用户名: 密码: 验证码:
多焊缝管板结构焊接工艺与残余应力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,压水式反应堆和沸水堆带有贯穿件的焊接结构中发现了应力腐蚀裂纹,对核电运行造成了潜在的安全隐患,这已经引起了研究人员的重视。材料性能、腐蚀介质和应力状态是造成应力腐蚀裂纹的三个主要因素,尤其是在焊缝区附近产生的焊接残余应力较大,是导致焊接件中出现应力腐蚀裂纹的重要因素。采用数值模拟方法,对异种金属管板焊接结构进行残余应力的预测与评价,对于核反应堆中贯穿件的焊接具有重要意义。
     为了优化大型多焊缝管板结构的焊接工艺,本文利用焊接热传导、焊接热弹塑性有限元分析理论和ANSYS大型有限元分析软件,以同种金属管板结构焊接温度场和残余应力场的数值模拟为基础,提出了适用于有T型材的多焊缝管板结构焊接残余应力场数值模拟的有限元模型和热源加载方式、多层焊道的填充等计算方法,并分析了坡口角度、焊接顺序和焊缝相交处堆焊对焊接残余应力的影响。利用此有限元模型和计算方法对有T型材的低合金高强钢S690和SS316L不锈钢异种金属多焊缝管板结构的焊接温度场和残余应力场进行了数值模拟,并采用盲孔法对实际焊接件进行了表面残余应力测试,试验验证了有限元模型和计算方法在有T型材的多焊缝管板结构焊接残余应力场数值模拟与预测方面的适用性。
     研究结果表明,对于低合金高强钢管板焊接结构,坡口角度由40°增加到50°,在一定程度上改善了Von-Mises等效应力、切向和轴向残余应力分布;对径向残余应力分布的恶化作用并不明显。焊接顺序对等效应力以及径向、切向和轴向残余应力峰值有较大影响,两面交替焊优于其他焊接顺序。修正的两面交替焊与两面交替焊的等效应力以及径向、切向和轴向残余应力峰值基本相同。在实际的焊接操作中,大角度坡口可以保证焊透,减少焊接缺陷,而修正的两面交替焊可以减少焊件的翻转次数,提高工作效率。因此,从简化操作工艺,提高焊缝质量的角度出发,50°坡口角度和修正的两面交替焊是比较好的焊接工艺。
     模拟结果显示,对于有T型材的多焊缝管板焊接结构,焊缝相交处的堆焊层明显降低了环焊缝焊趾处的等效应力和轴向残余应力峰值;对径向和切向残余应力峰值影响较小。堆焊层还明显降低了焊缝相交处的等效应力和轴向残余应力峰值,并在一定程度上降低了切向残余应力峰值;只有径向残余应力峰值有所增加。因此,有T型材的多焊缝管板焊接结构,在所有焊缝完成后,在贯穿件与壳板环焊缝和T型材与壳板焊缝相交处采用奥氏体焊材堆焊,可以作为焊后释放残余应力的有效方法。
     为了验证有T型材的多焊缝管板焊接结构的有限元模型和计算方法,本文对低合金高强钢S690和SS316L不锈钢异种金属多焊缝管板结构进行了焊接残余应力的分析和测试,计算结果与实际测得的应力值吻合较好。焊接结构件的应力测试值基本反映了有限元模型计算得出的残余应力变化趋势,试验验证了数值模拟中采用的有限元模型和计算方法预测焊接结构残余应力分布的适用性。结合数值模拟与试验验证结果,获得了在坡口角度50°和修正的两面交替焊的焊接工艺条件下,低合金高强钢S690和SS316L不锈钢异种金属多焊缝管板结构焊接残余应力场的分布规律。环焊缝在壳板上的热影响区和焊趾处出现压应力区,贯穿件上的残余拉应力较小,测得的最大等效应力在环焊缝熔合区,距离环焊缝与壳板熔合线2mm处,为269MPa。
Recently, some stress corrosion cracks (SCC) are found in the welding structures withthe nozzle in pressurized water reactors (PWR) and boiling water reactor (BWR). So moreattentions are paid to ensure safety of nuclear power operation. It is well known that threemajor factors, namely materials properties, caustic media and stress status, have largecontributions to SCC. It is recognized that the tensile residual stress on the surface of thewelding structure largely increases the risk of initiating SCC. It is very important for thewelding structure with the nozzle in the nuclear reactor to evaluate and predict the weldingresidual stresses in the dissimilar metal tube-plate welding structure (TPWS) by the numericalsimulation method.
     To optimize the welding technology of the large TPWS with multi-welds, this paper appliedthe welding thermal conduction, the welding thermal elastic-plastic analysis theory and theANSYS finite element analysis software, proposed the finite element model (FEM) and thealgorithm about heat source loading and the passes filled by the “birth and death” elementmethod, based on the numerical simulation of the TPWS in the temperature field and thewelding residual stresses field. They were suitable for the numerical simulation of thetube-plate welding structure with T-shape sections (TPWST) in the residual stresses field. Theeffect of the groove angle, the welding sequence and the overlaying on the intersection ofthree weld beads on the residual stresses was analyzed. The FEM and the algorithm wereapplied to simulate the temperature field and the residual stresses field of the low alloy highstrength steels S690and SS316L stainless steels dissimilar metal TPWST. The residualstresses on the surface of the welding specimen were measured by blind-hole method. Theapplicability of the FEM and the algorithm was verified by the experiment in the numericalsimulation and prediction of the welding residual stresses in the TPWST.
     To the low alloy high strength steels TPWS, the simulation results showed that, the grooveangle from40°to50°, the Von-Mises equivalent stress, hoop and axial residual stressdistribution was improved to some extent, while deterioration of the radial residual stressdistribution was not obvious. The welding sequence had great influence on the peak values ofthe equivalent stress, the radial, hoop and axial residual stress. The alternative welding sequence was better than the other. The equivalent stress, the radial, hoop and axial residualstress of the amended alternative welding sequence were almost same as these of thealternative welding sequence. In the actual welding operation, the large groove angle canensure penetration of the weld bead, and the amended alternative welding sequence madeturnover of the welding part reduce. To simplify the welding operation and improve the weldbead quality, it was good to apply the welding technology of the50°groove angle and theamended alternative welding sequence.
     The simulation results showed that, to the TPWST, the overlaying on the intersection ofthree weld beads decreased obviously the peak values of the equivalent stress and the axialresidual stress at the toes of the girth weld, and had the little effect on the peak values of theradial and hoop residual stress. The overlaying decreased obviously the peak values of theequivalent stress and the axial residual stress on the intersection of the weld beads, anddecreased the peak value of the hoop residual stress to some extent, but the peak value of theradial residual stress increased. So the austenitic overlaying on the intersection of the girthweld and the weld bead of T-shape sections was the effective method to reduce the weldingresidual stresses after welding to the TPWST. The overlaying was finished after all weldbeads.
     To verify the feasibility of the3D FEM and the algorithm of the S690and SS316Ldissimilar metal TPWST, this paper compared simulation results of the welding residualstresses with testing data, the both accorded each other. It showed that the FEM and thealgorithm can be used to predict the residual stress distribution of the TPWST and theapplicability of them was verified by the experiment. From the simulation results and test data,the residual stress distribution of the S690and SS316L dissimilar metal TPWST was knownwith the welding technology of50°groove angle and the amended alternative weldingsequence. The compression stress occurred on the heat affected zone and the toe of the girthweld on the plate. The low tensile stress occurred on the tube. The peak value of the residualtensile stress was on the girth weld close to the plate. The maximum value of the equivalentstress in measurement was269MPa, which was on the girth weld and2mm from the fusionline of the girth weld on the plate.
引文
[1]汪建华.焊接数值模拟技术及其应用.上海:上海交通大学出版社,2003:4-90页
    [2]陈楚.数值分析在焊接中的应用.上海:上海交通大学出版社,1985:1-10页,254-262页
    [3]武传松.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990:35页
    [4]李冬林.焊接应力和变形的数值模拟研究.武汉理工大学硕士论文,2003:1-33页
    [5] Kazuo Ogawa, Dean Deng, Shoichi Kiyoshima. Investigations on welding residualstresses in penetration nozzles by means of3D thermal elastic plastic FEM andexperiment. Computational Materials Science,2009,45:1031-1042P
    [6] Shoichi Kiyoshima,Dean Deng,Kazuo Ogawa. Influences of heat source model onwelding residual stress and distortion in a multi-pass J-groove joint. ComputationalMaterials Science,2009,46:987-995P
    [7]佘昌莲.焊接结构的残余应力研究.武汉理工大学硕士论文,2004:12-31页
    [8]焦建雄,陈海辉.大型储罐环焊缝残余应力测定与分析.石油化工腐蚀与防护,2010,27(2):62-64页
    [9]赵海燕,陈岳军,史耀武等.焊缝区域残余应力的测试.焊管,1997,20(4):12-17页
    [10]毕长刚.焊接残余应力的研究进展.山西建筑,2012,38(7):37-38页
    [11]宋天民.焊接残余应力的产生与消除.北京:中国石化出版社,2005:112-116页
    [12]周建新,李栋才,徐宏伟.焊接残余应力数值模拟的研究与发展.金属成形工艺,2003,21(6):62-64页
    [13]张美丽.厚壁压力容器焊接残余应力及变形的数值研究.西安理工大学硕士论文,2010:1-6页
    [14]李华.焊接接头残余应力的数值模拟.大连交通大学硕士论文,2006:1-10页
    [15]黎江.三维焊接热应力和残余应力演化虚拟分析技术研究.广西大学硕士论文,2002:1-5页
    [16]刘哲,李午申,陈翠欣等.热—冶金相互作用下焊接温度场的三维动态有限元模拟.机械科学与技术,2005,24:1396-1399页
    [17]董克权,刘超英,陈英俊.ANSYS焊接仿真中高斯热源加载算法研究.机械设计与制造,2007,2:83-85页
    [18]陈家权,肖顺湖,杨新彦等.焊接过程数值模拟热源模型的研究进展.装备制造技术,2005,3:10-14页
    [19]蔡志鹏,赵海燕等.焊接数值模拟中分段移动热源模型的建立及应用.中国机械工程,2002,13(3):208-210页
    [20]蔡志鹏,赵海燕,鹿安理等.串热源模型及其在焊接数值模拟中的应用.机械工程学报,2001,37(4):25-28页
    [21]蔡志鹏,鹿安理,赵海燕等.串热源模型及1200t桥式起重机主梁腹板装焊过程的数值模拟.中国机械工程,2002,13:802-805页
    [22]程久欢.Ti-3Al金属间化合物激光焊温度场的数值模拟.武汉理工大学硕士论文,2004:37-41页
    [23]吉巧杰.封闭焊缝焊接温度场和应力场的数值模拟.华中科技大学硕士论文,2007:24-26页
    [24]陈家权,肖顺湖,吴刚等.焊接过程数值模拟热源模式的比较.焊接技术,2006,35(1):9-11页
    [25]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展.焊接学报,2001,22(3):94-96页
    [26] D. Gery,H. Long,P. Maropoulos. Effects of welding speed, energy input and heatsource distribution on temperature variations in butt joint welding. Journal of MaterialsProcessing Technology,2005,167:393-401P
    [27] J. Goldak,A. Chakravarti,M. Bibby. A new finite element model for welding heatsource. Metallurgical Transactions B,1984,15:299-305P
    [28]王煜,赵春燕,吴甦等.电子束焊接数值模拟中分段移动双椭球热源模型的建立.中国机械工程学报,2004,40(2):165-169页
    [29] W.S. Chang,S.J. Na. A study on the prediction of the laser weld shape with varyingheat source equations and the thermal distortion of a small structure in micro-joining.Journal of Materials Processing Technology,2002,120(1):208-214P
    [30]盖登宇,李鸿等.材料加工过程的建模与数值分析.西安:西北工业大学出版社,2009:281页
    [31]盖登宇,褚元召等.组合热源模型在焊接数值模拟中的应用.焊接学报,2009,5:61-64,68页
    [32]田全荣,刘金合,王世清.基于生死单元的组合热源在GMAW焊接中的应用.热加工工艺,2012,41(7):163-165页
    [33]张锦洲,熊禾根,杨雄.基于组合热源的X70管线焊接应力变形数值分析.热加工工艺,2012,41(11):196-198页
    [34] Chin-Hyung Lee,Kyong-Ho Chang. Numerical analysis of residual stresses in welds ofsimilar or dissimilar steel weldments under superimposed tensile loads. ComputationalMaterials Science,2007,40:548-556P
    [35] Chin-Hyung Lee,Kyong-Ho Chang. Three-dimensional finite element simulation ofresidual stresses in circumferential welds of steel pipe including pipe diameter effects.Materials Science and Engineering A,2008,487:210-218P
    [36] E. Pardo,D.C. Weckman. Prediction of weld pool and reinforcement dimensions ofGMA welds using a finite element model. Metallurgical and Materials Transactions B,1989,20:937-947P
    [37]倪昀,黄志超,熊国良等.基于ANSYS汽车后桥壳体焊接温度场有限元分析.华东交通大学学报,2006,23:115-118页
    [38] J.Ronda,G.J.Oliver.Consistent thermo-mechano-metallurgical model of welded steelwith unified approach to derivation of phase evolution laws and transformation-inducedplasticity. Computer Methods in Applied Mechanics and Engineering,2000,189:361-418P
    [39] J. Ronda,O. Mahrenholtz,R. Hamann. Thermomechanical simulation of underwaterwelding processes. Archive of Applied Mechanics,1992,62:15-27P
    [40] J. Ronda,H. Murakawa,G.J. Oliver. Thermo-mechano-metallurgical model of weldedsteel, Part2: Finite element formulation and constitutive equations. Transactions ofJapanese Welding Research Institute,1995,24:1-21P
    [41] J.Ronda,Y.Estrin,G.J. Oliver. A comparison of a thermo-mechano-metallurgicalconstitutive model with a thermo-viscoplastic material model. Journal of MaterialsProcessing Technology,1996,60:629-636P
    [42] J. Ronda, G.J. Oliver. Comparison of applicability of various thermo-viscoplasticconstitutive models in modeling of welding. Computer Methods in Applied Mechanicsand Engineering,1998,153:195-221P
    [43] J.B. Leblond. A theoretical and numerical approach to the plastic behavior of steelsduring phase transformations. Journal of the Mechanics and Physics ofSolids,1986,34(4):395-409P
    [44] Tso-Liang Teng. Effect of welding conditions on residual stresses due to butt welds.International Journal of Pressure Vessels and Piping,1998,75(12):857-864P
    [45]彭桂蒸.大面积薄钢板焊接残余应力的性能分析与试验研究.青岛理工大学硕士论文,2010:5-9页
    [46]林燕,董俊慧,刘军.焊接残余应力数值模拟研究技术的现状与发展.焊接技术,2003,32:5-7页
    [47] Rybicki. Computation of residual stresses due to multi-pass welds in pipe systems.Journal of Pressure Vessel Technology,1979,101:149-153P
    [48] L.E. Lindgren,Lkarlssen. Deformations and stresses in welding of shell structures.International Journal for Numerical Methods in Engineering,1998,25:635-638P
    [49] Y. Dong, Jkhong, Cltsal, et al. Finite element modeling of residual stresses inaustenitic stainless steel pipe girth welds. Welding Journal,1997,76:442-449P
    [50] T. Inoue. Metallo-Thermo-Mechanics Application to Phase TransformationIncorporated Processes. Transactions of JWRI,Special Issue on Theoretical Predictionin Joining and Welding,1996,25-2:69-87P
    [51]陈丙森.计算机辅助焊接技术.北京:机械工业出版社,1999:142-147页
    [52] L.E. Lindgren,H.A. H ggblad,J.M.J. McDill,A.S. Oddy. Automatic remeshingfor three-dimensional finite element simulation of welding. Computer Methods inApplied Mechanics and Engineering.1997,147:401–409P
    [53]刘晓苗.特殊形状贯穿件焊接残余应力和疲劳分析.哈尔滨工程大学硕士论文,2009:1-7页
    [54]汪建华,上田幸雄.焊接结构三维热变形的有限元模拟.上海交通大学学报,1994,28(6):59-65页
    [55]汪建华.管板接头三维焊接变形的数值模拟.焊接学报,1995,16(3):140-145页
    [56]汪建华,钟小敏,戚新海.焊接过程的三维热弹塑性有限元分析.力学与实践,1995,17:27-30页
    [57]汪建华,戚新海,钟小敏.三维瞬态焊接温度场的有限元模拟.上海交通大学学报,1996,30(3):120-125页
    [58]汪建华,魏良武.焊接变形和残余应力预测理论的发展及应用前景.焊接,2001(9):5-7页
    [59]汪建华,魏良武.焊接变形和残余应力预测理论的发展及应用前景.焊接,2001(10):4-6,34页
    [60]汪建华,陆皓.焊接预测理论和数值模拟技术的发展.造船技术,2001(4):21-24页
    [61]徐济进,陈立功,倪纯珍等.厚板对接多道焊温度场的三维数值模拟.上海交通大学学报,2006(10):1687-1690页
    [62]魏艳红,刘仁培,董祖珏.不锈钢焊接凝固裂纹应力应变场数值模拟结果分析.焊接学报,2000,21:36-38页
    [63]魏艳红,董志波,刘仁培等.焊接凝固裂纹的数值模拟与预测.机械工程学报,2004,40:93-98页
    [64]董志波,魏艳红,刘仁培等.不锈钢厚板焊接凝固裂纹驱动力的三维数值模拟.金属学报,2005,41:214-218页
    [65]鹿安理,史清宇,赵海燕等.焊接过程仿真领域的若干关键问题及其初步研究.中国机械工程,2000,11:201-205页
    [66]鹿安理,史清宇,赵海燕等.厚板焊接过程温度场、应力场的三维有限元数值模拟.中国机械工程,2001,12:183-186页
    [67]蔡志鹏,鹿安理,史清宇等.相似理论在焊接温度场和应力场及应变场中的应用.焊接学报,2000,21:79-82页
    [68]蔡志鹏,赵海燕,鹿安理等.焊接温度场、应力场和应变场相似准则的推导及验证.中国机械工程,2001,12:1165-1168页
    [69]蔡志鹏,赵海燕,吴甦等.利用相似理论预测焊接变形的研究.机械工程学报,2002,38:141-144页
    [70]蔡志鹏,赵海燕.结合模型试验的数值模拟方法在大型结构焊接变形控制中的应用.机械工程学报,2002,38:100-104页
    [71]蔡志鹏.大型结构焊接变形数值模拟的研究与应用.清华大学博士论文,2001:13-48页
    [72]张建强,赵海燕,吴甦等.焊接过程三维应力变形数值模拟研究进展.焊接学报,2003,24:91-96页
    [73]姬书得.水轮机转轮焊接残余应力调控措施的虚拟优化.哈尔滨工业大学博士论文,2000:21-89页
    [74]董俊慧,霍立兴,张玉凤等.环焊缝管道焊接应力应变三维有限元分析.机械工程学报,2001,37:86-90页
    [75]薛忠明,杨广臣,张彦华.焊接温度场与力学场的研究进展.中国机械工程,2002,13(11):977-982页
    [76]武传松,陆皓,魏艳红等.焊接多物理场耦合数值模拟的研究进展与发展动向.第十六次全国焊接学术会议论文,2012:10-22页
    [77] A. Joseph,Sanjai K. Rai,T. Jayakumar,N. Murugan. Evaluation of residual stressesin dissimilar weld joints. International Journal of Pressure Vessels and Piping,2005,82:700-705P
    [78]邓德安,清岛祥一.用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力.金属学报,2010,46(2):195-200页
    [79] Changheui Jang,Jounghoon Lee,Jong Sung Kim,Tae Eun Jin. Mechanical propertyvariation within Inconel82/182dissimilar metal weld between low alloy steel and316stainless steel. International Journal of Pressure Vessels and Piping,2008,85:635-646P
    [80] D. Akbari, I. Sattari-Far. Effect of the welding heat input on residual stresses inbutt-welds of dissimilar pipe joints. International Journal of Pressure Vessels andPiping,2009,86:769-776P
    [81] B. Brickstad,B. L. Josefson. A parametric study of residual stresses in multi-passbutt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping,1998,75:11-25P
    [82] Peng-Hsiang C, Tso-Liang T. Numerical and experimental investigations on theresidual stresses of the butt-welded joints. Computational Materials Science,2004,29:511-522P
    [83] Paradowska A,Price J,Ibrahim R,Finlayson T. The effect of heat input on residualstress distribution of steel welds measured by neutron diffraction. Journal ofAchievements in Materials and Manufacturing Engineering,2006,17:385-388P
    [84] Brickstad B, Josefson B. A parametric study of residual stresses in multi-passbutt-welded stainless steel pipes. International Journal of Pressure Vessels andPiping,1998,75:11-25P
    [85] Mochizuki M,Hayashi M,Hattori T. Numerical analysis of welding residual stress andits verification using neutron diffraction measurement. Journal of EngineeringMaterials and Technology,2000:122P
    [86] Dimitrios E, Anastasius G. Residual stress prediction in dissimilar metal weld pipejoints using the finite element method. Material Science,2005,490-491:53-61P
    [87] Wen-Cheng T. Effect of welding sequences on residual stresses. Computers andStructures,2003,81:273-286P
    [88] Fenggui L. Modeling and finite element analysis on GTAW arc and weld pool.Computational Materials Science,2004,29:371-378P
    [89] Vakarkhan V,Valopot A,Nopa V. Effect of phase transformations on residual stressesin laser welding09G2steel. Welding International,2003,17(8):645-649P
    [90] Dean Deng,Kazuo Ogawa,Shoichi Kiyoshima. Prediction of residual stresses in adissimilar metal welded pipe with considering cladding, buttering and post weld heattreatment. Computational Materials Science,2009,47:398-408P
    [91] Dean Deng, Hidekazu Murakawa. Numerical and experimental investigations onwelding residual stress in multi-pass butt-welded austenitic stainless steel pipe.Computational Materials Science,2008,42:234-244P
    [92] Dean Deng, Shoichi Kiyoshima. FEM prediction of welding residual stresses in aSUS304girth-welded pipe with emphasis on stress distribution near weld start/endlocation. Computational Materials Science,2010,50:612-621P
    [93] Dean Deng, Hidekazu Murakawa. Numerical simulation of temperature field andresidual stress in multi-pass welds in stainless steel pipe and comparison withexperimental measurements. Computational Materials Science,2006,37:269-277P
    [94] A. Yaghi,T.H. Hyde,A.A. Becker,W. Sun,J.A. Williams. Residual stresssimulation in thin and thick-walled stainless steel pipe welds including pipe diametereffects. International Journal of Pressure Vessels and Piping,2006,83:864–874P
    [95] Chin-Hyung Lee, Kyong-Ho Chang. Temperature fields and residual stressesdistributions in dissimilar steel butt welds between carbon and stainless steels. AppliedThermal Engineering,2012,45-46:33-41P
    [96]丁建国.反应堆压力容器顶盖贯穿件及其焊缝的无损检测.无损检测,2007,29(2):104-106页
    [97]李双燕.百万千瓦级压水堆核电站核岛主设备蒸汽发生器焊接技术.压力容器,2011,28(2):38-43页
    [98] D. Rudland,G. Wilkowski,Y.-Y. Wang,W. Norris. Development of circumferentialthrough-wall crack K-solutions for control rod drive mechanism nozzles. InternationalJournal of Pressure Vessels and Piping,2004,81:961–971P
    [99] J.L. Rempe,D.L. Knudson,K.G. Condie. Conceptual design of an in-vessel corecatcher. Nuclear Engineering and Design,2004,230:311–325P
    [100] A. Yaghi, T.H. Hyde, A.A. Becker. Residual stress simulation in thin andthick-walled stainless steel pipe welds including pipe diameter effects. InternationalJournal of Pressure Vessels and Piping,2006,83:864-874P
    [101] C.D. Elcoate,R.J. Dennis,P.J. Bouchard. Three dimensional multi-pass repair weldsimulations. International Journal of Pressure Vessels and Piping,2005,82:244-257P
    [102] J. Zhang,P. Dong,F.W. Brust. Modeling of weld residual stresses in core shroudstructures. Nuclear Engineering and Design,2000,195:171-187P
    [103] P. Dong,J.K. Hong,P.J. Bouchard. Analysis of residual stresses at weld repairs.International Journal of Pressure Vessels and Piping,2006,83:864-874P
    [104]张彦华.焊接力学与结构完整性原理.北京:北京航空航天大学出版社,2007:93页
    [105]张淼.APDL参数化设计语言在材料加工数值模拟中的应用.昆明理工大学硕士论文,2003:76-82页
    [106]肖顺湖.薄板焊接过程数值模拟与试验研究.广西大学硕士论文,2005:22-25页
    [107]顾立志.铝合金筒体焊接温度场和应力应变场的三维数值模拟.天津大学硕士论文,2005:19-26页
    [108]闵祥军.管板焊接件残余应力及疲劳性能的数值模拟.哈尔滨工程大学硕士论文,2009:19-28页
    [109]韩蓉.有限元模拟堆焊及超声波冲击对焊件应力场的影响.哈尔滨工程大学硕士论文,2009:23-32页
    [110]冯艳辉.基于ANSYS的焊接梁残余应力分析.西安建筑科技大学硕士论文,2008:30-35页
    [111] D. Akbari, I. Sattari-Far. Effect of the welding heat input on residual stresses inbutt-welds of dissimilar pipe joints. International Journal of Pressure Vessels andPiping,2009,86:769-776P
    [112] C. Liu, J.X. Zhang, C.B. Xue. Numerical investigation on residual stressdistribution and evolution during multipass narrow gap welding of thick-walledstainless steel pipes. Fusion Engineering and Design,2011:1-8P
    [113]余淑荣,熊进辉,樊丁等.ANSYS在激光焊接温度场数值模拟中的应用.焊接技术,2006,35:6-9页
    [114]吴建波.A514钢激光深熔焊接过程的数值模拟.合肥工业大学硕士论文,2011:31-32页
    [115]周振丰,张文钺等.焊接冶金与金属焊接性.第二版.北京:机械工业出版社,1988:7-8页
    [116]姜焕中.电弧焊及电渣焊.第二版.北京:机械工业出版社,1988:29页
    [117]龚曙光编著.ANSYS操作命令与参数化编程.北京:机械工业出版社,2004:1页,56-58页
    [118]陈家权,沈炜良,尹志新等.基于单元生死的焊接温度场模拟计算.热加工工艺,2005,5:64-65页
    [119]李爱环.贯穿件多道焊温度场及应力场的数值模拟.哈尔滨工程大学硕士论文,2008:9-36页
    [120]赵锐.焊接残余应力的数值模拟及控制消除研究.大连理工大学硕士论文,2006:18-28页
    [121]倪红芳,凌祥,涂善东.多道焊三维残余应力场有限元模拟.机械强度,2004,26(2):218-222页
    [122] Jong Sung Kim, Joong Hyun Seo. A study on welding residual stress analysis of asmall bore nozzle with dissimilar metal welds. International Journal of Pressure Vesselsand Piping,2012,90-91:69-76P
    [123] T.B. Brown,T.A. Dauda,C.E. Truman. Predictions and measurements of residualstress in repair welds in plates. International Journal of Pressure Vessels and Piping,2006,83:809-818P
    [124]袁发荣,伍尚礼.残余应力测试与计算.长沙:湖南大学出版社,1987:55-65页
    [125]陆才善.残余应力测试—小孔释放法.西安:西安交通大学出版社,1991:15-19页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700