用户名: 密码: 验证码:
化纤长丝高速卷绕头系统动力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纱线卷绕是纺织品生产领域普遍存在的一项重要工艺过程。完成卷绕的转子(锭子)连同纱线卷装构成转子系统,为保持卷绕线速度恒定,系统转速会随着卷绕直径的增加逐渐减慢,形成质量、刚度、转速等参数慢时变系统。化纤长丝卷绕头是典型的参数慢时变转子系统。随着新产品和新工艺的不断发展,研制和生产大(容量)卷装、高速卷绕的化纤长丝卷绕头是降低成本、适应新工艺要求的必然趋势。
     卷绕头长丝满卷质量一般是锭轴自身质量4倍以上。在一个卷绕周期内,锭轴的工作转速范围为20000r/min.~4000r/min.,以满足恒卷绕线速度为6000m/min.的工艺要求。如何确保在宽广的转速工作频域内,在质量和刚度时变情况下,锭轴系统能有效避开临界转速而平稳运行是卷绕头设计的关键。空卷时平衡后的锭轴(夹头),如何确保在添加纸筒、卷装增大、胀圈运动、长丝卷绕时的干扰、压辊施压等状态下锭轴系统仍正常工作是卷绕头设计的又一问题。针对以上问题,本文研究工作如下:
     首先从卷绕头弹性支承系统入手,搭建了与锭轴相同的弹性支承系统转子试验台,并建立对应梁单元转子有限元模型,通过理论、试验相结合分析了弹性支承转子系统的动力学特点,结果表明:弹性支承系统使转子系统的前几阶非弯曲振型(弹性支承刚性转轴运动)所对应的临界转速大幅下降,形成低阶临界转速和高阶临界转速(对应转轴弯曲振型)间较为宽广的平稳转速区。
     弹性支承系统的动力参数涉及难以确定的因素较多,本文通过试验求得其当量刚度和阻尼值。在分析弹性支承转子的非弯曲振型以及相应的临界转速的基础上,完善了试验求取弹性支承系统刚度的方法,并给出试验求取弹性支承系统动力参数时转子系统参数选取的要求。
     基于橡胶材料应力—应变关系,利用唯象理论建立橡胶材料的本构关系,并在工作区内线性化;基于赫兹接触理论建立了橡胶圈支承力学模型,结合有限元程序计算分析了橡胶圈支承的静态特性。针对加工的不同质量的转子,通过试验求取弹性支承系统的系列等效动态刚度值,拟合了弹性支承系统等效刚度曲线,分析了弹性支承的特点。同时对试验台的转子系统进行了相同模型的有限元分析,理论计算和试验数据很好吻合,验证了方法的正确性。
     其次建立了弹性支承刚性转子的动力学方程,从理论上验证当考虑弹性支承的阻尼作用,弹性支承下的高速旋转转子具有自动定心的特点。建立弹性支承转子系统有限元模型,转子采用实体单元,分析结果表明:改变转子径向弹性支承刚度可显著改变转子椭圆柱形运动振型所对应的临界转速,而同时改变转子轴向弹性支承刚度可显著改变转子椭圆锥形运动所对应的临界转速,改变这两组刚度值可将转子系统的非弯曲振型所对应的临界转速调整到所要求的范围内。当单个夹头上的卷装不断增多,夹头和锭轴长度加长时,弯曲振型所对应的临界转速下降,压缩稳定工作区间,为进一步合理规划临界转速值,本文提出了主动调节转子临界转速的方法,并给出了指导性建议。
     最后针对一套典型的长丝卷绕头,设计相应的虚拟样机,建立其有限元模型,利用以上分析方法和结果对锭轴空卷快速升速、满卷快速降速、正常卷绕时参数慢变等状况下的动力学行为进行计算、仿真和分析,揭示了三阶段不同动力学特性,验证了研究结果的正确性和可行性。
The winding is an important process in the filament production, Winding rotor (or spindle) together with the yarn package constitutes a rotor system. In order to maintain a constant winding speed in spinning, the revolving speed of the rotor has to be gradually slowed down with the increase of the winding diameter, which constitutes a parameters slow time-varying system of its mass, stiffness and revolving speed. The filament winding head is a typical form of the rotor system with parameters slow time-varying. In order to develop new products with new technology, reduce costs and adapt to the new requirements, it is an inevitable trend to develop and product new chemical fiber filament winding heads for high speed of winding with the large package.
     The full package weight of a filament winding head is generally more than4times its own weight of the spindle. In a winding cycle, the range of the spindle working speed is varying from20000r/min. to4000r/min., which can meet the technological requirements of a spinning speed up to6000m/min.. In the case of the mass and rigidity time-varying, in a wide range of its working speed, how to ensure the spindle system effective working avoiding the critical speed disturbance and to maintain its smooth operation is the key point of the winding head design. In an idle spindle, it has been in a state of equilibrium. When the paper spool is loading, the package wound is increasing, and the compression roll pressing on, they are all disturbing the filament winding effectively. In order to ensure the spindle system working smoothly and to solve all above problem of the winding head design, the main research work is the following:
     Start with the elastic support system of the winding head, we built a rotor testing device with the same elastic support system of the spindle and then further established a finite element model of the rotor beam element. By means of theoretical and experimental analysis, we studied the dynamic characteristics of the rotor system. The results show that: the elastic support system cause the critical speeds corresponding to the first orders non-bending mode of the rotor system (motion of the elastic support rigidity shaft) decrease significantly, which lead to a relatively wide range of small variation between the lower order critical speed and the higher order critical speed (according to the smooth running condition).
     Secondly, dynamic parameters of the elastic support system involve in many uncertain factors. In this paper, we obtained the equivalent stiffness and damping through the test. In addition, through the analysis of non-bending vibration mode of the rotor with elastic support, as well as the corresponding critical speed, we improved the test method for stiffness of the elastic supporting system, and gave the parameter selection requirements of the rotor system when calculating dynamic parameters of the elastic support system by test.
     Based on the rubber material stress-strain relationship, we established its constitutive relation by applying phenomenological theory, and achieved linearization within the work area. Based on Hertzian contact theory, we established a mechanical model of the rubber ring support, and analyzed its static characteristics of the rubber ring by the finite element method. Through the test of the rotor's different mass, we obtained a series of equivalent dynamic stiffness value of the elastic support system and some corresponding fitting curves, and analyzed characteristics of the elastic support. At the same time, the finite element model of the rotor system was established and analyzed. The results show that: the solution of the theoretical calculation and the experimental data agree well, which proves the correctness of the design.
     Then, in order to verify theoretically the characteristics of the automatic centering of a high-speed rotating rotor with elastic support, a kinetic equation for a rigid rotor with elastic support was established. In addition, a finite element model for a rotor system with elastic support was established, and the rotor is used a solid element. The analytical results show that:changing the radial stiffness of the elastic support can significantly change the critical speed of rotation corresponding to the elliptic cylindrical movement mode of the rotor. While, at the same time, changing the axial stiffness of the rotor elastic support can significantly change the critical speed of rotation corresponding to the elliptical conical motion mode of the rotor. By changing two groups of the stiffness of the rotor system, the critical speed corresponding to non-bending the mode can be adjusted to a required range. When the package on a single chuck continues to grow, and chuck and spindle lengths increase, the critical speed corresponding to a bending mode will decreasing, which will narrow the range of working stability. In order to rational plan the critical speed value, this paper presents an active regulation method of the rotor critical speed, and gives some suggestions further.
     Lastly, based on a typical filament winding head, we designed the corresponding virtual prototype, and established a finite element model. Using the above method and the analysis results, we conducted the calculation, simulation and analysis about the dynamics behavior of the acceleration of the spindle empty package, deceleration of the full package and winding parameters slowly variations etc, which reveals different dynamic characteristics of the three stages. The results verify its correctness and feasibility.
引文
[1]观全局,解析纺织服装行业重要数字,中国制衣,2008,(9):15
    [2]张其伟,论我国成为世界化纤强国的标志,纺织导报,2008,(9):81-84
    [3]王玉萍,中国涤纶长丝行业发展与环境保护,合成纤维,2008,(7):1-5
    [4]纺织经济,国际纺织导报,2010,(6):17-20
    [5]中国化学纤维工业协会,2010年上半年分行业经济运行分析,纺织服装周刊,2010,(8):34-35
    [6]高勇,大力振兴纺织装备制造业,努力促进纺织产业升级,纺织机械,2006,(2):2-6
    [7]中国纺织工业协会,纺织工业科技进步发展纲要,纺织科技进展,2005,(1):76-80
    [8]王府梅,燕飞,机织物及其纱线弯曲性能的实验研究,东华大学学报(自然科学版),2002,28(1):91-96
    [9]冯志华,朱晓军等,轴向运动纱线非线性动力学,苏州大学学报,2004,24(5):23-26
    [10]Ngoc, C.N.; Bruniaux, P.; Castelain, J.M.,Constrained Dynamic Yarn Modeling, Textile Research Journal, Jan.,2002, Vol.72
    [11]Dehghani, Lawrence, MAHMOUDI, Greenwood, Iype, Fibre Dynamics in a Revolving-flates Card:An Assessment of Changes in the State of Fibre Mass during the Early Stages of the Carding Process, Journal Textile Institute,2002,91(1),359-373
    [12]Behera B.K., Shakyawar D.B., Structure-property relationship of fibre, yarn and fabric with special reference to low-stress mechanical properties and hand value of fabric, Indian Journal of Fibre & Textile Research, Jan.,2000,Vo1.25:200-205
    [13]Githaiga, Vangheluwe, Kiekens, Relationship between the Properties of Cotton Rotor Spun Yarn and the Yarn Speed in an Air-jet Loom, Journal-Textile Institute,2000,91 (1):35-47
    [14]李允成,许心华等,涤纶长丝生产,北京:中国纺织出版社,1995,第2版
    [15]S. Koussios, O.K. Bergsma and A. Beukers, Filament winding:kinematics, collision control and process optimisation through application of dynamic programming, Applied Science and Manufacturing, Volume 37, Issue 11,November 2006, Pages 2088-2104
    [16]S. Koussios, O.K. Bergsma, A. Beukers, Filament winding. Part 1:determination of the wound body related parameters, Applied Science and Manufacturing, Volume 35, Issue 2, February 2004, Pages 181-195
    [17]S. Koussios, O.K. Bergsma, A. Beukers, Filament winding. Part 2:generic kinematic model and its solutions, Applied Science and Manufacturing, Volume 35, Issue 2, February 2004, Pages 197-212
    [18]D.A. Jack and D.E. Smith, The effect of fibre orientation closure approximations on mechanical property predictions, Applied Science and Manufacturing, Volume 38, Issue 3, March 2007, Pages 975-982
    [19]C. Mei, Effect of material coupling on wave vibration of composite Euler-Bernoulli beam structures, Journal of Sound and Vibration, Volume 288, Issues 1-2,22 November 2005, Pages 177-193
    [20]Rieter推出化纤长丝新技术,纺织导报,2006(2):41-42
    [21]魏建,匡江红,陈帅,陈振坤,高速卷绕机卷绕方法的分析与研究,合成纤维,2006,(8):36-40
    [22]高志毅,冀森彪,胡如伟,纺丝卷绕张力的分析与论述,纺织机械,2002,6:24-26
    [23]刘玉来,牛犇,卷绕机接触压力调节方式的分析,河南化工,2001,1:15-16,34
    [24]罗一新,曾周亮,王松华:卷绕传动的力学分析及控制,振动与冲击,2001,20(3):86-87,81
    [25]魏建,现代化纤卷绕装备计算机控制系统的研究,博士学位论文,2005年7月
    [26]吴永升,我国化纤机械发展、回顾与展望,2002,(38):10
    [27]高速卷绕头,纺织机械,1998,(1):3-4
    [28]王玉萍,国产化纤机械的新水平,纺织导报,2002,(40):41-42
    [29]黄文虎等.旋转机械非线性动力学设计基础理论与方法.北京:科学出版社,2006
    [30]Lund J W, Spring and damping coefficient for the tilting pad journal bearing, Trans ASME,1964,7,342-352
    [31]Lund J W, Calculation of stiffness and damping properties of gas bearing, ASME Journal of Lubrication Technology,1968,90,793-803
    [32]Glienicke J, Experimental investigation of the stiffness and damping coefficients of turbine bearings and their application to instability prediction, Journal of bearing for Reciprocating and Turbo-machinery, IME Symposiumin Nottingham,1966,122-135
    [33]Childs D, Hale K,A test apparatus and facility to identify the rotor dynamic coefficients of high-speed hydrostatic bearings. NASA CP-3239,1993,403-418
    [34]闻邦春,顾家柳,夏松波,王正,高等转子动力学—理论、技术与应用,北京:机械工业出版社,1999
    [35]Iwatsubo T,Evaluation of Instability Forces of Labyrinth Seals in Turbines or Compressors, Rotor-dynamic Instability Problems in High Performance Turbo-machinery, NASA CP No.2133,Proceedings of a workshop held at Texas A&M University,1980,139-167
    [36]Childs D, Scharrer J K, An Iwatsubo-based Solution for Labyrinth Seals:Comparison to Experimental Results, ASME Journal of Engineering for Gas Turbines and Power,1986, 108,325-331
    [37]Jenny R,Labyrinths as Cause of Self-Excited Rotor Oscillations in Centrifugal Compressors[J], Sulzer Technical Review,1980,4,149-156
    [38]杨建刚等,汽流激振对轴系稳定性的影响分析,中国电机工程学报,1998,18(1),35-42
    [39]陈佐一,流体激振,清华大学出版社,北京,1998
    [40]李雪松,黄典贵,迷宫气封三维非定常流场及转子动特性数值仿真,机械工程学报,2003,39(4),136-140
    [41]高崇仁,殷玉枫,姚德臣,朱建儒,非线性裂纹转子密封系统的耦合振动分析,机械设计与研究.2009,25(1):27-31
    [42]张广辉,刘占生,田新,旋转冲压转子-动静混合气体轴承系统振动特性仿真研究,振动与冲击.2010,29(9):155-160
    [43]吴云鹏,张文平,孙立红,滚动轴承力学模型的研究及其发展趋势,轴承,2004(7):44-46
    [44]万长森,滚动轴承的分析方法,北京,机械工业出版社,1985
    [45]Stribeck R. Ball bearing for various loads (Trans, by H.Hess)[J].Trans ASME,1907(29)
    [46]Palmgren R. Ball and Roller Bearing Engineering(3rd edition)[M]. Burbank, philadephia, 1959
    [47]Jones A B. Ball Motion and Sliding Friction in Ball Bearings [J]. Trans ASME, Journal of Basic Engineering,1959(81):1-2
    [48]崔立,航空发动机高速滚动轴承及转子系统的动态性能研究,博士学位论文,2008年9月
    [49]Harris. Rolling Bearing Analysis (4th Edition). John Wiley & Sons, Inc. New York,2001
    [50]Harris T A.An analytical Method to Predict Skidding in High Speed Roller Bearing [J]. Trans ASME.1966 (93):17-24
    [51]罗祝三,吴林丰,孙心德,轴向受载的高速球轴承的拟动力学分析,航空动力学报,1996,11(3):257-260
    [52]袁茹,李继庆,高速滚子轴承的拟动态分析计算,机械科学与技术,1995(1):65-68
    [53]张成铁,陈国定,李建华,高速滚动轴承动态特性的粗糙效应分析,西北工业大学学报,1999,(4):643-647
    [54]Walters C T. The Dynamics of Ball Bearings[J].Trans ASME, Journal of Lubrication Technology.1971,93:1-10.
    [55]P. K. Gupta. Dynamic of Rolling-Element Bearings part III:Ball Bearing Analysis. Trans of ASME.1979,101(3):312-318
    [56]P. K. Gupta. Some Dynamic Effects in High-speed Solid-Lubricated Ball Bearings. ASLE Transactions.1983,26(3):393-400
    [57]P. K. Gupta. Advanced Dynamics of Rolling Elements [M]. springer-verlag New York Inc.,1984
    [58]El-Sayed H R. Stiffness of deep-groove ball bearings. Wear,1980,63(1):89-94
    [59]Stone B J. State of the art in the measurement of the stiffness and damping of rolling element bearings. CIRPAnnals,1982,31(2):529-538
    [60]Hernot X, Sartor M, Guillot J. Calculation of the stiffness matrix of angular contact ball bearings by using the analytical approach. Journal of Mechanical Design, Transactions of the ASME,2000,122(1):83-90
    [61]Bugra H Ertas, John M Vance. The effect of static and dynamic misalignment on ball bearing radial stiffness. AIAA-2002~4160,2002
    [62]Tomoya Sakaguchi, Kazuyoshi Harada. Dynamic Analysis of Cage Behavior in a Tapered Roller Bearing. Trans of ASME.2006,128:604-611
    [63]罗祝三,孙心德,吴林丰,滚动轴承在任意方向的支承刚度,南京航空学院学报,1992,24(3):248-256
    [64]黄浩,张鹏顺,温建民,航空发动机角接触球轴承刚度的一种实用分析方法,南京航空航天大学学报,2000,32(4):422-427
    [65]刘卫群,罗继伟,吴长春等,滚动轴承刚度分析程序,计算力学学报,2001,18(3):375-378
    [66]王刚,郭茂林,航空航天滚动轴承刚度,哈尔滨工业大学学报,2001,33(5):644-650
    [67]Kraus J, Blech J J, Braun S G. In situ determination of rolling bearing stiffness and damping by model analysis. Journal of Vibration, Acoustic, Stress, and Reliability in design,1987, 109(3):235-240
    [68]Goodwin M J. Experimental techniques for bearing impedance measurement. Journal of Engineering for Industry, Transactions of the ASME,1991,113(3):335-342
    [69]王硕桂,夏源明,从随机振动响应中提取滚动轴承的刚度参数,振动工程学报,2004,17(4):388-392
    [70]黄太平,罗贵火,苏卫民,滚动轴承动力特性测试方法,振动、测试与诊断,1996,16(4):31-37
    [71]唐云冰,罗贵火,章璟璇,高德平,高速陶瓷滚动轴承等效刚度分析与试验,航空动力学报,2005,20(2):240-244
    [72]钟一諤,何衍宗,王正,李方泽,转子动力学,北京:清华大学出版社,1987
    [73]朱爱斌,彭样多,谢友柏,滚动轴承刚度及转子系统动力学网络计算系统的设计和实现,润滑与密封,2005,9(5):126-132
    [74]沈小要,超超临界汽轮机组转子系统振动特性及若干故障转子非线性特性的研究,上海交通大学博士学位论文,2007
    [75]顾家柳,丁奎元,刘启洲,夏松波,刘方杰,黄太平,转子动力学,北京:国防工业 出版社,1985
    [76]庞辉,多转子系统动力特性分析及应用研究,西北工业大学硕士学位论文,2005
    [77]Inagaki T, Response analysis of a general asymmetric rotor-bearing system, Journal of Mechanical Design 1980(102):147-157
    [78]Brain Timothy Murphy, Eigenvalues of Rotating Machinery, Doctoral dissertation, University of Florida.1984
    [79]方之楚,质量任意分布下的柔性转子过临界点时的瞬态响应,上海,固体力学学报.1990,11(1).-11-22
    [80]柴山,刚宪约,计算多转子系统临界转速的整体传递矩阵法,上海,上海理工大学学报.2002,24(1):8-12
    [81]徐华朱均,机械密封对转子轴承系统动力学性能的影响,西安,西安交通大学学报.2004,38(7):665-669
    [82]韩军高德平胡绚,一种基于模型的双转子不平衡故障诊断方法,南京,航空动力学报.2008,23(5):932-938
    [83]郭策,孙庆鸿,蒋书运,高速高精度数控车床主轴内外转子耦合系统的动力学建模方法研究,南京:机械科学与技术,2005,24(9):1009-1012
    [84]周昌玉,贺小华,有限元分析的基本方法及工程应用,北京:化学工业出版社,2006
    [85]Ruhl R L and Booker R L, A finite element model for distributed parameter turbo rotor systems, Transactions of ASME, Journal of Engineering for Industry,1972(94):128-132
    [86]H D Nelson, J M Mc Vaugh, The dynamics of rotor-bearing systems using finite elements, Journal of Engineering for Industry,1976(98):593-600
    [87]E S Zorzi, H D Nelson, Finite element simulation of rotor-bearing systems with internal damping, Journal of Engineering Power ASME,1977(99):71-76
    [88]H D Nelson, A finite rotating shaft element using Timoshenko beam theory, Journal of Mechanical Design ASME,1980(102):793-803
    [89]Madhumita Kalita, Analysis of whirl speeds for rotor-bearing systems supported on fluid film bearings, Mechanical Systems and Signal Processing,2004(18):1369-1380
    [90]J K Dutt, Stability characteristics of rotating systems with journal bearings on visco-elastic support, Mechanism and Machine Theory,1996,31(6):771-779
    [91]Y Kang, etc., An investigation in stiffness effects on dynamics of rotor-bearing-foundation systems. Journal of Sound and Vibration,2000,231(2):343-374
    [92]曹树谦,陈予恕,多跨不平衡轴系的非线性动力学建模,非线性动力学学报,2002,9(1):26-32
    [93]陈萌,洪杰,朱彬,刘书国,基于实体单元的转子动力特性计算方法,北京航空航天大学学报.2007,33(1):10-13
    [94]李松生,张钢等,高速电主轴球轴承—转子系统动力学性能分析,机械科学与技术.2006,25(12):1447-1450,1470
    [95]俞吴旻,宋建农,转子动力学在纺织机械动态分析中的应用,纺织基础科学学报,1994,7(3):250-256
    [96]孟光,转子动力学研究的回顾与展望.振动工程学报,2002,15(1):1-9
    [97]许恒生,高速卷绕头的气动参数和应用[J],广东化纤技术通讯,1989,(02):41-44
    [98]陈旭升,涤纶高速纺中卷绕成形影响因素的探讨[J],广东化纤,2000,(02):6-11
    [99]张军,CD300型卷绕头绕取筒子端面不平的成因分析与对策[J],化纤与纺织技术,2003,(04):39-41
    [100]李倩,浅议全自动卷绕头对筒管结构的要求[J].纺织器材,2004,(04):33-35
    [101]万蕾,全自动卷绕头振动产生的原因及解决办法[J].纺织机械,2006,(05):23-27
    [102]张军,J7/A3卷绕头动力拖动控制系统的改造[J],合成纤维工业,2007,(04):58-59
    [103]余若伟,王有德,化纤长丝卷绕头与纸筒管探讨[J],纺织器材,2011,(04):57-62
    [104]王勤泰,转杯纺纱机卷绕防叠机构原理分析[J],棉纺织技术,1995,23(8):16-18
    [105]杨瑞华,高卫东,王善元,转杯纺复合纱长丝与短纤复合点位置的建模与分析,纺织学报,2011,(04):39-42
    [106]魏建,化纤高速纺丝机的锭轴传动控制技术[J],中国纺织大学学报,2000,(02):65-69
    [107]魏建,王明红,刘平,杨宗栋,吴文英,一种化纤高速卷绕机的锭轴传动控制技术[J],东华大学学报,2002,(06):88-91
    [108]邹彩虹,何予鹏,李倩,全自动高速卷绕头的电气控制[J],合成纤维,2005,(08):22-25
    [109]谢晨芳,高速卷绕机锭轴传动控制系统设计,天津业大学学报,2009,(05):73-75
    [110]钱家德,纺织高速回转件的动力特性分析,纺织基础科学学报,1992,(02):157-160
    [111]彭超英,新型高速纺纱锭子及其相关轴承—转子系统动力特性的研究,西安交通大学博十论文,1994
    [112]彭超英,朱均,陈瑞琪,弹性支承滑动轴承系统的线性油膜稳定性研究,润滑与密封,1996,(05):16-20
    [113]彭超英,高燕伟,陈瑞琪,朱均,弹性支承结构用于高速纺纱锭子的减振与降噪,振动与冲击,1997,(03):
    [114]彭超英,朱均,陈瑞琪,弹性支承滑动轴承的非线性油膜失稳研究,润滑与密封,1997,(04):32-35
    [115]彭超英,朱均,陈瑞琪,弹性支承滑动轴承系统的上稳定性理论及应用,摩擦学学报,1999,(01):
    [116]刘晓丽,华志宏,采用传递矩阵法分析复合转子系统动态特性,中国纺织大学学报,2000,(05):40-42,65
    [117]李素敏,高速卷绕头筒管夹头的研制,纺织机械,2008,(03):50-52,49
    [118]孔越,孙翠莲,张林鍹,肖田元,基于模态分析的高速卷绕头槽筒结构动力优化,系统仿真学报,2009,(21):6883-6885
    [119]孙翠莲,孔越,张林鍹,肖田元,王冕,基于主模型CAD/CAE集成的卷绕锭轴结构参数优化,系统仿真学报,2010,(11):2622-2626
    [120]王哲,赵银燕,胡仁强,雷彦哲,肖田元,高速卷绕头关重件建模及其工作过程仿真,系统仿真学报,2010,(11):2698-2707
    [121]黄志斌,郑建荣,李勇,金剑,高速卷绕头筒管夹头的虚拟样机建模与动态仿真,现代制造工程,2011,(02):65-69
    [122]唐云冰,高德平,罗贵火,滚动轴承非线性轴承力及其对轴承系统振动特性的影响,航空动力学报,2006,21(2):366-372
    [123]欧珠光,工程振动,武汉:武汉大学出版社,2003
    [124]郑明军,王文静,陈政南,吴利军,橡胶Mooney-Rivlin模型力学性能常数的确定,橡胶工业,2003,50:462-465
    [125]黄建龙,解广娟,刘正,基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析,橡胶工业,2008,55:467-470
    [126]危银涛,杨挺青,杜星文,橡胶类材料大变形本构关系及其有限元方法,固体力学学报,1999,20(4):281-289·
    [127]陈明华,国家标准GB/T 6031-1998硫化橡胶或热塑性橡胶硬度的测定(10-100 IRHD)介绍,化工标准·计量·质量,2001,3:3-8
    [128]弗雷克利K,佩恩P K,橡胶在工程中应用的理论与实践,杜承泽,唐宝华,罗东山等译,北京:化学工业出版社,1985
    [129]Lund JW. The stability of an elastic rotor in journal beatings with flexible damped supports[J].ASME, JApplMech,1965,10(4):911-920.
    [130]Powell JW, Tempest M C.A study of high speed machines with rubber stabilized air bearings [J].ASME J. Lubr Tech.1968,90:701-708.
    [131]Kazimierski Z, Jarzecki K. Stability threshold of flexibly supported hybrid gas journal bearings [J].ASME J Lubr Tech,1979,101:451-457.
    [132]A.C.克利宗,Ю.П.齐曼斯基,B.И.雅可夫列夫.董师予译,转子动力学—弹性支承,北京:科学出版社,1987
    [133]Belforte G, Raparelli T, Viktorov V. High-speed rotor with air bearings mounted on flexible supports:test bench and experimental results [J]. J Tribol Trans, ASME,2008,130: 21103-21110.
    [134]E. Lopez-Medina, G. Silva-Navarro, Dynamic Stiffness Control and Acceleration Scheduling for Unbalance Compensation in a Rotor-Bearing System:Experimental Results, 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010),2010:494-499.
    [135]赵广,于贺春,马文琦,崔颖,转子-气体轴承-弹性支承系统研究综述,润滑与密封,2011,35(11):115-122
    [136]张策,机械动力学史,北京:高等教育出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700