用户名: 密码: 验证码:
2205双相不锈钢与Q345R钢焊接性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2205双相不锈钢是一种兼具良好的力学性能和耐蚀性能的钢种,目前,2205双相不锈钢与Q345R高强度低合金钢的焊接尚未成熟,尤其是对接头的组织和性能变化机理还缺乏深入研究。本文采用焊条电弧焊和钨极氩弧焊两种焊接方法,2209、309和309Mo三种焊接材料合金,共六种焊接工艺对8mm厚2205双相不锈钢板与Q345R高强度低合金钢板进行了对接焊接试验。在此基础上对接头的显微组织、力学性能、耐蚀性能和微纳米力学性能进行了研究,以期为双相不锈钢和其他钢种之间的异种钢焊接提供科学依据。
     采用ANSYS有限元分析软件研究了焊接过程中特征区域的热循环过程,观察了焊后接头各区域的显微组织,测试了接头的拉伸性能、弯曲性能、显微硬度和耐蚀性,同时研究了时效过程中接头各区域的显微组织和显微硬度的变化,测试了接头微区的微纳米力学性能。
     通过本文的试验研究和理论分析,得出了以下主要结论:
     有限元分析表明,打底层焊缝的Q345R侧熔合区250℃以上的加热时间最长,为1225s,盖面层最短,为1066s,中间层焊缝的熔合区加热停留时间为1148s。同时,钨极氩弧焊打底焊Q345R侧熔合区700℃以上停留时间为311s,高于焊条电弧焊盖面层Q345R侧熔合区700℃以上的停留时间211s。
     2205双相不锈钢母材、2205双相不锈钢侧热影响区和接头焊缝区均为奥氏体相和铁素体相组成的双相组织,组织比例和形貌受热循环和合金元素的共同影响,焊缝区-Q345R母材的界面存在“碳迁移”区域,“碳迁移”程度也受到热循环和合金元素的共同影响。焊缝区铁素体含量受到铬当量与镍当量比值([Creq]/[Nieq])的制约,铁素体含量与[Creq]/[Nieq]成正比关系,由于焊条电弧焊700℃以上高温停留时间低于钨极氩弧焊,故焊条电弧焊焊缝区的铁素体含量高于钨极氩弧焊焊缝的铁素体含量;焊条电弧焊时,由于焊材E2209比E309和E309Mo含有更多的Ni元素,E2209焊材焊接时Q345R侧熔合区的组织更为细小;“碳迁移”程度与焊材中Mo元素的含量成反比关系,与加热时间成正比关系。
     焊接接头的拉伸、弯曲性能均能满足使用要求。接头拥有高于Q345R母材的抗拉强度,断裂位置在Q345R母材,断口特征为韧窝。同时,接头的面弯和背弯均未出现裂纹,表明接头拥有良好的塑性。接头从Q345R母材-焊缝-2205双相不锈钢母材,硬度呈现逐渐上升的趋势,在Q345R母材-焊缝区的界面,接头显微硬度存在“降低-上升-降低”的波动,且加热时间越长,波动越大。E2209焊缝的耐蚀性接近2205双相不锈钢母材。在浓度为3.5%的NaCl溶液中,E2209焊缝金属的自腐蚀电位为-0.519V,高于2205双相不锈钢母材-0.521V,同时E2209焊缝的晶间腐蚀速率为0.4082g.m-2.h-1,略高于2205双相不锈钢母材的晶间腐蚀速率0.4006g.m-2.h-1。晶间腐蚀产物研究结果表明,腐蚀剩余组织为铁素体组织。
     对接接头高温时效过程中,2205双相不锈钢母材与焊缝中的铁素体相不断向奥氏体相转变,还伴随着σ相的析出,接头的显微硬度发生了显著变化,σ相的析出受到时效温度、时效时间和合金元素的共同制约。在700℃时效时,铁素体随时间延长逐渐转变为奥氏体相;在900℃时效时,组织为三相共存状态,即奥氏体相、铁素体相和σ相,时效后焊缝区的σ相与焊缝金属的Mo元素含量成正比关系,且σ相是Fe和Cr的金属间化合物,其中Cr的质量分数约为33.5%;900℃时效后焊缝区和2205双相不锈钢母材区的显微硬度的提高幅度大于700℃时效;900℃时效时,同种焊材下,焊条电弧焊焊缝的显微硬度提高幅度大于钨极氩弧焊焊缝,同种焊接方法下,E2209焊缝硬度提高幅度大于E309和E309Mo;Q345R母材的显微硬度低于焊缝区,随着时效时间的延长,呈现先下降后上升的趋势。
     有限元模拟结果表明材料的Meyer指数与其加工硬化指数存在正比关系;钨极氩弧焊焊缝的平均Meyer指数最小,其次是焊条电弧焊焊缝,最后为2205双相不锈钢母材,即钨极氩弧焊焊缝塑性最好,2205双相不锈钢母材最差,且同一种焊接方法中,309焊材施焊的焊缝的Meyer指数最小,可见309焊缝拥有最佳的塑性;铁素体的硬度为346.83HV,高于奥氏体的硬度261.62HV,铁素体的稳态应力敏感指数为82.79,远大于奥氏体的36.26,表明铁素体比奥氏体拥有更好的蠕变抗力;σ相的硬度为1764.8HV,为一种脆硬相,远高于铁素体和奥氏体的显微硬度。
2205duplex stainless steel is a kind of steel which has good mechanical property andcorrosion resistance property. Until now, there are still some problems in the weldingprocessing between2205duplex stainless steel and Q345R high strength low alloy steel,especially mechanism in the change of microstructure and properties during welding. In thisstudy, two kinds of welding methods, including shielded metal arc welding and gas tungstenarc welding were utilized. Also three kinds of welding alloy, including2209,309and309Mo,were employed to joint2205duplex stainless steel and Q345R steel. After welding, themicrostructure, mechanical properties and corrosion resistance properties of welded jointswere investigated. All of these were done to supply scientific basis for dissimilar steelswelding between2205duplex stainless steel and other steels.
     Thermal cycle of special location during welding was studied by ANSYS finite elementanalysis software. The microstructure of welded joints was observed. Tensile property, bendproperty, micro hardness and corrosion resistance property were tested. Moreover, the changeof microstructure and micro hardness during aging treatment was investigated. The micro&nano mechanical properties of micro location in welded joints were also studied.
     Following conclusions can be drawn from tests and analysis in this study.
     Results of finite element analysis show that there is a longest time of1225s in thebottom of fusion zone from weld metal to Q345R base metal when the temperature is below250℃. However, the time of top fusion zone from weld metal to Q345R base metal is only1066s and is the shortest. The place located in the middle layer of fusion zone from weldmetal to Q345R has a medium time of1148s when the temperature is below250℃. Thetime below700℃of gas tungsten arc welding metal is311s longer than that of top shieldedmetal arc welding metal which is211s.
     The base metal, heat affect zone of2205duplex stainless steel and weld metals are allconstituted by duplex microstructure of austenite phase and ferrite phase. The ratio andmorphology of phase are all influenced by thermal cycle and alloying element. The carbonmigration area, which located at the interface from weld metal to Q345R steel base metal, isaffected by thermal cycle and alloying element. Ferrite phase fraction is influenced by ratio ofChrome equivalent and Nickel equivalent and is positive proportional to the ratio of Chromeequivalent and Nickel equivalent. Because of the heating time higher than700℃of shieldedmetal arc welding is shorter, ferrite phase fraction of shielded metal arc welding is higher thanthat of gas tungsten arc welding. When the shielded metal arc welding is applied, massfraction of Nickel in E2209weld metal is higher than that in E309and E309Mo. Because of the refining effect of Nickel element, the microstructure of E2209fusion zone is finer thanthat of E309and E309Mo. Carbon migration degree is negative proportional to mass fractionof Mo and is positive proportional to heat time.
     The tensile and bend properties of welded joints can all meet the operating requirement.The tensile strengths of all joints are higher than that of Q345R steel base metal. The tensilefracture is dimple and locates at Q345R steel base metal. Moreover, there is no crack duringface bending and reserve bending. All of these show that there is good plasticity of all joints.The hardness from Q345R steel based metal to weld metal, and to2205duplex stainless steelis nearly increased. There is a fluctuation in micro hardness which is decreased firstly, thenincreased and decreased again, at the interface from Q345R steel to weld metal. The degree offluctuation is affected by heating time, and is positive proportional to the heating time.Corrosion resistance property of E2209weld metal is comparable to that of2205duplexstainless steel. Corrosion potential tested in3.5wt.%NaCl solution of E2209weld metal is-0.519V higher than that of2205duplex stainless steel which is-0.521V. Moreover,intergranular corrosion rate of E2209weld metal is0.4082g.m-2.h-1higher than that of2205duplex stainless steel which is0.4006g.m-2.h-1. The investigate results show that theintergranular corrosion products are ferrite.
     When butt joints are aged at high temperature, ferrite phase in2205duplex stainless steeland weld metal transformed into austenite phase continually, and accompany with theprecipitation of σ phase. The hardness of joints is changed greatly. Precipitation of σ phase isinfluenced by aging temperature, aging time and alloying element. Ferrite phase transformsinto austenite phase gradually at700℃. Ferrite phase, austenite phase and σ phase coexist at900℃. Fraction of σ phase in weld metal after aging is positive proportional to mass fractionof Molybdenum. σ phase is intermetallic compound of Iron and Chrome, and the massfraction of Chrome is33.5%. Improvement in hardness of2205duplex stainless steel andweld metal aged at900℃is greater than that aged at700℃. When using same weldingalloy, hardness of shielded metal arc weld metal aged at900℃is higher than that aged at700℃. When using same welding method, hardness of E2209weld metal is higher than thatof E309and E309Mo. Hardness of Q345R is lower than weld metal, which decreased firstlyand increased lastly with aging time extended.
     Results of finite element analysis show that Meyer exponent increases when the workinghardening exponent increases. Average Meyer exponent of gas tungsten arc weld metal isminimum. Meyer exponent of2205duplex stainless steel base metal is maximum, whichhigher than that of gas tungsten arc weld metal and shielded metal arc weld metal. Thisindicates that plasticity of tungsten arc weld metal is the best, then is shielded metal arc weld metal, and the2205duplex stainless steel is the worst. When only one kind of weldingmethod is employed, Meyer exponent of309weld metal is the minimum. This illustrates that309weld metal owes the best plasticity. Hardness of ferrite phase is346.83HV, higher thanthat of austenite phase which is261.62HV. Steady creep stress exponent of ferrite phase is82.79much higher than that of austenite phase which is36.26. This indicates that creepresistance of ferrite phase is greater than that of austenite phase. The hardness of σ phase is1764.8HV much higher than that of ferrite and austenite phase. This illustrates that σ phase isa kind of hard and brittle phase.
引文
[1]康利梅.双相不锈钢的发展及应用综述[J].科技广场,2010(08):165-168.
    [2]王常青,丁毅,马立群, et al.304和2304不锈钢在Cl-介质中的耐蚀行为[J].压力容器,2007(05):1-4.
    [3] Kim S, Jang S, Kim J. Electrochemical properties and corrosion protection of stainless steel for hotwater tank[J]. Korean Journal of Chemical Engineering,2004,21(3):739-745.
    [4]吴玖,韩怀月.中国双相不锈钢的现状与发展[J].中国钢铁业,2003(03):47-49.
    [5]郭晶,张淑媛,贺津.双相不锈钢焊接初步实践[J].石油化工设备,2000(03):43-46.
    [6]朱孔林.应加快开发能适应不锈钢市场波动的高性能铁素体不锈钢[J].世界钢铁,2009(03):62-70.
    [7]许适群,王菁辉.双相不锈钢性能的探讨[J].石油化工腐蚀与防护,2006(05):21-22.
    [8] Sieurin H, Sandstr m R. Austenite reformation in the heat-affected zone of duplex stainless steel2205[J]. Materials Science and Engineering: A,2006,418(1-2):250-256.
    [9]李平瑾,王观东,胡积胜, et al.不锈钢在压力容器中的应用及焊接技术(一)[J].压力容器,2003(07):39-42.
    [10]李伟,栗卓新,李国栋, et al.国内外双相不锈钢焊接的研究进展[J].焊接,2007(01):11-15.
    [11] Santos I O, Zhang W, Gon alves V M, et al. Weld bonding of stainless steel[J]. International Journalof Machine Tools and Manufacture,2004,44(14):1431-1439.
    [12] Lo I, Tsai W. Effect of selective dissolution on fatigue crack initiation in2205duplex stainlesssteel[J]. Corrosion Science,2007,49(4):1847-1861.
    [13]韩志诚,王少刚,徐风林.焊接工艺对2205双相不锈钢接头组织与性能的影响[J].材料工程,2008(08):48-51.
    [14]陈茂斌.双相不锈钢S31803的焊接试验[J].石油化工建设,2006(01):47-49.
    [15]昌敬源,石巨岩,谢贵生, et al.焊接工艺对2205双相不锈钢焊接接头组织与性能的影响[J].金属热处理,2009(09):40-43.
    [16]王仓,周吉智.焊接工艺对双相不锈钢焊接接头力学性能和组织的影响[J].徐州工程学院学报(自然科学版),2011(02):76-79.
    [17]杨莉,王仓.双相钢S31803埋弧焊焊接接头组织和性能测试分析[J].热加工工艺,2010(13):158-160.
    [18]王治宇,许海刚,吴玮巍, et al.2205双相不锈钢的激光-MIG复合焊接头性能[J].焊接学报,2011(02):105-108.
    [19] Ure a A, Otero E, Utrilla M V, et al. Weldability of a2205duplex stainless steel using plasma arcwelding[J]. Journal of Materials Processing Technology,2007,182(1-3):624-631.
    [20] Sathiya P, Aravindan S, Soundararajan R, et al. Effect of shielding gases on mechanical andmetallurgical properties of duplex stainless-steel welds[J]. Journal of Materials Science,2009,44(1):114-121.
    [21] Ibrahim O H, Ibrahim I S, Khalifa T A F. Effect of Aging on the Toughness of Austenitic and DuplexStainless Steel Weldments[J]. Journal of Materials Science&Technology,2010,26(9):810-816.
    [22] Wang S, Huang C, Lee W, et al. Impact deformation behavior of duplex and superaustenitic stainlesssteels welds by split Hopkinson pressure bar[J]. Metals and Materials International,2009,15(6):1007-1015.
    [23] Múnez C J, Utrilla M V, Ure a A, et al. Influence of the filler material on pitting corrosion in weldedduplex stainless steel2205[J]. Welding International,2009,24(2):105-110.
    [24] Badji R, Bacroix B, Bouabdallah M. Texture, microstructure and anisotropic properties in annealed2205duplex stainless steel welds[J]. Materials Characterization,2011,62(9):833-843.
    [25] Sam S, Kundu S, Chatterjee S. Diffusion bonding of titanium alloy to micro-duplex stainless steelusing a nickel alloy interlayer: Interface microstructure and strength properties[J]. MATERIALS&DESIGN,2012,40:237-244.
    [26]高磊,张莹莹,赵玉红, et al.双相不锈钢制冷凝器SAF2507换热管与316L管板的焊接工艺[J].压力容器,2006(01):43-45.
    [27]李燕,王少刚,马启慧, et al.2205双相不锈钢与304奥氏体不锈钢的焊接[J].电焊机,2011(01):73-77.
    [28] Ka ar R, Acarer M. Microstructure–property relationship in explosively welded duplex stainlesssteel-steel[J]. Materials Science and Engineering: A,2003,363(1-2):290-296.
    [29]董宝才,范江峰,刘润生, et al.2205双相不锈钢复合板爆炸—轧制工艺研制[J].压力容器,2005(02):9-13.
    [30]毕宗岳,丁宝峰,张峰, et al.2205/Q235大面积双相不锈钢复合板性能分析[J].焊管,2010(03):25-28.
    [31]喻兰英,罗宏,曾宪光.2205双相不锈钢/16MnR爆炸复合板界面的微观组织[J].爆炸与冲击,2010(04):445-448.
    [32] Matsushita M, Ogiyama H, Suko T, et al. Study on solid-phase welding of duplex stainless steel withcarbon steel based on superplasticity and consideration of the cyclic fatigue fracture behavior[J].2009,114(2-3):599-603.
    [33] Kurt B. The interface morphology of diffusion bonded dissimilar stainless steel and medium carbonsteel couples[J]. Journal of Materials Processing Technology,2007,190(1-3):138-141.
    [34] Mcpherson N A, Chi K, Mclean M S, et al. Structure and properties of carbon steel to duplexstainless steel submerged arc welds[J]. Materials Science and Technology,2003,19(2):219-226.
    [35]毕宗岳,张建勋,张峰, et al.酸性介质用大口径2205/Q235双相不锈钢复合管[J].腐蚀与防护,2010(05):349-352.
    [36]王晓燕,张雷,路民旭.双相不锈钢与微合金钢异金属焊接接头的组织及性能[J].北京科技大学学报,2008(02):131-136.
    [37]马启慧,王少刚,李燕, et al. SAF2205双相不锈钢与16MnR钢焊接接头的组织与性能[J].机械工程材料,2010(06):17-20.
    [38] Srinivasan P B, Muthupandi V, Dietzel W, et al. An assessment of impact strength and corrosionbehaviour of shielded metal arc welded dissimilar weldments between UNS31803and IS2062steels[J]. Materials&Design,2006,27(3):182-191.
    [39] Arivazhagan N, Singh S, Prakash S, et al. An assessment of hardness, impact strength, and hotcorrosion behaviour of friction-welded dissimilar weldments between AISI4140and AISI304[J]. TheInternational Journal of Advanced Manufacturing Technology,2008,39(7-8):679-689.
    [40] Sireesha M, Albert S K, Shankar V, et al. A comparative evaluation of welding consumables fordissimilar welds between316LN austenitic stainless steel and Alloy800[J]. Journal of NuclearMaterials,2000,279(1):65-76.
    [41] Das C R, Bhaduri A K, Srinivasan G, et al. Selection of filler wire for and effect of auto tempering onthe mechanical properties of dissimilar metal joint between403and304L(N) stainless steels[J]. Journalof Materials Processing Technology,2009,209(3):1428-1435.
    [42] Pan C, Zhang Z. Morphologies of the transition region in dissimilar austenitic-ferritic welds[J].Materials Characterization,1996,36(1):5-10.
    [43]赵雯雯,许鸿吉,金光.1.4003铁素体不锈钢与Q235-C钢焊接接头的组织和力学性能[J].理化检验(物理分册),2009(06):335-338.
    [44]杨莉,张金芳.不锈钢复合管的焊接[J].热加工工艺,2001(02):64.
    [45]闻瑞利. Q345R手工电弧焊及钨极氩弧焊工艺的研究[J].职业,2010(33):172-174.
    [46]韩志诚,王少刚,徐凤林, et al.2205双相不锈钢焊接接头的耐蚀性能[J].石油化工腐蚀与防护,2008(03):1-3.
    [47]刘宏义,李汝桐,蔡文达, et al.合金元素及模拟热处理对2205双相不锈钢之孔蚀性质影响[J].电化学,1999(02):10-19.
    [48] Ranjbarnodeh E, Serajzadeh S, Kokabi A H, et al. Effect of welding parameters on residual stresses indissimilar joint of stainless steel to carbon steel[J]. Journal of Materials Science,2011,46(9):3225-3232.
    [49]王红樱,梁晨曦,李光.异种钢焊接接头寿命研究[J].湖南电力,2001(06):17-20.
    [50]高宾.基于复合堆焊的激光熔覆修复技术的实验研究[D].上海:上海交通大学,2010.
    [51]周细应,柯黎明,华小珍, et al.堆焊界面特征与裂纹形成之间的关系研究[J].兵器材料科学与工程,2001(06):18-21.
    [52]谢长生,王爱华,黄开金, et al.铸铁表面激光熔覆裂纹的形成原因[J].钢铁,1994(08):48-53.
    [53]余民芳,邓琦林,彭行金.高强度钢激光堆焊修复堆焊层金属显微组织及性能的分析研究[J].电加工与模具,2008(01):40-42.
    [54]陈静,林鑫,王涛, et al.316L不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程,2003(03):183-186.
    [55]王红,张瑞军,齐效文, et al.掺Ti/Ni碳质中间相的结构及其高温摩擦性能[J].摩擦学学报,2007(05):421-425.
    [56]张福勤.航空刹车用C/C复合材料石墨化度的研究[D].长沙:中南大学,2002.
    [57]陈丽娟. Ni-Fe-石墨自润滑材料的研究[D].福州:福州大学,2005.
    [58] Zhou H, Peng Q, Huang Z, et al. Catalytic graphitization of PAN-based carbon fibers withelectrodeposited Ni-Fe alloy[J]. Transactions of Nonferrous Metals Society of China,2011,21(3):581-587.
    [59]王志国.1Cr18Ni9Ti和12Cr1MoVG的异种钢焊接[J].焊接技术,2006(04):35-36.
    [60]史春元,薛继仁,于启湛, et al.高温下碳在α-γ型异种钢焊接接头中的扩散[J].焊接学报,1999(04):258-263.
    [61] Sopou ek J, Foret R. Carbon and nitrogen redistribution in weld joint of ion nitrided15CrMov2-5-3and advanced P91heat-resistant steels[J]. Journal of Phase Equilibria and Diffusion,2006,27(4):363-369.
    [62]李吉承.2205双相不锈钢焊接接头组织与耐蚀性研究[D].抚顺:辽宁石油化工大学,2010.
    [63]秦丽雁.不锈钢应用中的几个腐蚀问题研究[D].天津:天津大学,2006.
    [64]李花兵.高氮奥氏体不锈钢的冶炼理论基础及其材料性能研究[D].沈阳:东北大学,2008.
    [65]梁新斌.低镍奥氏体不锈钢组织与凝固模式[D].兰州:兰州理工大学,2009.
    [66]李长胜.新型奥氏体不锈钢磨损、腐蚀性能研究[D].镇江:江苏大学,2007.
    [67] Srinivasan P B, Muthupandi V, Sivan V, et al. Microstructure and corrosion behavior of shieldedmetal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel[J]. Journal ofMaterials Engineering and Performance,2006,15(6):758-764.
    [68] Vaidya W V, Horstmann M, Ventzke V, et al. Improving interfacial properties of a laser beam weldeddissimilar joint of aluminium AA6056and titanium Ti6Al4V for aeronautical applications[J]. Journal ofMaterials Science,2010,45(22):6242-6254.
    [69]李亚江.焊接冶金学:材料焊接性[M].北京:机械工业出版社,2007.
    [70]谢晋平,黄汉荣,韩海峰, et al.高性能耐火耐候焊接材料的研制及应用[J].电焊机,2006(11):25-30.
    [71]孙玉梅,邹小平. Super304H不锈钢锅炉管评述[J].锅炉技术,2007(01):52-55.
    [72]王勇.石油管道焊接接头的腐蚀与防护[J].焊接技术,1998(03):11-12.
    [73]黄勇,刘贻兴.高中压外缸焊接及补焊的工艺研究[J].东方电气评论,2004(02):78-81.
    [74]王莲芳. DILLIMAX965钢在汽车起重机主臂中的焊接应用[J].焊接技术,2005(03):24-25.
    [75]付洪亮,毛雅丽.奥氏体不锈钢的焊接特点及焊条选用[J].石油和化工设备,2009(06):56-57.
    [76]李刚,周文强.0Cr13Ni5Mo+Q345异种钢焊接工艺[J].焊接,2003(04):32-34.
    [77]孙亚萍.珠光体钢与奥氏体钢的焊接工艺[J].中国高新技术企业,2010(15):47-49.
    [78] Mirzoev F K, Shelepin L A. Nonlinear surface waves emerging in channeled penetration ofhigh-power laser radiation into condensed media[J]. Journal of Russian Laser Research,1998,19(6):528-546.
    [79] Jha A, Sreekumar K, Sinha P P. Cracking of AFNOR7020Aluminum Alloy Weld Joint of WaterTank for Satellite Launch Vehicle: A Metallurgical Investigation[J]. Journal of Failure Analysis andPrevention,2011,11(6):603-610.
    [80] Pujar M G, Dayal R K, Gill T P S, et al. Evaluation of microstructure and electrochemical corrosionbehavior of austenitic316stainless steel weld metals with varying chemical compositions[J]. Journal ofMaterials Engineering and Performance,2005,14(3):327-342.
    [81] Zhou L, Liu H J, Liu Q W. Effect of process parameters on stir zone microstructure in Ti–6Al–4Vfriction stir welds[J]. Journal of Materials Science,2010,45(1):39-45.
    [82]杨燕.2205双相不锈钢与低合金高强钢焊接工艺[J].电焊机,2008(11):32-35.
    [83]王爱珍.1Cr18Ni9Ti与10CrMo910钢的焊接试验[J].郑州轻工业学院学报,1994(02):39-47.
    [84]张建勋,李为卫,李庆琰.2205双相不锈钢的焊接性研究综述[J].焊管,2005(05):6-10.
    [85]朱海兴. SAF2205双相不锈钢设备SAW焊接工艺[J].石油化工建设,2006(01):43-46.
    [86]张心保,连杰.2205双相不锈钢钢筋弧焊工艺[J].金属加工(热加工),2011(10):43-46.
    [87]胡林波,艾云慧,宋建总, et al.双相不锈钢空冷器管头自动氩弧焊焊接工艺[J].石油化工设备,2009(06):54-57.
    [88]刘红苹.铸造γ-TiAl合金机加工与热暴露表面状态及力学性能研究[D].石家庄:河北科技大学,2007.
    [89]刘剑英.铝合金弹性熨压加工表面组织性能及工艺可靠性研究[D].长春:吉林大学,2011.
    [90]刘中华.钛合金表面激光熔覆镍基复合涂层组织性能研究[D].大连:大连理工大学,2007.
    [91]王宾. AZ31镁合金表面铝合金化层的制备与性能研究[D].重庆:重庆理工大学,2010.
    [92]金属拉伸试验试样[S].
    [93]哈尔滨焊接研究所.焊接接头拉伸试验方法[S].
    [94]钢铁研究总院首钢总公司冶金工业信息标准研究院.金属材料弯曲试验方法[S].
    [95]魏广玲.铝合金表面激光熔覆Cu基复合涂层研究[D].大连:大连理工大学,2010.
    [96]冶金工业信息标准研究院宝山钢铁股份有限公司.金属和合金的腐蚀电化学试验方法:恒电位和动电位极化测量导则[S].
    [97]上海五钢集团公司钢铁研究总院冶金工业信息标准研究院合肥能用机械研究所.金属和合金的腐蚀:不锈钢晶间腐蚀试验方法[S].
    [98]唐锋林.表面纳米化处理对铝镁合金性能的影响[D].南宁:广西大学,2008.
    [99]孙智,江利,应鹏展.失效分析—基础与应用[M].北京:机械工业出版社,2005.
    [100]栾尚清,左玉营,丁国峰.焊接温度场与应力场的研究历史与发展[J].科技信息(科学教研),2008(03):206.
    [101]张宏.基于ANSYS平台的管线钢焊接温度场模拟[D].西南交通大学,2007.
    [102]汪迎春,李萌盛,谭明明.平板对接焊接变形的数值模拟[J].现代焊接,2011(05):22-23.
    [103]刘习文,王国荣,肖心远.基于ANSYS的熔化极弧焊温度场三维数值模拟[J].热加工工艺,2008(05):85-89.
    [104]邢淑清,张晓燕,麻永林, et al.16Mn特厚钢板多道焊温度场数值模拟[J].电焊机,2012(01):18-21.
    [105]迎春,李萌盛,谭明明.平板对接焊接变形的数值模拟[J].现代焊接,2011(05):22-23.
    [106]王正伦.2205双相不锈钢焊接残余应力与收缩变形研究[D].重庆:重庆交通大学,2010.
    [107]邢淑清,薛宝平,孙贻宝, et al.16MnR钢特厚板焊接接头组织性能的实验研究[J].内蒙古科技大学学报,2009(02):132-135.
    [108] Ansys. Inc.ANSYS Elements Reefrenee[M]. SAS IP-Inc,2001.
    [109]王勛成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [110]李增荣. Q235钢与1Cr18Ni9Ti不锈钢异种钢焊接接头性能的研究[J].中国新技术新产品,2012(21):21.
    [111]潘春旭.异种金属焊接-显微结构特征及其转变机理[M].北京:人民交通出版社,2000.
    [112]章友谊,孙学杰,冉传海.35CrMoA+S275NL异种钢焊接工艺研究[J].电焊机,2011(12):57-61.
    [113]张国栋,洪敏,张建强, et al.基于SPS技术的异种钢焊接[J].焊接学报,2009(02):141-144.
    [114] Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones[J]. Corrosion Science,2011,53(12):4026-4032.
    [115] Kalita S J. Microstructure and corrosion properties of diode laser melted friction stir weld ofaluminum alloy2024T351[J]. Applied Surface Science,2011,257(9):3985-3997.
    [116] Lin C, Tsai H, Cheng C, et al. Effect of repeated weld-repairs on microstructure, texture, impactproperties and corrosion properties of AISI304L stainless steel[J]. Engineering Failure Analysis,2012,21(0):9-20.
    [117] Kim J, Lee J, Kim K. Intergranular precipitation and corrosion in weld of low Cr ferritic stainlesssteel[J]. Metals and Materials International,2012,18(4):619-624.
    [118]国家质量技术监督局锅炉压力容器安全监察局合肥通用机械研究所.钢制压力容器焊接工艺评定[S].
    [119]许适群.不锈钢的耐蚀性能[J].石油化工腐蚀与防护,2005(05):51-54.
    [120]刘书丽,高亚平,郑和平, et al.奥氏体不锈钢焊接接头的晶间腐蚀[J].煤矿机械,2008(01):96-98.
    [121]齐彦昌,张晓牧,彭云, et al.时效温度对15-5PH沉淀硬化不锈钢熔敷金属组织和性能的影响[J].焊接学报,2012(10):105-108.
    [122]邹德宁,韩英,李姣, et al.热处理对2205双相不锈钢焊接接头力学性能的影响[J].机械工程学报,2011(02):85-89.
    [123]陈文革,何建祥,谢小彬, et al.高温时效处理对310S不锈钢焊接接口性能的影响[J].材料热处理学报,2013(04):95-99.
    [124] Nakata K, Ikeda S, Hamada S, et al. Microstructural development due to long-term aging and ionirradiation behavior in weld metals of austenitic stainless steel[J]. Journal of Nuclear Materials,1996,233–237, Part1(0):192-196.
    [125] Sieurin H, Sandstr m R. Austenite reformation in the heat-affected zone of duplex stainless steel2205[J]. Materials Science and Engineering: A,2006,418(1-2):250-256.
    [126] Miodownik A P, Saunders N. Modelling of materials properties in duplex stainless steels [J].Materials Science and Technology,2002,18(8):861-868.
    [127] Engberg G, Hillert M, Oden A I. Estimation of the Rate of Diffusion-controlled Growth by Means ofa Quasi-stationary Model[J]. Scand J Metall,1975(4):93-96.
    [128] Maier P, Richter A, Faulkner R G, et al. Application of nanoindentation technique for structuralcharacterisation of weld materials[J]. Materials Characterization,2002,48:329-339.
    [129] Delincé M, Jacques P J, Pardoen T. Separation of size-dependent strengthening contributions infine-grained Dual Phase steels by nanoindentation[J]. Acta Materialia,2006,54(12):3395-3404.
    [130] Zhu L, Xu B, Wang H, et al. Measurement of residual stress in quenched1045steel by thenanoindentation method[J]. Materials Characterization,2010,61(12):1359-1362.
    [131] Baltazar Hernandez V, Panda S, Okita Y, et al. A study on heat affected zone softening in resistancespot welded dual phase steel by nanoindentation[J]. Journal of Materials Science,2010,45(6):1638-1647.
    [132] Hau ild P, Davydov V, Drahokoupil J, et al. Characterization of strain-induced martensitictransformation in a metastable austenitic stainless steel[J]. Materials&Design,2010,31(4):1821-1827.
    [133] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-I. Theory[J]. Journal ofthe Mechanics and Physics of Solids,1999,47(6):1239-1263.
    [134] Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverseproblems in instrumented sharp indentation[J]. Acta Materialia,2001,49(19):3899-3918.
    [135] Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity[J].Journal of the Mechanics and Physics of Solids,1993,41(12):1825-1857.
    [136] Hun G C, Zaidi M R. Quantifying the surface roughness effect in micro indentation using aproportional specimen resistance model[J]. Journal of materials sciences,2013,48:6293-6306.
    [137] Giannakopoulos A E, Suresh S. Theory of indentation of piezoelectric materials[J]. Acta Materialia,1999,47(7):2153-2164.
    [138] Cheng Y, Cheng C. Can stress–strain relationships be obtained from indentation curves usingconical and pyramidal indenters?[J]. Journal of Materials Research,1999,14(9):3493-3496.
    [139] Cheng Y, Cheng C. Relationships between hardness, elastic modulus, and the work of indentation [J].Applied Physics Letters,1998,37(5):614-616.
    [140] Tunvisut K, O'Dowd N P, Busso E P. Use of scaling functions to determine mechanical properties ofthin coatings from microindentation tests[J]. International Journal of Solids and Structures,2001,38(2):335-351.
    [141] Mayo M J, Nix W D. A Micro-Indentation Study of Superplasticity in Pb, Sn, and Sn-38wt%Pb[J].Acta Metallurgica,1988,36(8):2183-2192.
    [142] R G J, C G J. Principles of particle selection for dispersion-strengthened copper[J]. Materials Scienceand Engeering A,1993(171):115-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700