113-2120
    [247] Zhu D, Hyun S, Pignatello J J, et al. Evidence for π π electron donor acceptor interactionsbetween π-donor aromatic compounds and π-acceptor sites in soil organic matter through pHeffects on sorption. Environ Sci Technol,2004,38(16):4361-4368
    [248] Delgado-Moreno L, Wu L, Gan J. Effect of dissolved organic carbon on sorption of pyrethroidsto sediments. Environ Sci Technol,2010,44(22):8473-8478
    [249] Liang C, Dang Z, Xiao B, et al. Equilibrium sorption of phenanthrene by soil humic acids.Chemosphere,2006,63(11):1961-1968
    [250] Fukushima M, Tanabe Y, Yabuta H, et al. Water solubility enhancement effects of somepolychlorinated organic pollutants by dissolved organic carbon from a soil with a higher organiccarbon content. J Environ Sci Heal A,2006,41(8):1483-1494
    [251] Morrison R T and Boyd R N. Organic Chemistry,6th ed. Newton, Massachussete: Allyn&Bacon, Inc.,1992
    [252] Munoz M A, Sama O, Galan M, et al. Interactions between betacarboline and benzenoid πbases: FTIR evidence for the formation of NH π hydrogen bonds. J Phys Chem B,1999,103(41):8794-8798
    [253] Wijnja H, Pignatello J J, Malekani K. Formation of π-π complexes between phenanthrene andmodel π-acceptor humic subunits. J Environ Qual,2004,33(1):265-275
    [254] Ephraim J H, Pettersson C, Norden M, et al. Potentiometric titrations of humic substances: Doionic strength effects depend on the molecular weight. Environ Sci Technol,1995,29(3):622-628
    [255] Tanaka M and Takahashi K. Study on the salting-out effect using silica species by FAB-MS. JSolution Chem,2007,36(1):27-37
    [256] Kinniburgh D G, Milne C J, Benedetti M F, et al. Metal ion binding by humic acid: Applicationof the NICA-donnan model. Environ Sci Technol,1996,30(5):1687-1698
    [257] Marshall S J, Young S D, Gregson K. Humic acid–proton equilibria: A comparison of twomodels and assessment of titration error. Eur J Soil Sci,1995,46(3):471-480
    [258] Benedetti M F, Milne C J, Kinniburgh D G, et al. Metal ion binding to humic substances:Application of the non-ideal competitive adsorption model. Environ Sci Technol,1995,29(2):446-457
    [259] Marschner B, Winkler R, Jodemann D. Factors controlling the partitioning of pyrene todissolved organic matter extracted from different soils. Eur J Soil Sci,2005,56(3):299-306
    [260] Li A and Wang X. Binding of pyrene to fulvic acid fractions isolated by polarity-basedsequential elution. Environ Toxicol Chem,2011,30(5):1079-1085
    [261] Amon R M W and Meon B. The biogeochemistry of dissolved organic matter and nutrients intwo large Arctic estuaries and potential implications for our understanding of the Arctic Oceansystem. Mar Chem,2004,92(1-4):311-330
    [262] Stevenson F J. Humus Chemistry: Genesis, Compositions, Reactions,2nd ed. New York: Wiley&Sons,1994,31-33
    [263] Malcolm R L. The uniqueness of humic substances in each of soil, stream and marineenvironments. Anal Chim Acta,1990,232(1):19-30
    [264] Rice J A and MacCarthy P. Statistical evaluation of the elemental composition of humicsubstances. Org Geochem,1991,17(5):635-648
    [265] Shin H-S, Monsallier J M, Choppin G R. Spectroscopic and chemical characterizations ofmolecular size fractionated humic acid. Talanta,1999,50(3):641-647
    [266] Cook B D and Allan D L. Dissolved organic carbon in old field soils: Compositional changesduring the biodegradation of soil organic matter. Soil Biol Biochem,1992,24(6):595-600
    [267] Chefetz B, Chen Y, Hadar Y, et al. Characterization of dissolved organic matter extracted fromcomposted municipal solid waste. Soil Sci Soc Am J,1998,62(2):326-332
    [268] Chefetz B, Ilani T, Schulz E, et al. Wastewater dissolved organic matter: Characteristics andsorptive capabilities. Water Sci Technol,2006,53(7):51-57
    [269] Zhang H, Qu J, Liu H, et al. Characterization of isolated fractions of dissolved organic matterfrom sewage treatment plant and the related disinfection by-products formation potential. JHazard Mater,2009,164(2-3):1433-1438
    [270] Ma H, Allen H E, Yin Y. Characterization of isolated fractions of dissolved organic matter fromnatural waters and a wastewater effluent. Water Res,2001,35(4):985-996
    [271] Mei Y, Wu F, Wang L, et al. Binding characteristics of perylene, phenanthrene and anthraceneto different DOM fractions from lake water. J Environ Sci-China,2009,21(4):414-423
    [272] Wang L, Wu F, Zhang R, et al. Characterization of dissolved organic matter fractions from LakeHongfeng, Southwestern China Plateau. J Environ Sci,2009,21(5):581-588
    [273] Mattsson T, Kortelainen P, David M B. Dissolved organic carbon fractions in Finnish andMaine (USA) lakes. Environ Int,1998,24(5-6):521-525
    [274] Salloum M J, Chefetz B, Hatcher P G. Phenanthrene sorption by aliphatic-rich natural organicmatter. Environ Sci Technol,2002,36(9):1953-1958
    [275] Xing B. Sorption of anthropogenic organic compounds by soil organic matter: a mechanisticconsideration. Can J Soil Sci,2001,81(3):317-323
    [276] Laor Y and Rebhun M. Evidence for nonlinear binding of PAHs to dissolved humic acids.Environ Sci Technol,2002,36(5):955-61
    [277] Xing B and Pignatello J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinylchloride) and soil organic matter. Environ Sci Technol,1997,31(3):792-799
    [278] Nguyen T H, Goss K U, Ball W P. Polyparameter linear free energy relationships for estimatingthe equilibrium partition of organic compounds between water and the natural organic matter insoils and sediments. Environ Sci Technol,2005,39(4):913-924
    [279] Goss K U and Schwarzenbach R P. Linear free energy relationships used to evaluateequilibrium partitioning of organic compounds. Environ Sci Technol,2001,35(1):1-9
    [280] Borisover M, Laor Y, Bukhanovsky N, et al. Fluorescence-based evidence for adsorptivebinding of pyrene to effluent dissolved organic matter. Chemosphere,2006,65(11):1925-1934
    [281] Pan B, Xing B, Liu W, et al. Investigating interactions of phenanthrene with dissolved organicmatter: Limitations of Stern-Volmer plot. Chemosphere,2007,69(10):1555-1562
    [282] Chin Y P, Aiken G, O'Loughlin E. Molecular weight, polydispersity, and spectroscopicproperties of aquatic humic substances. Environ Sci Technol,1994,28(11):1853-1858
    [283] Salloum M J, Dudas M J, McGill W B. Variation of1-naphthol sorption with organic matterfractionation: the role of physical conformation. Org Geochem,2001,32(5):709-719
    [284] Bonin J L and Simpson M J. Variation in phenanthrene sorption coefficients with soil organicmatter fractionation: The result of structure or conformation. Environ Sci Technol,2007,41(1):153-159
    [285] Simpson M J, Chefetz B, Hatcher P G. Phenanthrene sorption to structurally modified humicacids. J Environ Qual,2003,32(5):1750-1758
    [286] Schnitzer M and Khan S U. Humic Substances in the Environment, New York: Marcel Dekker,1972
    [287]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry,2nd ed.,Hoboken, New Jersey: John Wiley&Sons, Inc.,2003,334
    [288]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry,2nd ed.,Hoboken, New Jersey: John Wiley&Sons, Inc.,2003,345
    [289] Ehlers L J and Luthy R G. Contaminant bioavailability in soil and sediment. Environ SciTechnol,2003,37(15):295A-302A
    [290] Gobas F A P C, Opperhuizen A, Hutzinger O. Bioconcentration of hydrophobic chemicals infish: Relationship with membrane permeation. Environ Toxicol Chem,1986,5(7):637-646
    [291] ter Laak T L, Busser F J M, Hermens J L M. Poly(dimethylsiloxane) as passive samplermaterial for hydrophobic chemicals: Effect of chemical properties and sampler characteristics onpartitioning and equilibration times. Anal Chem,2008,80(10):3859-3866
    [292] Jager T, Fleuren R H L J, Hogendoorn E A, et al. Elucidating the routes of exposure for organicchemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol,2003,37(15):3399-3404
    [293] Akkanen J and Kukkonen J V K. Measuring the bioavailability of two hydrophobic organiccompounds in the presence of dissolved organic matter. Environ Toxicol Chem,2003,22(3):518-524
    [294] McCarthy J F, Burrus L W, Tolbert V R. Bioaccumulation of benzo(a)pyrene from sediment byfathead minnows: Effects of organic content, resuspension and metabolism. Arch Environ ConTox,2003,45(3):364-70
    [295] Hassett J P. Dissolved natural organic matter as a microreactor. Science,2006,311(5768):1723-1724
    [296] Landrum P F, Reinhold M D, Nihart S R, et al. Predicting the bioavailability of organicxenobiotics to Pontoporeia hoyi in the presence of humic and fulvic materials and naturaldissolved or-ganic matter. Environ Toxicol Chem,1985,4(4):459-467
    [297] Song N, Yang Z, Zhou L, et al. Effect of dissolved organic matter on the toxicity ofchlorotoluron to Triticum aestivum. J Environ Sci-China,2006,18(1):101-108
    [298] Akkanen J, Tuikka A, Kukkonen J V K. Comparative sorption and desorption ofbenzo[a]pyrene and3,4,3',4'-tetrachlorobiphenyl in natural lake water containing dissolvedorganic matter. Environ Sci Technol,2005,39(19):7529-7534
    [299]陈珊,柯润辉,王子健等.利用被动式采样膜评估水中腐殖酸对苊和□生物有效性的影响.科学通报,2007,52(11):1252-1256
    [300] Scharpenseel H W, Theng B K G, Stephan S. Polychlorinated biphenyls (14C) in soils:adsorption, infiltration, translocation and decomposition. Eds.3. International Symposium onEnvironmental Biogeochemistry, Wolfenbuettel (Germany, F.R.): Environmentalbiogeochemistry and geomicrobiology,1978,619-637
    [301] Hassett J P and Milicic E. Determination of equilibrium and rate constants for binding of apolychlorinated biphenyl congener by dissolved humic substances. Environ Sci Technol,1985,19(7):638-643
    [302] Pedersen J A, Gabelich C J, Lin C, et al. Aeration effects on the partitioning of a PCB to anoxicestuarine sediment pore water dissolved organic matter. Environ Sci Technol,1999,33(9):1388-1397
    [303] Celis R, Barriuso E, Houot S. Sorption and desorption of atrazine by sludge-amended soil:Dissolved organic matter effects. J Environ Qual,1998,27(6):1348-1356
    [304] ter Laak T L, ter Bekke M A, Hermens J L M. Dissolved organic matter enhances transport ofPAHs to aquatic organisms. Environ Sci Technol,2009,43(19):7212-7217
    [305] Oomen A G, Mayer P, Tolls J. Nonequilibrium solid-phase microextraction for determination ofthe freely dissolved concentration of hydrophobic organic compounds: Matrix effects andlimitations. Anal Chem,2000,72(13):2802-2808
    [306] Kopinke F D, Georgi A, Mackenzie K. Sorption and chemical reactions of PAHs with dissolvedhumic substances and related model polymers. Acta Hydroch Hydrob,2000,28(7):385-399
    [307] ter Laak T L, van Eijkeren J C H, Busser F J M, et al. Facilitated transport of polychlorinatedbiphenyls and polybrominated diphenyl ethers by dissolved organic matter. Environ Sci Technol,2009,43(5):1379-1385
    [308] Basheer C, Narasimhan K, Yin M, et al. Application of micro-solid-phase extraction for thedetermination of persistent organic pollutants in tissue samples. J Chromatogr A,2008,1186(1-2):358-364
    [309] You J, Pehkonen S, Landrum P F, et al. Desorption of hydrophobic compounds fromlaboratory-spiked sediments measured by tenax absorbent and matrix solid-phasemicroextraction. Environ Sci Technol,2007,41(16):5672-5678
    [310] Ke R, Xu Y, Huang S, et al. Comparison of the uptake of polycyclic aromatic hydrocarbons andorganochlorine pesticides by semipermeable membrane devices and caged fish (Carassiuscarassius) in Taihu Lake, China. Environ Toxicol Chem,2007,26(6):1258-1264
    [311] Basheer C, Chong H G, Hii T M, et al. Application of porous membrane-protectedmicro-solid-phase extraction combined with HPLC for the analysis of acidic drugs inwastewater. Anal Chem,2007,79(17):6845-6850
    [312] King A J, Readman J W, Zhou J L. The application of solid-phase micro-extraction (SPME) tothe analysis of polycyclic aromatic hydrocarbons (PAHs). Environ Geochem Hlth,2003,25(1):69-75
    [313] Soedergren A. Solvent-filled dialysis membranes simulate uptake of pollutants by aquaticorganisms. Environ Sci Technol,1987,21(9):855-859
    [314] Ke R, Xu Y, Wang Z, et al. Estimation of the uptake rate constants for polycyclic aromatichydrocarbons accumulated by semipermeable membrane devices and triolein-embeddedcellulose acetate membranes. Environ Sci Technol,2006,40(12):3906-3911
    [315] Huckins J N, Tubergen M W, Manuweera G K. Semipermeable membrane devices containingmodel lipid: A new approach to monitoring the bioavaiiability of lipophilic contaminants andestimating their bioconcentration potential. Chemosphere,1990,20(5):533-552
    [316] Sun H, Wang C, Huo C, et al. Semipermeable membrane device-assisted desorption of pyrenefrom soils and its relationship to bioavailability. Environ Toxicol Chem,2008,27(1):103-111
    [317] Heringa M B and Hermens J L M. Measurement of free concentrations using negligibledepletion-solid phase microextraction (nd-SPME). TrAC Trends Anal Chem,2003,22(9):575-587
    [318]徐晓阳,孙红文,张志远.半透膜微萃取方法的建立及其在测定土壤间隙水中憎水性有机污染物的应用.农业环境科学学报,2010,29(4):801-805
    [319] Huckins J N, Manuweera G K, Petty J D, et al. Lipid-containing semipermeable membranedevices for monitoring organic contaminants in water. Environ Sci Technol,1993,27(12):2489-2496
    [320] Kramer N I, van Eijkeren J C H, Hermens J L M. Influence of albumin on sorption kinetics insolid-phase microextraction: Consequences for chemical analyses and uptake processes. AnalChem,2007,79(18):6941-6948
    [321] Mayer P, Fernqvist M M, Christensen P S, et al. Enhanced diffusion of polycyclic aromatichydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol,2007,41(17):6148-6155
    [322] Benhabib K, Town R M, van Leeuwen H P. Dynamic speciation analysis of atrazine in aqueouslatex nanoparticle dispersions using solid phase microextraction (SPME). Langmuir,2009,25(6):3381-3386
    [323] Kalis E J J, Temminghoff E J M, Weng L, et al. Effects of humic acid and competing cations onmetal uptake by Lolium perenne. Environ Toxicol Chem,2006,25(3):702-711
    [324] Degryse F, Smolders E, Merckx R. Labile Cd complexes increase Cd availability to plants.Environ Sci Technol,2005,40(3):830-836
    [325] Jansen S, Blust R, Van Leeuwen H P. Metal speciation dynamics and bioavailability: Zn(II) andCd(II) uptake by Mussel (Mytilus edulis) and Carp (Cyprinus carpio). Environ Sci Technol,2002,36(10):2164-2170
    [326] Arnold W R, Diamond R L, Smith D S. The effects of salinity, pH, and dissolved organicmatter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain). Arch EnvironCon Tox,2010,59(2):225-234
    [327] Arnold W R, Diamond R L, Smith D S. Acute and chronic toxicity of copper to the euryhalinerotifer, Brachionus plicatilis ("L" strain). Arch Environ Con Tox,2011,60(2):250-260
    [328] Bringolf R B, Morris B A, Boese C J, et al. Influence of dissolved organic matter on acutetoxicity of zinc to larval fathead minnows (Pimephales promelas). Arch Environ Con Tox,2006,51(3):438-444
    [329] Hu X, Chen Q, Jiang L, et al. Combined effects of titanium dioxide and humic acid on thebioaccumulation of cadmium in Zebrafish. Environ Pollut,2011,159(5):1151-1158
    [330] Ke R H, Luo J P, Sun L W, et al. Predicting bioavailability and accumulation of organochlorinepesticides by Japanese medaka in the presence of humic acid and natural organic matter usingpassive sampling membranes. Environ Sci Technol,2007,41(19):6698-6703
    [331]梁拥军,孙向军,李文通等.红白锦鲤的染色体核型分析.安徽农业科学,2010,38(14):7717-7719
    [332] OECD. Guidance document on aquatic toxicity testing of difficult substances and mixtures.OECD Series on Testing and Assessment,2000, Number23
    [333]朱小山,朱琳,田胜艳等.三种金属氧化物纳米颗粒的水生态毒性.生态学报,2008,28(8):3507-3516
    [334]张国霞,沈洪艳,李敏.3种硝基芳烃化合物对锦鲤鱼的急性毒性研究.安徽农业科学,2012,40(10):5940-5942
    [335]沈洪艳,甄芳芳,宋存义等.3种硝基苯污染物对锦鲤鱼的急性毒性.农业环境科学学报,2007,26(增刊):63-67
    [336]沈洪艳,甄芳芳,任洪强等.对氯硝基苯对锦鲤(Cyprinus carpio)的急性毒性试验.生态环境,2007,16(2):407-409
    [337]沈洪艳,甄芳芳,任洪强等.两种硝基氯苯对鲤鱼的急性毒性.环境科学与技术,2007,30(12):10-13
    [338]沈洪艳,宋存义,甄芳芳等.对氯硝基苯和2,4-二硝基氯苯对锦鲤鱼急性毒性作用.环境与健康杂志,2007,24(5):7-9
    [339] Chezhian A, Senthamilselvan D, Kabilan N. Histological changes induced by ammonia and pHon the gills of gresh water fish Cyprinus carpio var. communis (Linnaeus). Asian J Anim VetAdv,2012,7(7):588-596
    [340]覃雪波.生物扰动对河口沉积物中多环芳烃环境行为的影响:[博士学位论文].天津:南开大学,2010
    [341] Poerschmann J, Zhang Z, Kopinke F D, et al. Solid phase microextraction for determining thedistribution of chemicals in aqueous matrices. Anal Chem,1997,69(4):597-600
    [342] Petersen E J, Akkanen J, Kukkonen J V K, et al. Biological uptake and depuration of carbonnanotubes by Daphnia magna. Environ Sci Technol,2009,43(8):2969-2975
    [343] Kalsch W, Nagel R, Urich K. Uptake, elimination, and bioconcentration of ten anilines inzebrafish (Brachydanio rerio). Chemosphere,1991,22(3-4):351-363
    [344] de Wolf W, de Bruijn J H M, Seinen W, et al. Influence of biotransformation on the relationshipbetween bioconcentration factors and octanol-water partition coefficients. Environ Sci Technol,1992,26(6):1197-1201
    [345] Zhao W, Han M, Dai S, et al. Ionic liquid-containing semipermeable membrane devices formonitoring the polycyclic aromatic hydrocarbons in water. Chemosphere,2006,62(10):1623-1629
    [346] Xu J, Wang P, Zhong X, et al. Comparison of PAH and nonylphenol uptake by carp (Cyprinuscarpio) and semipermeable membrane devices (SPMDs) from water. Bull Environ ContamToxicol,2006,77(2):211-218
    [347]邢殿楼,王华,王丽等.甲磺隆在尼罗罗非鱼体内蓄积的研究.大连海洋大学学报,2011,26(1):12-16
    [348] Mackay D and Fraser A. Bioaccumulation of persistent organic chemicals: Mechanisms andmodels. Environ Pollut,2000,110(3):375-391
    [349]Gray J S. Biomagnification in marine systems: The perspective of an ecologist. Mar Pollut Bull,2002,45(1-12):46-52
    [350] Gobas F A P C and Morrison H A. ed. Bioconcentration and biomagnification in the aquaticenvironment, In: Boethling R S and Mackay D eds. Handbook of Property Estimation Methodsfor Chemicals, CRC Press: Boca Raton, FL, Inc.,2000,189-231
    [351] Yang R. A physiological model to predict xenobiotic concentrations in fishes:[Ph. D thesis].Vancouver, BC, Canada: The University of British Columbia,1997
    [352] Woodwell G M. Toxic substances and ecological cycles. Sci Am,1967,216(3):24-31
    [353] Randall D J, Connell D W, Yang R, et al. Concentrations of persistent lipophilic compounds infish are determined by exchange across the gills, not through the food chain. Chemosphere,1998,37(7):1263-1270
    [354] Yang R, Thurston V, Neuman J, et al. A physiological model to predict xenobiotic concentrationin fish. Aquat Toxicol,2000,48(2-3):109-117
    [355] Tao S, Liu W, Liu G, et al. Short-term dynamic change of gill copper in common carp, Cyprinuscarpio, evaluated by a sequential extraction. Arch Environ Con Tox,2006,51(3):408-415
    [356] Tao S, Long A, Liu C, et al. The Influence of mucus on copper speciation in the gillMicroenvironment of Carp (Cyprinus carpio). Ecotox Environ Safe,2000,47(1):59-64
    [357] Cazenave J, Wunderlin D A, Bistoni M d l á, et al. Uptake, tissue distribution andaccumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthesbonariensis: A field and laboratory study. Aquat Toxicol,2005,75(2):178-190
    [358] Vives I, Grimalt J O, Lacorte S, et al. Polybromodiphenyl ether flame retardants in fish fromlakes in European high mountains and Greenland. Environ Sci Technol,2004,38(8):2338-2344
    [359] Albaigés J, Farrán A, Soler M, et al. Accumulation and distribution of biogenic and pollutanthydrocarbons, PCBs and DDT in tissues of western mediterranean fishes. Mar Environ Res,1987,22(1):1-18
    [360]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry,2nd ed.,Hoboken, New Jersey: John Wiley&Sons, Inc.,2003,350-351
    [361] Gustafson K E and Dickhut R M. Molecular diffusivity of polycyclic aromatic hydrocarbons inaqueous solution. J Chem Eng Data,1994,39(2):281-285
    [362] Gale R W. Three-compartment model for contaminant accumulation by semipermeablemembrane devices. Environ Sci Technol,1998,32(15):2292-2300
    [363] Sijm D T H M, Verberne M E, P rt P, et al. Experimentally determined blood and water flowlimitations for uptake of hydrophobic compounds using perfused gills of rainbow trout(Oncorhynchus mykiss): Allometric applications. Aquat Toxicol,1994,30(4):325-341
    [364] Randall D, Lin H, Wright P A. Gill water flow and the chemistry of the boundary layer. PhysiolZool,1991,64(1):26-38
    [365] Clark K E, Gobas F A P C, Mackay D. Model of organic chemical uptake and clearance by fishfrom food and water. Environ Sci Technol,1990,24(8):1203-1213
    [366] Bayen S, ter Laak T L, Buffle J, et al. Dynamic exposure of organisms and passive samplers tohydrophobic chemicals. Environ Sci Technol,2009,43(7):2206-2215
    [367] Freidig A P, Garicano E A, Busser F J M, et al. Estimating impact of humic acid onbioavailability and bioaccumulation of hydrophobic chemicals in guppies using kineticsolid-phase extraction. Environ Toxicol Chem,1998,17(6):998-1004
    [368]李银生,曾振灵,陈杖榴等.洛克沙胂污染胁迫下蚯蚓体内砷的富集和释放.同济大学学报,2008,36(2):212-217
    [369]夏文江,成章瑞. MCPKP——药物动力学室分析的一种微机程序.中国药理学报,1988,9(2):188-192
    [370] K nemann H and van Leeuwen K. Toxicokinetics in fish: Accumulation and elimination of sixchlorobenzenes by guppies. Chemosphere,1980,9(1):3-19
    [371] Johnson W P and Amy G L. Facilitated transport and enhanced desorption of polycyclicaromatic hydrocarbons by natural organic matter in aquifer sediments. Environ Sci Technol,1995,29(3):807-817
    [372] Conte P, Agretto A, Spaccini R, et al. Soil remediation: Humic acids as natural surfactants inthe washings of highly contaminated soils. Environ Pollut,2005,135(3):515-522
    [373] Celis R, Barriuso E, Houot S. Effect of liquid sewage sludge addition on atrazine sorption anddesorption by soil. Chemosphere,1998,37(6):1091-1107
    [374] Willams C F, Agassi M, Letey J. Facilitated transport of napropamide by dissolved organicmatter through soil columns. Soil Sci Soc Am J,2000,64:590-594
    [375] Totsche K U, Danzer J, Kogel-Knabner I. Dissolved organic matter-enhanced retention ofpolycyclic aromatic hydrocarbons in soil miscible displacement experiments. J Environ Qual,1997,26(4):1090-1100
    [376] Huang W, Yu H, Weber Jr W J. Hysteresis in the sorption and desorption of hydrophobicorganic contaminants by soils and sediments:1. A comparative analysis of experimentalprotocols. J Contam Hydrol,1998,31(1-2):129-148
    [377] Weber Jr W J, Huang W, Yu H. Hysteresis in the sorption and desorption of hydrophobicorganic contaminants by soils and sediments:2. Effects of soil organic matter heterogeneity. JContam Hydrol,1998,31(1-2):149-165
    [378]辛颖.菲在泥炭、褐煤和有机粘土复合物上的吸附行为研究:[硕士学位论文].天津:南开大学,2009
    [379]徐晓阳.土壤中菲的形态及其生物可利用性研究:[博士学位论文].天津:南开大学,2010
    [380] Sander M and Pignatello J J. Characterization of charcoal adsorption sites for aromaticcompounds: Insights drawn from single-solute and bi-solute competitive experiments. EnvironSci Technol,2005,39(6):1606-1615
    [381] Zhang S, Shao T, Bekaroglu S S K, et al. Adsorption of synthetic organic chemicals by carbonnanotubes: Effects of background solution chemistry. Water Res,2010,44(6):2067-2074
    [382] Wang X, Lu J, Xing B. Sorption of organic contaminants by carbon nanotubes: Influence ofadsorbed organic matter. Environ Sci Technol,2008,42(9):3207-3212
    [383] Kim Y and Lee D. Solubility enhancement of PCDD/F in the presence of dissolved humicmatter. J Hazard Mater,2002,91(1–3):113-127
    [384] Lalah J O and Wandiga S O. Binding and water solubility enhancement of14C-Benzo[a]Pyreneby dissolved organic matter in freshwater in Kenya. Bull Environ Contam Toxicol,2006,77(6):816-825
    [385] Peuravuori J. Partition coefficients of pyrene to lake aquatic humic matter determined byfluorescence quenching and solubility enhancement. Anal Chim Acta,2001,429(1):65-73
    [386]吴文伶.离子型化合物对菲吸附解吸影响研究:[博士学位论文].天津:南开大学,2010
    [387] Li K, Xing B, Torello W A. Effect of organic fertilizers derived dissolved organic matter onpesticide sorption and leaching. Environ Pollut,2005,134(2):187-194
    [388]占新华,周立祥,黄楷.水溶性有机物对菲的表观溶解度和正辛醇/水分配系数的影响.环境科学学报,2006,26(1):105-110
    [389] Drori Y, Aizenshtat Z, Chefetz B. Sorption-desorption behavior of atrazine in soils irrigatedwith reclaimed wastewater. Soil Sci Soc Am J,2005,69(6):1703-1710
    [390] Hong L, Ghosh U, Mahajan T, et al. PAH sorption mechanism and partitioning behavior inlampblack-impacted soils from former oil-gas plant sites. Environ Sci Technol,2003,37(16):3625-3634
    [391] Raber B, Kogel-Knabner I, Stein C, et al. Partitioning of polycyclic aromatic hydrocarbons todissolved organic matter from different soils. Chemosphere,1998,36(1):79-97
    [392] Fründ R and Lüdemann H D. The quantitative analysis of solution-and CPMAS-C-13NMRspectra of humic material. Sci Total Environ,1989,81-82:157-168
    [393] Lueking A D, Huang W, Soderstrom-Schwarz S, et al. Relationship of soil organic mattercharacteristics to organic contaminant sequestration and bioavailability. J Environ Qual,1998,29(1):317-323
    [394] Pignatello J J and Xing B. Mechanisms of slow sorption of organic chemicals to naturalparticles. Environ Sci Technol,1995,30(1):1-11
    [395]高鹏,张照韩,孙清芳等.溶解性有机质对甲草胺在土壤中吸附行为影响.哈尔滨工业大学学报,2012,44(2):66-69
    [396] Gao J P, Maguhn J, Spitzauer P, et al. Sorption of pesticides in the sediment of theTeufelsweiher pond (Southern Germany). II: Competitive adsorption, desorption of agedresidues and effect of dissolved organic carbon. Water Res,1998,32(7):2089-2094
    [397] Wang K and Xing B. Structural and sorption characteristics of adsorbed humic acid on clayminerals. J Environ Qual,2005,34(1):342-349
    [398] Feng X, Simpson A J, Simpson M J. Investigating the role of mineral-bound humic acid inphenanthrene sorption. Environ Sci Technol,2006,40(10):3260-3266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700