用户名: 密码: 验证码:
铁锰氧化菌及硫酸盐还原菌在典型水环境中对金属腐蚀的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁细菌和硫酸盐还原菌(SRB)是最常见的导致金属材料腐蚀失效的两种微生物,它们在金属基体表面的附着、生长、新陈代谢及死亡等生命活动导致了金属表面状态、金属/介质界面结构及附近化学成分的改变,由此引起材料的腐蚀。而另一方面,水环境中铁细菌的存在使钝态金属的腐蚀电位出现正移也预示着铁细菌应用到微生物燃料电池的生物阴极成为可能。
     本文对舟山实海暴露的Q235试片进行了为期3年连续的电化学检测,同时对其锈层中铁细菌,SRB及异养菌的含量进行测定,并进行了实验室研究,分析了细菌含量对暴露于海水中Q235试样的腐蚀速度的影响。研究结果表明Q235试样在实海暴露初期,由于金属裸露在海水中,腐蚀速度较快,然而随着暴露时间的延长,Q235钢表面生成的锈层对金属起到了一定保护作用,腐蚀速度减缓。在实海暴露2个月后,Q235钢的腐蚀速度主要受温度和锈层等因素的共同影响,但温度仍为影响腐蚀的主要因素。分析表明,Q235在海水中生成锈层的内锈层的主要由黑色的Fe_3O_4构成,而外锈层主要成分则是红色的Fe_2O_3,这是由于内外锈层发生的腐蚀分别由SRB和铁细菌控制的缘故。
     论文在实验室条件下就铁细菌,SRB对自来水中304不锈钢的腐蚀影响进行了电化学研究。研究结果表明,304SS在除氯的无菌自来水中处于钝态,自来水中铁细菌的接种导致不锈钢表面形成微生物膜,对不锈钢基体起到了保护作用,在一定程度上提高了不锈钢的耐蚀性。在接种了SRB的自来水中浸泡初期,由于SRB在不锈钢表面附着并将溶液中的SO_4~(2-)还原成S~(2-),导致不锈钢腐蚀的加剧。浸泡中期不锈钢表面生物膜及腐蚀产物的加厚在一定程度上阻碍了SRB酸性代谢产物侵蚀金属基体,腐蚀有所减缓。而在浸泡后期,外部侵蚀性物质向生物膜及腐蚀产物覆盖下的金属表面扩散,导致基体腐蚀的加剧。利用电化学噪声技术可以有效地判断微生物膜及腐蚀产物覆盖下金属基体的腐蚀状况。
     论文还对接种了铁锰氧化菌L. discophora SP6的ATCC MSVP1917培养基中,玻璃碳及304不锈钢电极腐蚀电位正移的影响因素进行了分析。研究结果表明,在铁锰氧化菌量一定的条件下,电极材料、电极表面粗糙度、溶液中溶氧量等因素对被研究材料的腐蚀电位正移均有不同程度影响。对电极施加不同程度的极化,以及对电极表面进行聚赖胺(PLL)预涂,也会改变电极腐蚀电位的正移幅度。这对采用L. discophora SP6或者其它微生物作为生物阴极的生物燃料电池的设计,尤其是如何提高电池效率具有启发性意义。
Iron oxidizing bacteria (IOB) and sulfate reducing bacteria (SRB) are well known fortheir attaching, growing and metabolizing on the metal surface and introducingcorrosion to the metal thereby by changing the surface status of metal, altering themetal/medium interface and chemical composition of the medium nearby. On theother hand, iron oxidizing bacteria in water environment will ennoble the corrosionpotential of passivated metal, which could be utilized in bio cathode of microbial fuelcell (MFC).
     In this study, Q235carbon steel samples have been exposed in Zhoushan corrosiontesting base for3years for continuous dynamic electrochemical tests. In the meantime, the bacteria amount within the rust layer of Q235samples were measured atdifferent time point during the exposion. The influence of bacteria amount oncorrosion speed was studied. Result shows that the initial corrosion speed of Q235steel was relatively high, however the corrosion speed decreased with exposing timebecause of the out rust layer coming into being on the metal surface which protectedinner metal from corroding. After exposing for2months, the corrosion speed of thesample was mutually controlled by temperature and rust layer and temperature wasthe crucial factor. XRD shows the inner rust layer is mainly composed of black Fe_3O_4,and outer layer of red Fe_2O_3due to SRB and iron oxidizing bacteria controlling thecorrosion process in inner and outer rust layer respectively.
     In this dissertation, the corrosion electrochemical behavior of304stainless steel wasstudied in sterilized tap water with and without inoculation of iron oxidizing bacteriaand SRB. Results showed that304stainless steel was passivated in dechlorinatedsterilized tap water. The microbial film developed on the substrate after iron bacteriawere inoculated in the tap water and protects substrate from corroding in some extent.In tap water system with SRB inoculation, SRB attached on the surface of304stainless steel and reduced SO_4~(2-)to S~(2-)after inoculation, which led to corrosion. Ascorrosion proceeded, the microbial films formed by SRB and the corrosion productsacted as protective layer for the inner substrate, therefore the corrosion slowed down.Later when corrosive substance spread inside the layer, corrosion was sped up again. Electrochemical noise (EN) analysis could be used to effectively detect corrosionunderneath outside layer.
     In ATCC MSVP1917medium, the factors influenced the ennoblement of glassycarbon and304stainless steel by L. discophora SP6were analyzed. Results showthat factors such as substrate material, initial roughness of substrate, oxygenconcentration and so on place different influence on substrate potential ennoblementwhen L. discophora SP6was inoculated. Varied external polarization to the substrateand prepainting certain biological activated matter like PLL on the substrate will alsochange the ennoblement range, which is instructive for utilizing L. discophora SP6orother bacteria biocathode in microbial fuel cell.
引文
[1] Fiemming H C,Economical,Technical Overview,Microbiologically InfluencedCorrosion of Material,Berlin:Spinger Verlag,1996,65~70
    [2]陈六平,微生物腐蚀造成的损失及其对策,腐蚀与防护,1996,17(1):248~251
    [3]袁斌,刘贵昌,陈野,材料微生物腐蚀的研究概况,材料保护,2005,38(4):38~41
    [4] Schumacher M. Seawater Corrosion Handbook,Park Rideg,New Jersey:Noyes Data Corporation,1979:366~387侯宝荣等,海洋腐蚀与防护,北京,科学出版社,1997:5
    [5]陈金龙,陈思作,葛帆,碳钢的微生物腐蚀,建筑技术开发,2005,32(4):4345
    [6] F. L. LaQue, Corrosion Handbook, H. H. Uhlig (Ed.), Wiley, New York,1948:383
    [7]夏兰延,黄桂桥,张三平,金属材料的海洋腐蚀与防护,北京:冶金工业出版社,2003,147~149
    [8]吴荫顺,方智,曹备等,腐蚀试验方法与防腐蚀检测技术,北京:化学工业出版社,1996,20~21
    [9] G. Skaperdas,H. Uhlig. Ind. Eng. Chem.,1942,34:748
    [10] C. P. Larrabee. Corrosion,1958,14:501
    [11] M. Miyasaka,N. Takahashi,Private Communication
    [12] R. Winston Revie,Uhlig’s Corrosion Handbook,化学工业出版社,2005:403
    [13] Little B,Wagner P,Mansfeld F,An Overview of Microbiologically InfluencedCorrosion,Electrochemical Acta,1992,37(12):185
    [14]林燕顺,叶德赞,梁子原,海洋微型附着生物的研究,海洋通报,1986,5(1):62~64
    [15]黄宗国,海洋生物污损及其防除(上册),北京,海洋出版社,1984
    [16] Little B,Wagner P,Mansfeld F,Microbiologically influenced corrosion ofmetals and alloys,Intern. Mater. Revi.,1991,36(6):253~272
    [17] N. J. E. Dowling,J. Guezennec,Manual of Environmental Mirobiology,American Society for Microbiology Press,Washington DC,1997:842~855
    [18]马士德,李伟华,孙虎元,海洋腐蚀的生物控制,全面腐蚀控制,2006,20(3):5~10
    [19]夏兰廷,王录才,黄桂桥,我国金属材料的海水腐蚀研究现状,中国铸造装备与技术,2002,6,1~4
    [20]曹楚南,中国材料的自然环境腐蚀,北京:化学工业出版社,2005,223~226
    [21]魏宝明,金属腐蚀理论及应用,北京:化学工业出版社,1996,170~171
    [22] Song Shizhe,Yin Lihui,Jin Weixian,et al,In field electrochemical detectingof carbon steel and low alloy steel samples in immersion region,16thinternational corrosion congress,Beijing,China2005,19~24
    [23]万小山,田斌,宋诗哲,水下钢铁构筑物腐蚀监检测电化学传感系统研制,中国腐蚀与防护学报,2001,21(3):182~187
    [24] C. A. H. von Wolzogen Kuhr,I. S. van der Vlugt,Water,1934(18):147
    [25] G. Kobrin,A Practical Manual on Microbiologically Influenced Corrosion,NACE International,Houston,TX,1993
    [26] W. A. Hamilton,Annu. Rev. Microbiol.,1985(39):195
    [27] Little B,Wagner P,Myths Related to Microbiologically Influenced Corrosion,Materials Performance,1997,36(6):40~44
    [28] S. Tayler,E. May,Int. Biodeterior,1991,28:49
    [29] T. Ford,R. Mitchell,Adv. Microb.,Ecol.,1990,11:231
    [30]李虞庚,逢世功,石油微生物学,上海:上海交通大学出版社,1991,272~298
    [31] F. Widdel,Biotechnology Focus,Hanser Publishers,Munich,Germany,1992:261~300
    [32]林建,朱国文,孙成,金属的微生物腐蚀,腐蚀科学与防护技术,2001,13(5):279~284
    [33]王家玲,李顺鹏,黄正,环境微生物学,北京:高等教育出版社,2004:71~83
    [34] H. H. Paradies, Bioextraction and Biodeterioration of Metals, The Biology ofWorld Resources Series1,Cambridge University Press,Cambridge,UK,1995:197~269
    [35] M.T. Madigan,J.M.Martinko,J. Parker,Brock Biology of Microorganisms,8thed.,Prentice Hall,Upper Saddle River,NJ,1997
    [36] G. Gottschalk, Bacterial Metabolism,2nded., Springer Verlag, New York,1986
    [37] Pierre R Roberg,腐蚀工程手册(吴荫顺,李久青),北京:中国石化出版社,2003,116~226
    [38] Dexter S C,Gao G Y,Effect of seawater biofilms on corrosion potential andoxygen reduction of stainless steel,Corrosion,1988,44(10):717~720
    [39] Zhang H J,Dexter S C,Effect of biofilms on crevice corrosion of stainless steelsin the coastal seawate,Corrosion,1995,51(1):56~60
    [40] Little,Wagner,Gerchakov S M,et al, The Involvement of a ThermophilicBacterium in Corrosion Processes,Corrosion,1986,42(9):533~536
    [41] Caldwell D E, Korbor D R,Lawrence J R,Confocal Laser Microscopy andComputer Image Analysis in Microbial Ecology,Aduances in MicrobialEcology,1992,12(3):6~15
    [42] B. J. Little, P. A. Wagner, W. G. Characklis, Biofilms,Wiley, New York,1990:635670
    [43] J. D. Gu,M. Roman,Int. Biodeter. Biodegr,1998,41:25
    [44] J. W. Costerton,Z. Lewandowski,D. E. Caldwell,Annu. Rev. Microbiol.,1995,49:711
    [45] Geesey G,Introduction Part2Biofilm Formation,in Kobirn,MicrobiologicallyInfluenced Corrosion,Houston,NACE International,1993,7
    [46] Flemming H,Mikrobielle Werkstofferrstoyung Biofilm and Biofouling,Werkstoffe and corrosion,1986,42(6):689~695
    [47] W. H. Dickinson,F. Caccavo,Appl. Environ. Microbiol,1997,63:2502
    [48]王家玲,李顺鹏,黄正,环境微生物学,北京:高等教育出版社,2004,71~83
    [49] R.E.布坎南,N.E.古本斯,伯杰细菌鉴定手册,第八版,北京:科学出版社,1974
    [50] W. C. Ghiorse,P. Hirsch,Arch. Microbiol,1979,123:213
    [51] Pope D,Morris E,Mechanisms of Microbiologically Induced Corrosion,Materials Performance,1995,34(5):24~30
    [52] Potekhina J S,Sherisheva N G,Povetkina L P,et al,Role of microorganismsin corrosion inhibition of metals in aquatic habitats,Applied Microbiology andBiotechnology,1999,52(5):639~646
    [53] Mcneil M B,Litter B J,Mackinawite Formation During Microbial Corrosion,Corrosion,1990,46(7):599~601
    [54]康维,冷却水中铁细菌的危害化工腐蚀与防护,1993,(1):41
    [55] Von Volzogen Kuhr,G A H,Van der Vlugt et al. As ElectrobiochemicalProcess in Anacrobe Gronden,Water,1934,18:147162.
    [56]解群,冷却水中微生物腐蚀及含氯杀生剂对凝汽器不锈钢管的影响,华东电力,2002,(9):3033.
    [57] Costello J A. Int Biodctn Built. Water,1969.5(3):101108.
    [58]林清枝,微生物腐蚀机制与控制,大学化学,1999,14(6):2932
    [59] Little,Wagner,Gerchakov S M,et al,The Involvement of a ThermophilicBacterium in Corrosion Processes,Corrosion,1986,42(9):533~536
    [60] Borenstein S W, Microbiologically influenced corrosion handbook,Cambridge,London:Cambridge University Press,1994.
    [61] Hadley R F, Microbialogical Influnced Corrosion, Oil and Gas Tour,1939,38(19):92~96.
    [62] David S,Robert A,Josef Y,et al,Pitting corrosion of carbon steel caused byiron bacteria,International Biodeterioration and Biodegradation,2001,47(3):79~87
    [63] Congmin Xu,Yaoheng Zhang,Guangxu Cheng,Wensheng Zhu Localizedcorrosion behavior of316L stainless steel in the presence of sulfate reducingand iron oxidizing bacteria,Materials Science and Engineering,2007,443(1):235~241
    [64] Rao T S,Sairam T N,Viswanathan B,et al,Carbon steel corrosion by ironoxidising and sulphate reducing bacteria in a freshwater cooling system,Corrosion Science,2000,42(8):1417~1431
    [65] King R A,Miller J D A,Corrosion by the Sulphate reducing Bacteria,Nature,1971,233:491~492
    [66] Costello J A,Cathodic depolarization by sulfate reducing bacteria,S.Afr. J.Sci.,1974,70:202~204
    [67] Mcneil M B,Litter B J,Mackinawite Formation During Microbial Corrosion,Corrosion,1990,46(7):599~601
    [68] Potekhina J S,Sherisheva N G, Povetkina L P et al, Role of microorganismsin corrosion inhibition of metals in aquatic habitats,Applied Microbiology andBiotechnology,1999,52(5):639~646
    [69]马放,任南琪,杨基先,污染控制微生物学实验,哈尔滨:哈尔滨工业大学出版社,2002,91~92
    [70] Xiaoxia Sheng,Yen Peng Ting,Simo Olavi Pehkonen The influence ofsulphate reducing bacteria biofilm on the corrosion of stainless steel AISI316,Corrosion Science,2007,49(5):2159~2176
    [71]王庆飞,模拟生物腐蚀方法研究典型金属材料的海水腐蚀行为:[博士学位论文],天津;天津大学,2000
    [72] Marshall K C, Mincroscopic methods for the study of bacterial behaviour atinert at inert surfaces.J.,Mivrobiol. Meth,1986,4(5):217~223
    [73] Ji W S,Xu H S,Collwell R R,Studies on attachment of marine bacteria to bioticand abiotic surfaces.J.,Ocean University of Qingdao,1991,21(2):61~70
    [74] Beech I B,Cheuig C W S,Interactions of exopolymers produced bysulphate reducing bacteria with metal ions,International biodeterioration andbiodegradation,1995,35(1):59~72
    [75] Beech I B,Cheuig C W S,Interactions of exopolymers produced bysulphate reducing bacteria with metal ions,International biodeterioration andbiodegradation,1995,35(1):59~72
    [76]李相波,王佳,王伟,海洋环境微生物附着的电化学检测技术,中国腐蚀与防护学报,2005,25(2):84~87
    [77]林晶,海水中微生物膜下金属材料初期腐蚀行为:[博士学位论文],哈尔滨;哈尔滨工程大学,2006
    [78]宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1988,100~103
    [79]刘光州,吴建华,双区电解池法研究B10合金的硫酸盐还原菌腐蚀,中国腐蚀与防护学会,全国腐蚀电化学进展与应用学术研讨会论文集,北京:中国腐蚀与防护学会,159~166
    [80]肖琳,杨柳燕,尹大强,环境微生物试验技术,北京:中国环境科学出版社,2004,19~26
    [81] Booth G H., Bacterial Corrosion,Discovery,1964,(6):524
    [82]黄建新,马艳玲,陈志昕等,长庆油田金属管材的腐蚀形细菌分类群研究,石油大学学报(自然科学版),2002,26(2):66~71
    [83] M.T.马迪根,J.M.马丁克,微生物生物学(杨文博),北京:科学出版社,2001:715~718
    [84] Pierre R Roberg,腐蚀工程手册(吴荫顺,李久青),北京:中国石化出版社,2003,116~226
    [85] Mcneil M B,Litter B J. Mackinawite Formation During Microbial Corrosion,Corrosion,1990,46(7):599601
    [86] Butlin K R,Vernon W H J. Jour Inst of Water Eng. Water,1949(3):637641
    [87]周韬,铁质给水管道内壁腐蚀对管网水质影响研究,长沙:湖南大学,2006
    [88]许保玖,安鼎年,给水处理理论与设计,中国建筑工业出版社,北京,1993:29
    [89]昊红伟,配水管网中管垢的形成特点和防治措施,中国给水排水,1998,3(1):1821
    [90]冯文昌,给水系统的腐蚀与控制,中国给水排水,1992,18(1):1315
    [91]严煦世,给水管网理论和计算,北京:中国建筑工业出版社,1986:332
    [92]康维,冷却水中铁细菌的危害,化工腐蚀与防护,1993(1):41
    [93] Beech I B,Cheuig C W S,Interactions of expolymers produced bysulphate reducing bacteria with metal ions,International biodeterioration andbiodegradation,1995,35(1):59~72
    [94] Witter. K,Corbin. D,Fox. B,In situ piping for pilot study of distribution systemcorrosion,2002AWWA Annual Conference, New Orleans,USA,1620June2002. Pp19pp.2002
    [95] Geiser M,Avci R,Lewandowski Z. Microbially initiated pitting on316Lstainless steel,International Biodeterioration&Biodegradafion,2002,49:235243
    [96]吕人豪,工业循环冷却水中微生物腐蚀危害及其控制,国家科委腐蚀科学学科组,1979年腐蚀与防护学术报告会议论文集,北京,1982:275292
    [97]吕人豪,工业循环冷却水中微生物腐蚀危害及控制,1979年腐蚀与防护学术报告论文集(海水、工业水、微生物部分),北京:科学出饭社,1982:358~359
    [98]刘清松,铁细菌对给排水工程系统的腐蚀,给水排水动态,1998,(3):2931
    [99]周淑玉,李树猷,肖亚莉,某油田输配水管网生物性腐蚀原因调查,卫生研究,1993,22(5):277282
    [100]何颖,廖文,冷却水管道结瘤的原因分析,中国卫生检验杂志,2001,11(4):459
    [101] Mcneil M B,Litter B J,Mackinawite Formation During Microbial Corrosion,Corrosion,1990,46(7):599601
    [102]邓小红,碳钢在微生物介质中的腐蚀行为研究,平顶山工学院学报,2003,12(2):2729
    [103]胥聪敏,张耀亨,程光旭等,316L不锈钢在硫酸盐还原菌和铁氧化菌共同作用下的腐蚀行为,材料热处理学报,2006,27(5):6469
    [104]林晶,阎永贵,马丽等,304不锈钢在硫酸盐还原菌环境中的腐蚀电化学特性研究,金属腐蚀控制,2006,20(2):911
    [105] Song Shizhe, Yin Lihui, Jin Weixian, et al, In field electrochemicaldetecting of carbon steel and low alloy steel samples in immersion region,16thinternational corrosion congress, Beijing, China2005,19~24
    [106]雒娅楠,海洋环境中金属材料现场电化学检测及冲刷腐蚀研究:[博士学位论文],天津:天津大学,2006
    [107] Mansfeld F,Xiao H.,Electrochemical Noise Measurements for CorrosionApplications,ASTM STP,1996,127(7):59
    [108] Mansfeld F,Sun Z,Hsu C H et al.,Concerning trend removal inelectrochemical noise measurements,Corrosion Science,2001,43(2):341~352
    [109] Yuzhuo LU, Shizhe SONG, Lihui YIN,Corrosion electrochemical behaviorof brass tubes in circulating cooling seawater,Trans. Nonferrous Met. Soc.China,2005,15(3):619~621
    [110] Yuzhuo LU, Shizhe SONG, Lihui YIN,Corrosion Electrochemical Studyof Brass Tubes in Circulating Cooling Seawater,16th international corrosioncongress, Beijing, China2005,19~24
    [111] Mansfield F,Kenkel J V,Electrochemical monitoring of atmosphericcorrosion phenomen, Corrosion Science,1976,16:111~124
    [112] Mansfeld F,Xiao H,Electrochemical Noise Measurements for CorrosionApplications,ASTM STP,1996,1277:59
    [113] Motoda, S.,Suzuki, Y.,Shinohara T., The effect of marine fouling on theennoblement of electrode potential for stainless steels,Corros. Sci.,1990,31:515
    [114] Shi, X., Avci, R., Lewandowski. Z,Electrochemistry of Passive MetalsModified by Manganese Oxides Deposited by Leptothrix discophora:Two stepModel Verified by TOF SIMS,Corros. Sci.,2002,44(5):1027
    [115] Dexter. S. C.,Gao G. Y.,Effect of Seawater Biofilms on Corrosion Potentialand Oxygen Reduction of Stainless Steel,Corrosion1988,44(10):717
    [116] Chandrasekaran P. S., Dexter C.,Proceedings of Corrosion1993, Houston,TX,NACE,1993:Paper No.493
    [117] Scotto V., DiCintio R.,Marcenaro G.,The Influence of Marine AerobicMicrobial Film on Stainless Steel Corrosion Behaviour.,Corros. Sci.,1985,25(3):185
    [118] Dexter S. C., Zhang H. J.,Effect of biofilmsoncorrosion potential of stainlesssteel alloys in estuarine waters,In Proceedings of the11th InternationalCorrosion Congress,Florence,Italy,1990:333
    [119] Shi X.,Avci R.,Lewandowski Z.,Biomineralized Manganese and Iron Oxideson Passive Metals:Their Chemistry and Consequences for MaterialPerformance,Corrosion2002,58(9):728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700