用户名: 密码: 验证码:
矿石烧结节能与环保的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁行业是能源消耗和环境污染的大户,而烧结生产是钢铁生产过程中的一个重要环节,且近年来,随着钢铁产能的不断扩大,烧结行业得到了前所未有的快速发展,烧结过程中的能耗和环境污染问题也日益严重,成为影响钢铁企业可持续发展的一个瓶颈,引起了高度重视。
     本文在大量文献调研的基础上,针对武钢目前生产现场的需要以及烧结过程中普遍关心的几个节能和环保问题进行了深入细致的研究。在节能方面,主要从降低固体燃料消耗入手,进行了改善武钢烧结混合料制粒性能研究;熔剂和燃料分加工艺研究;烧结系统漏风率测试新技术及抑制烧结机边缘效应研究;在环保方面,从对烧结废气SO_2的治理入手,进行了降低烧结烟气SO_2排放新工艺的研究。
     通过武钢烧结混合料制粒性能的研究,对武钢常用铁矿石的理化性能、同化性以及制粒性能等进行了系统的研究,发现在所有铁矿石中,加拿大精粉(以下简称加粉)的品位最高,硅铝及杂质含量较低,但其粒度组成、亲水性以及同化性都很差,从而导致其制粒性能也很差。为了进一步了解加粉配比对烧结混合料透气性、烧结指标以及烧结矿矿物组成等的影响,特进行了不同加粉配比的烧结试验,结果表明,随加粉配比的增加,混合料制粒性能逐渐变差,混合料透气性及平均粒径呈逐渐下降的趋势,且在试验配矿方案条件下,当加粉配比超过18%时,烧结利用系数及转鼓强度下降,固体燃耗上升,由此得出在高配比加粉条件下,强化制粒是改善武钢烧结矿质量,降低固体燃耗的关键。在此研究结果基础上,本文通过系统的实验室试验和离散元法(DEM)数学模型研究,提出了提高加粉配比、保证混合料制粒效果和烧结矿产质量、降低固体燃料消耗的一系列技术措施,包括优化配矿、使用RB型有机粘结剂、优化制粒参数等,使加粉配比最高达到了32%。
     对熔剂和燃料分加工艺研究表明,采用生石灰和无烟煤同时分加工艺,可以有效提高烧结矿的产质量,降低固体燃料消耗,效果显著。且在武钢原料条件下,最理想的分加方案为:生石灰外配比例在65%~80%之间,无烟煤外配比例在75%左右。通过显微镜及扫描电镜观察,发现生石灰和无烟煤同时分加后,烧结矿中复合铁酸钙及原生赤铁矿含量增多,残留熔剂物质及硅酸盐玻璃相减少,且复合铁酸钙多呈细针状交织在一起,中间包裹有原生赤铁矿颗粒,从微观结构上验证了该工艺的合理性。
     在对烧结系统漏风率测试新技术的研究中,提出了一种测量烧结机系统漏风率的新方法,该方法首次在废气量计算时考虑了烧结混合料中的水分所产生的水蒸汽,测量简便易行,误差小。采用该方法对武钢两个烧结车间进行了现场测试,结果令人满意。在抑制烧结机边缘效应的研究中,设计了一种新型烧结机台车挡板,其内壁在原来平板结构的基础上增加了两个凸起,凸起高度根据武钢烧结料层的收缩情况设计。工业试验结果表明,使用新型台车挡板后,烧结系统漏风率下降了约3个百分点,台车宽度方向上风量和机尾“红层”分布均匀,有效抑制了烧结机的“边缘效应”。
     在对烧结废气SO_2的治理方面,提出了一种降低烧结烟气SO_2排放的新工艺,该工艺与目前烧结烟气脱硫工艺的最大区别是通过在烧结原料中添加某种物质,将烧结过程中产生的SO_2转移到除尘灰中,然后对除尘灰进行浸泡过滤处理,脱除其中的硫、碱金属等有害物质后再返回参加配料,因此属于“过程中控制”,而不是通常的“末端治理”。本工艺对除尘灰提出了三种处理方案,分别是抛弃法、过滤法以及抛弃与过滤相结合的方法,三种方法各有优缺点,在设计过程中可视具体情况合理选取。工业试验结果表明,该工艺脱硫率可达82%,并具有设备投资少、占地面积小、运行成本低等优点。
The steel industry is a big energy consumption and environmental pollution, and the sinteringproduction is an important link in steel production process. and in recent years, with thedevelopment of iron and steel production capacity continues to expand, the sintering industrygained a rapid development of hitherto unknown. The energy consumption and environmentalpollution problems in sintering process is becoming more and more serious, and it has become abottleneck of the sustainable development of iron and steel enterprises, drawing attention of thesociety.
     In this paper, on the basis of literature research, aimed at the need of the WISCO production,several energy and environmental issues of concern in sintering process were studied in detail. Inthe aspect of energy saving, mainly from the reduction of solid fuel consumption, studied onimprove the sintering mixture granulation performance of WISCO; The flux and the fuel dividedadding technology research; Study on leakage rate of sintering system test new technology andthe inhibition of edge effect of sintering machine; In the aspect of environmental protection,starting from the sintering pollutant control,studied on the decrease of SO_2emission in sinteringflue gas.
     Through the research of sintering mixture granulation performance, the WISCO common ironore physicochemical properties, assimilation and granulation properties were studied, the resultsshowed that in all iron ore, Canada concentrate (Hereinafter referred to as Canada fines) has thehighest grade, and lower silicon, aluminum and impurity content, but its size, hydrophilism andassimilation were very poor, so the granulation performance was very poor. In order to furtherunderstand the effect of Canada fines ratio on permeability, sintering indexes and sinter mineralcomposition, the sintering test of Canada fines proportion were carried on. The results showedthat, with the increase of the Canada fines proportion, the sintering mixture granulationperformance becomes worse, the permeability of the mixture and the average size showed adecreasing trend, and In the test conditions, When the Canada fines ratio is more than18%, thegranulation performance significantly worse, sintering utilization coefficient and the drumstrength decreased significantly, fuel consumption rise. Conclude from this: strengthengranulation is the key of improving sinter quality and reducing fuel consumption in WISCO. Onthe basis of this result, the comprehensive laboratory test and study on mathematical model ofDEM are carried. This paper proposed a series of technical measures to increase Canada finesratio, ensure the granulating effect and sinter yield and quality, and reduce fuel consumption,including optimizing ore proportioning, addition of RB organic binder and selection ofappropriate granulation parameters, and Canada fines ratio finally is up to32%.
     Through the study of flux and fuel divided adding technology showed that the process of fluxand fuel divided adding can effectively improve the yield and quality of sinter, reduction of solid fuel consumption obviously. And in WISCO raw material conditions, the ideal divided addingsolution for: Lime with the outside ratio of65%~80%, and anthracite with around75%in theoutside proportion. Through microscopic and SEM observation of sinter by flux and fuel dividedadding process found that the contents of SFCA and primary hematite increased, residual fluxsubstances and silicate glass phases decreased and the tiny-needle-shaped SFCA intertwinedwith each other and embraced primary hematite particles, so the rationalization of this process isvalidated with microscopic structure.
     In the study of test technology of the leakage rate of sintering system, a new method wasproposed. In this method, the steam generated by water in mixture was first considered in thecalculation of exhaust volume. The measuring method has the advantages of simple and easy andsmall deviation. Two sintering machines for production site was tested in WISCO, the result issatisfied. In the study of inhibition of edge effect of sintering machine, a new type of trolleybaffle was designed. The new trolley baffle was added two heaves based on the original slabbedconstruction, the height of heaves are designed according to the shrinkage of sinter layer ofWISCO. Industrial tests showed that the leakage rate of sintering system dropped about3percentage points, the air volume in the whole width direction and sintering machine tail "redbeds" were balanced, so the edge effect of the sintering machine was inhibited effectively.
     In the aspect of control of sintering waste gas SO_2, a new technology of reducing SO_2emission in sintering flue gas is presented. Unlike other sintering flue gas desulfurizationprocesses, this process is that the SO_2gas generated in the sintering process was transferred todust by adding a substance in sintering material, and then the dust returned to the raw materialsafter soaked and filtered to remove sulfur and alkali metals, so this process belongs to"process-control", not the usual "end-control". In this paper, three methods were proposed todispose the dusts. They are discarding, filtration and a combination of the both. Three methodshave their advantages and disadvantages, in the design process, can reasonable selectionaccording to the concrete circumstance. The industrial test results showed that the desulfurizationrate of this process is up to82%. At the same time, this process has the advantages of lowequipment investment, small occupied area and low operating cost.
引文
[1]郜学.中国烧结行业的发展现状和趋势分析[J].钢铁,2008,43(1):85-88.
    [2]王中林.烧结机降低工序能耗技术措施的研讨[J].冶金动力,2005,(2):83-87.
    [3]唐先觉.我国烧结能耗状况及节能途径[J].烧结球团,1998,23(2):1-5.
    [4]梁雪梅,朱德庆,姜涛等.烧结节能技术现状与发展[J].烧结球团,2000,25(4):1-4.
    [5]张春霞,王海峰等.烧结烟气污染物脱除的进展[J].冶金环境保护,2011,(4):11-22.
    [6]国家环境保护总局,国家质量监督检验检疫局,钢铁工业大气污染物排放标准烧结(球团)
    [S],2007.
    [7] W. Hartig, K-H. Stedem, R. Lin. Sinter plant waste gas cleaning state of the Aart [C]. Rev. Met. Paris,No.6(June2006):25-265.
    [8]周继程,郦秀萍,上官方钦等.我国烧结工序能耗现状及节能技术和措施[J].冶金能源,2010,29(2):23-26.
    [9]邓德君.烧结工序节能降耗的措施分析[J].矿业工程,2011,9(3):43-45.
    [10]李希超.日本烧结环保技术的新发展[J].烧结球团,1994,(6):18-23.
    [11] Shinya Ikehara, Susumu Kubo. Application of exhaust gas recirculation system to tobata No.3SinterPlant [J].新日铁技报,1996,360:46-51.
    [12] A. S. Mehta等.烧结料层吸入气体中的氧和水蒸气对烧结反应的影响[J].国外冶金动态,1998,(12):48-53.
    [13]陈仕红.厚料层烧结与能耗的关系[J].四川冶金,1999,(2):40-41.
    [14] P. R. Dawson. Recent development in iron ore sintering [J]. Ironmaking and Steelmaking,1993,20(2):135-143.
    [15]毛晓明,朱彤,李加福.宝钢烧结投产以来的技术进步[J].炼铁,2005,24(Suppl):99-103.
    [16]陈子林.降低烧结固体燃耗的途径[J].烧结球团,1990,(3):58-64.
    [17]吕海滨,杨继刚,王伟刚.莱钢2×265m2烧结机节能减排实践[J].山东冶金,2012,34(3):46-48.
    [18]周文涛,吴文达.提高料层燃料燃烧效率的途径[J].鞍钢钢技术,1998,(1):8-15.
    [19]廖志坚.烧结工序节能与评价[J].湖南冶金,1996,(3):27-31.
    [20]李光辉,李思导,姜涛等.烧结过程中燃料利用率的提高[J].烧结球团,1998,23(3):29-33.
    [21]段祥光,尤学东,包钢烧结工序能耗分析[J].包钢科技,2009,35(4):10-13.
    [22]金永龙,张军红,徐南平等.烧结工艺综合节能与环保的现状与意义[J].冶金能源,2002,21(4):12-16.
    [23]毛艳丽,陈妍,曲余玲.烧结工序节能降耗的技术措施[J].冶金能源,2010,29(5):9-11.
    [24]张义成,郭家林,姜爱民.提高烧结机利用系数和降低能耗的研究[J].钢铁研究,1994,(3):35-41.
    [25]王桂兰.应用热平衡剖析烧结工序能耗[J].本钢技术,1993,(6):7-10.
    [26]唐先觉,李希超.现代钢铁工业技术烧结[M].冶金工业出版社,1984:121-122.
    [27]段祥光,韩冬红.降低包钢烧结矿固体燃耗技术分析[J].冶金译丛,1999,(4):20-24.
    [28]付菊英,姜涛,朱德庆.烧结球团学[M].中南工业大学出版社,1996:125.
    [29]谭清林.长寿烧结点火炉的生产实践.烧结球团[J].2006,31(6):51-53.
    [30]隆飞亮,张俊涛.大型烧结机点火炉操作实践[J].烧结球团,2009,34(2):41-43.
    [31]白桦.烧结机点火炉设计浅谈[J].江西有色金属,2004,18(1):39-41.
    [32]刘东岳,申朝晖,赵金龙.双预热点火炉在烧结机上的应用[J].冶金能源,2002,21(1):38-39.
    [33]凌子愚,窦宝芬,贺建峰等.烧结热风点火助燃技术[J].烧结球团,2005,30(4):17-19.
    [34]牛福成,王珂.烧结厂降低能耗的生产实践[J].莱钢科技,2001,95:9-11.
    [35]陈雷,刘涛.烧结节能降耗的技术改造实践[J].中国科技博览,2012,38:283.
    [36] W. C. Sedgwick. The new ignition apparatus for the sintering machine [J].铁&钢,1985:775.
    [37]苏亚红.我国烧结余热利用现状[J].冶金标准化与质量,2009,(4):40-44.
    [38]陈通.烧结余热节能技术的应用及效果[J].冶金动力,2011,(6):53-56.
    [39] P. R. Dawason. Recent development in iron ore sintering (Part4The sintering process)[J]. Ironmakingand Steelmaking,1993,20(2):150-159.
    [40] David R. Anderson, Raymond Fisher, Derek Hemfrey, et al. Dioxin formation and suppression in ironore sintering in the UK steel industry [J]. ISES’03Proceedings, Iron and Steel,2003,38(supp):134-137.
    [41] B. Vanderhyden, I. Borlee, J-M. Brouhon. Impact of waste gas recycling on sintering performances andemissions [A]. Ironmaking Conference Proceeding,1996,389-397.
    [42] E. Keddeman, E. Oosterhuis. Reduction of sinter plant emissions at Hoogovens Ijmuiden [J].Ironmaking Conference Proceedings,1992:95-100.
    [43] M. Hattori, B. lion, K. Kimura, et al. Environmental Protection in the Sintering Plant of Steel Works [J].Ironmaking Conference Proceedings,1992:101-106.
    [44]宋国良,傅志华.烧结环保现状分析及对策[J].冶金环境保护,2000,(3):44-47.
    [45]任亮.烧结污染分析及对策[J].南钢科技,2003,(4):46-47.
    [46] WU keng, DOU Liwei, LIU Wanshan, et al. Dioxins and its prevention in iron and steel industry [J]. Ironand Steel,2002,35(8):62-66.
    [47] Susumu Kubo, Takashi Iida, Junichi Sakuragi, et al. The introduction of Mg(OH)2type desulfurizer inthe sinter waste gas line and operation resultes [J]. Ironmaking Conference Proceedings,1992:107-110.
    [48] Susumu Kubo, Hajime Ono, akira Gushima, et al. Development of a new type of feeding method forhomogenization of sintering reaction [J]. Ironmaking Conference Proceedings,1990:589-601.
    [49] Joachim Wert, Jurgen Otto. Environmental protection in iron ore sintering by waste gas recirculation [J].MPT International,1995(4):120-126.
    [50] Grosspietsch K. H, Luengen H. B, Theobald W. BAT. An Hochoefen eine Bestandsaufnahmen zumderzeitigen Umweltschutz an Hochoefen [J]. Stahl and Eissen,2001,121(8):51-57.
    [51] WU keng, WANG Xin, DOU Liwei, et al. CO2emission in iron and steel industry and the measures toreduce [J]. IRON AND STEEL,2001,36(11):63-68.
    [52]胡长庆,张春霞.烧结工艺清洁生态化技术[J].中国稀土学报,2004,22(8):588-591.
    [53] WU keng, YANG Tianjun, Gudenau H. W. Treatment of recycling fine dust formed in ironmaking andsteelmaking processes with injecting method [J]. Iron and Steel,1999,34(12):60-66.
    [54] LIAO Hongqiang, QIAN Kai. Development and application of treatment of solid municipal waste at ironand steel enterprise [J]. Science and Technology at Shougang Corp.2002,136:1-5.
    [55]周取定,孔令坛.铁矿石造块理论及工艺[M].冶金工业出版社,1989:34-35.
    [56]刘晓荣.国外烧结矿中铁酸钙理论研究的进展[J].烧结球团,1989,(1):28-32.
    [57]郭兴敏.烧结过程铁酸钙生成及其矿物学[M].冶金工业出版社,1999:91-92.
    [58] L. X. Liu, J. D. Litster. Coalescence of deformable granules in wet granulation processes [J]. AICHEJournal,2000,46(3):529-539.
    [59]习乃文,黄天正,谢良贤.烧结技术[M].云南人民出版社,1993:75-76.
    [60] J. D. Lister, A. G. Water. A model for predicting the size distribution of produce from a granulating drum[J]. Transactions ISIJ,1986,26:1036-1038.
    [61] Jasbir Khosa, James Manuel. Predicting granulating behaviour of iron ores based on size distribution andcomposition [J]. ISIJ International,2007,47(7):965-972.
    [62] Takayuki Maeda, Chieko Fukumoto. Effect of adding moisture and wettability on granulation of iron ore[J]. ISIJ International,2005,45(4):477-484.
    [63] Nobuyuki Oyama, Hideaki Sato, Kanji Takeda et al. Development of coating granulation process atcommercial sintering plant for improving productivity and reducibility [J]. ISIJ Intermational,2005,45(6):817-826.
    [64]廖国瑞.烧结原料混匀和制粒技术的研究[J].钢铁研究,1994,77(2):40-44.
    [65]吴力化,陈雪峰.攀钢烧结混合料制粒因素的研究与优化[J].烧结球团,2006,31(1):19-22.
    [66]黎成家,文剑平.烧结混合机最佳工艺参数选择的研究[J].烧结球团,1992,(4):13-17.
    [67]杜炽,何群,石军.强化攀钢烧结混合料制粒的试验研究[J].烧结球团,1998,23(1):36-42.
    [68] Sarah Forrest, John Bridgwater. Flow patterns in granulating systems [J]. Powder Technology,2003,130:91-96.
    [69]高为民,孙德政.圆筒混料机制粒工艺参数的研究[J].烧结球团,1994,(4):1-4.
    [70]邓庆球译.第五届国际造块会议论文选[M].冶金工艺出版社,北京,1991,(5):45-47.
    [71]唐贤容,唐宁等.强化细粒精矿混合料制粒的研究[J].烧结球团,1994,(6):1-8.
    [72]王建辉,傅菊英.攀钢烧结制粒混合料中添加有机强化剂的研究[J].钢铁钒钛,1996,17(9):30-32.
    [73] Shinji Kawachi, Shunji Kasama. Quantitative effect of micro-particles in iron ore on the optimumgranulation moisture [J]. ISIJ International,2009,49(5):637-644.
    [74] Jim Lister, Bryan Ennis. The science and engineering of granulation processes [M]. Kluwer AcademicPublishers,2004:231-233.
    [75] Takeshi Maki, Isao Sekiguchi. Study for evaluation and optimization of Iron ore granulation withconsideration ofdynamics and particle conditions [J]. ISIJ International,2009,49(5):631-636.
    [76] N.Ouchiyama, Chieko Fukumoto, et al. effect of adding moisture and wettability on granulation of ironore [J]. ISIJ International,2005,45(4):477-484.
    [77] M. Suzuki, Kazuya Miyagawa, et al. Influence of the Nuclei Particle Properties on Granulability ofMarra Mamba Iron Ore by High Speed Agitating mixer [J]. ISIJ International,2005,45(4):485-491.
    [78] J. D. Lister. Scaleup of Wet Granulation Processes: Science Not Art [J]. Powder Technology,2003,130:35-40.
    [79] Junya Kano, Eiki Kasai, Fumio SAITO, et al. numerical simulation model for granulation kinetics ofiron ores [J]. ISIJ International,2005,45(4):500-505.
    [80] Noboru Sakamoto. Iron ore granulation model supposing the granulation probability estimated from bothProperties of the ores and their size distributions [J]. ISIJ International,2002,42(8):834-843.
    [81]贺先新,翁得明.烧结固体燃料分加的研究[J].武钢技术,2002,40(4):5-8.
    [82]单继国,郑信懋,潘佐生等.小球烧结工艺应用效果[J].烧结球团,1996,21(1):16-20.
    [83]邱述明,贾光勇.钒钛磁铁矿烧结燃料二次分加生产实践[J].烧结球团,1998,23(2):35-37.
    [84]曾永福,刘龙全.烧结燃料二次分加工业性试验[J].攀钢技术,1997,20(2):43-46.
    [85]任志国,谢华等.燃料分加对混合料造小球团及烧结过程的影响[J].钢铁研究学报,2000,12(2):1-5.
    [86]刘龙全,黎建明,曾永福.燃料分加试验室烧结杯烧结试验研究[J].攀钢技术,1996,19(6):1-5.
    [87] Nobuyuki Oyama, Takahide Higuchi, Satoshi Machida, et al. Effect of high-phosphorous iron oredistribution in quasi-particle on melt fluidity and sinter bed permeability during sintering [J]. ISIJInternational,2009,49(5):650-658.
    [88]陈革,马利,吕志义等.包钢烧结熔剂分加工艺研究[J].包钢科技,2003,29(4):8-11.
    [89]别威,王波,王英杰等.烧结制粒工艺研究进展[J].山东冶金,2012,34(1):1-4.
    [90]胡俊鸽,周文涛,赵小燕.日本降低生产成本的烧结技术进展[J].冶金丛刊,2010,(5):46-50.
    [91]王治国,董江兵,宋志君等.105m2烧结机新技术的研究与应用[J].冶金设备,2003,(1):53-55.
    [92]金永龙,徐南平,邬士英等.烧结机综合节能途径的探讨[J].冶金能源,1998,17(6):12-15.
    [93]曾成勇.杭钢1号烧结机漏风治理[J].浙江冶金,2010,(2):29-32.
    [94]杨润泉,王喜伟.降低烧结漏风率[J].四川冶金,2001,(6):3-6.
    [95]齐田敬三,稻垣真如等.堺2烧结における漏风防止对策[J].铁と钢,1986,72(12):S836.
    [96]秋月英美,中嵨由行等.水岛4烧结机の漏风防止对策[J].铁と钢,1987,73:S113.
    [97]望月颖,佐藤和明等.烧结机漏风管理システㄙにつぃて[J].铁と钢,1987,73:S114.
    [98] Г.Н.Попв等.降低烧结机的有害漏风[J].国外钢铁,1988,(3):40-44.
    [99]陈同庆.宝钢烧结生产的节能技术[J].中国冶金,1998,(2):37-40.
    [100]王秀英,徐桂芬,赵建军.烧结机采用柔性密封治理漏风[J].北方钒钛,2009,(3):19-22.
    [101]王新章,张子元,吕海滨等.降低烧结机抽风系统漏风率[J].莱钢科技,2006,(6):33-34.
    [102]何云华,白明华,梁宏志.降低烧结机漏风率技术与应用研究[J].物理测试,2008,26(1):6-10.
    [103]薛俊虎.烧结生产技能知识问答[M].冶金工业出版社,P:253.
    [104]李士忠.黄磷烧结机的边缘效应与抑制措施[J].磷酸盐工业,2003,(1):6-11.
    [105]彭志坚,汪智德.烧结机边缘效应探讨[J].武汉钢铁学院学报,1995,18(2):133-139.
    [106]肖卫东,敖万忠.抑制边缘效应提高烧结矿产量和质量[J].贵州工业大学学报(自然科学版),2005,34(3):15-19.
    [107]王涛,王勇.浅谈料面风速法测漏风的原理与方法[J].酒钢科技,2004,(2):36-39.
    [108]吴颖,金永龙.烧结机本体漏风率在线测量技术及应用[J].烧结球团,2008,33(4):9-11.
    [109]金永龙,徐南平,邬士英等.烧结机分区段漏风测试技术研究及应用[J].钢铁,2003,38(3):1-3.
    [110]王招素.烧结机漏风率测试结果重现性问题的探讨[J].烧结球团,1996,21(2):10-13.
    [111]祝建军.烧结机漏风率在线检测初探[J].烧结球团,2001,26(4):55-57.
    [112]胡宾生,张景智,连京华.南京钢铁厂一烧烧结机漏风率的测定[J].烧结球团,1995,20(1):57-61.
    [113] B. Vanderhyden, I.Borlee, J-M. Brouhon. Impact of waste gas recycling on sintering performances andemissions [J]. Ironmaking Conference Proceedings,1996:389-397.
    [114] F. Cappel, H. Weisel. EOS-Emission optimized sintering a new process for enhanced pollution controlin iron-ore sintering [J]. Ironmaking Conference Proceedings,1992:73-78.
    [115] SHEN Xiaolin, LIU Daoqing, LIN Yu. Development and applications of Baosteel sintering flue gasdesulphurization technology [J]. Baosteel Technical Research,2010,4(2):7-12.
    [116]郜学.减排烧结SO2实现可持续发展[J].冶金经济与管理,2008,(3):15-18.
    [117]廖继勇,储太山,刘昌齐等.烧结烟气脱硫脱硝技术的发展与应用前景[J].烧结球团,2008,33(4):1-5.
    [118]史少军,叶招莲.钢铁行业烧结烟气同时脱硫脱硝技术探讨[J].电力科技与环保,2010,26(3):17-18.
    [119]覃毅强,黎柳升,陈阳.我国钢铁工业烧结烟气脱硫工艺的应用[J].冶金环境保护,2012,(4):41-45.
    [120]曲余玲,毛艳丽,张东丽.烧结烟气脱硫技术应用现状及发展趋势[J].冶金能源,2010,29(6):51-56.
    [121] SHI.焼結機排Gasの脱硫装置[R].第五届中日钢铁业环保节能先进技术专家交流会,2010.
    [122] Iino Yoshitsugu, Soma Fuyuki, Hashimoto Kunitoshi. Environmental technologies in steel works [R].JFE Technical Report,2006,(8):7-16.
    [123] M.Hattori, B.Lion, K.Kimura, et al. Environmental protection in the sintering plant of steel works [J].Ironmaking Conference Proceedings,1992:101-106.
    [124]福嵨信一郎.钢铁ブロセスおける省エネルキと环境问题.Journal of the JSTP,1995,36(409):105-111.
    [125] EIPPCB (European integrated pollution prevention and control bureau). Draft reference document onbest available techniques for the production of iron and steel. http://eippcb. Jrc. es/.
    [126] C. D. Bauer, C. R. Skalos. Sintering process gas cleaning alternatives [J]. Ironmaking Proceedings,1981,(40):22-26.
    [127] E. Keddeman, E. Oosterhuis. Reduction of Sinter Plant Emissions at Hoogovens Ijmuiden [J].Ironmaking Conference Proceedings,1992:95-100.
    [128]谭志东,陈建中.烧结烟气应用电子束脱硫脱硝技术之利弊[J].工业安全与环保,2005,31(10):1-3.
    [129]曹玉龙,汪为民.MEROS脱硫技术在马钢烧结系统的成功运用[J].冶金动力,2011,(6):93-95.
    [130]卢丽君,汤静芳,张垒等. NID技术在武钢烧结烟气脱硫中的应用[J].鞍钢技术,2012,(1):48-50.
    [131]昌梦华,周海林,张奇.动力波洗涤技术在烧结烟气脱硫中的应用[J].矿业工程,2010,8(4):45-47.
    [132]陈建伟,陈伟,毛骏等.密相塔半干法烧结烟气脱硫的生产实践[J].昆钢科技,2011,(1):5-9.
    [133]罗海兵,李啸.烧结烟气氨法脱硫技术介绍与分析[J].化工装备技术,2011,32(6):25-27.
    [134]李广生,施文新.石灰石膏湿法在烧结烟气脱硫中的应用[J].水力采煤与管道运输,2011,(1):74-76.
    [135]贾树山.循环流态化滤泡法烧结烟气脱硫技术的研究[J].北方环境,2011,23(11):118-119.
    [136]卢静,文琦军等.有机胺吸附解吸工艺在烧结烟气脱硫中的应用[J].山东冶金,2011,33(4):41-43.
    [137]王新建.我国目前烧结烟气脱硫工艺的优缺点[J].金属材料与冶金工程,2012,40(1):60-62.
    [138]周安玉.国内钢铁烧结烟气脱硫主流工艺应用与投资评价[J].中国钢铁业,2009,(12):36.
    [139]杨飚,裴冰等.烧结烟气脱硫净化工程的最适宜技术选择[C].中国环保产业,2011,(6):46-50.
    [140]任毅.可再生烧结烟气脱硫工艺在攀钢的应用[J].冶金环境保护,2012(4):12-16.
    [141] Washburn E. W. The dynamics of capillary flow [J]. Physical review,1921,17(3):273-283.
    [142]艾德生,李庆丰,戴遐明等.用透明高度法测定粉体的润湿接触角[M].理化检验—物理分册,2001,37(3):110-112.
    [143] Cundall P. A. A computer model for simulating progressive large scale movements in blocky system [J].Proceedings of the symposium of the International society for rock mechanics Rotterdam: BalaamA A,1971,(1):8-12.
    [144] Cundall P A, Strack O D L. A discrete numerical model for granular assembles [J]. Geotechnique,1979,29(1):47-65.
    [145] Walton O R. Particle dynamics modeling of geological materials. Lawrence Livemore National Lab.Report UCRL-52915,1980.
    [146] Campbell C S, Brennen C E. Computer simulation of granular shear flows [J]. Fluid Mech,1985,151:167-188.
    [147] Zhor Y C, Wright B D, et al. Rolling friction in the dynamic simulation of sand pile formation [J].Physica A1999,269(2-4):536-553.
    [148]武锦涛,陈纪忠,阳永荣.模拟颗粒流动的离散元方法及其应用[J].现代化工,2003,23(4):56-58.
    [149] Ecuh.O.A.火法冶金过程的物理化学[M].东北大学冶金原理教研室译,北京:冶金工业出版社,1956:45-46.
    [150]郁国城.碱性耐火材料理论基础[M].上海科学出版社,1981:68-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700