用户名: 密码: 验证码:
铜铟铝硒(CIAS)与CdS、ZnS薄膜光伏材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前环境保护、节能减排已经成为世界各国的基本国策。本论文选题为研究铜铟硒类太阳能电池吸收层和缓冲层材料等新型光伏材料对发展新材料、新能源,贯彻可持续发展战略有重要意义。论文工作中用物理气相沉积和化学水浴法分别制备了太阳能电池吸收层CIAS薄膜,缓冲层CdS和ZnS薄膜,运用微观分析和表面分析手段(XRD、TEM、 SEM、EDS及XPS等)对薄膜的形貌、结构、成分以及光电性能进行检测分析。
     采用真空蒸发多层膜(VEMF)法将Cu、In、Al三种金属分别蒸镀到玻璃基底上形成CIA预制层。中频孪生非平衡磁控溅射(FTUMS)技术用Cu靶和自行研制的In-Al复合靶制备CIA预制层。再采用固态源硒化法形成CIAS薄膜。研究了不同硒化工艺对CIAS薄膜的表面形貌、结构、成分和光电性能的影响,以及Al相对含量对CIAS薄膜性能的影响。结果表明:常温下制备的CIA预制层薄膜,结构为非晶态;硒化后形成CIAS化合物薄膜,主相为黄铜矿结构,也存在非晶或微晶结构,说明用A1代替In是可行的。检测了其电阻率在半导体材料范围内,Al含量可调节CIAS薄膜的禁带宽度(1.60-1.95eV)。从成膜一般规律与制备过程探讨了VEMF与IFTUMS两种方法制备薄膜的成膜过程与机理。
     采用化学水浴法(CBD)制备了CdS和ZnS薄膜。研究不同工艺条件对薄膜性能的影响,运用场发射TEM和XPS等检测手段研究了退火前后厚度为100nm的CdS和ZnS薄膜的性能。结果表明:CdS和ZnS薄膜均为非晶或微晶且出现立方相晶粒;当波长大于550nm时,其光透射率超过70%,带隙接近理论值。TEM暗场像分别观察到CdS薄膜AA和ZnS薄膜BB晶面取向的晶粒(尺寸20-100nm)。退火前CdS和ZnS薄膜的原子比约为1:1,退火后的CdS和ZnS薄膜都有S元素缺失。获得制备CdS和ZnS薄膜的最佳工艺参数。进而从CBD法的成膜原理讨论了CdS和ZnS薄膜的成膜过程。
Environmental protection, Energy-saving, and Reduce emissions of pollutants has become the world's basic policy. The topic of the paper to study on new photovoltaic materials Copper indium selenium(CIS) and like Solar cells'photovoltaic materials of absorber and buffer layers has the important significance in the development of new materials, new energy, and implement the strategy of sustainable development. Solar cell absorption layer (CIAS film) and buffer layer (CdS and ZnS films) were prepared by physical vapor deposition (PVD) and chemical bath deposition (CBD) in this work, respectively. Morphology, structure, composition, and photoelectric performances of the films were detected and analyzed by microscopic and surface analysis(XRD、TEM、SEM、EDS and XPS etc.).
     Using a vacuum evaporated multilayer film (VEMF) method, three metals(Cu, In, Al) were deposited onto the glass substrate to form the CIA precursor. By IF twin unbalanced magnetron sputtering (FTUMS) technology, with Cu and self-developed In-Al composite target CIA precursor was prepared. CIAS film was formed by the solid source selenide method. It was studied that different selenide process to affect the surface morphology, structure, composition, and photoelectric properties. Also, the relative content of Al impacted CIAS films'performances. As the results, that CIA films prepared at room temperature were amorphous. CIAS compound film's main phase was a chalcopyrite structure. The films also involved the amorphous or microcrystalline structure. So using Al instead of In is feasible. Its resistivity was within semiconductor material limits. Al content could be adjusted to change the band gap Eg for the CIAS films (1.60-1.95eV). It was investigated the preparation process and mechanism according to the general principle of fabrication films for VEMF and IFTUMS techniques.
     CdS and ZnS films prepared by CBD. It was studied that different process conditions to impact of a variety of performance of thin films for CdS and ZnS films of100nm thickness before and after annealed by the field emission TEM and XPS. As the results, that CdS and ZnS films are amorphous or microcrystalline, and the cubic phase grain. As the wavelength was greater than550nm, the transmittance was more than70%. Band gap was close to the theoretical value. TEM dark field image of grains (100-200nm) of CdS and ZnS films with he operation of AA and BB lattice face orientation were observed, respectively. Before nnealed, the content ratios were Cd:S=I:1, and Zn:S=1:1. After annealed, S amount was (?)st more. Then, the optimum process Parameters of preparation of CBD were obtained. ilm-forming process was discussed by film-forming principle of CBD.
引文
[1]Hans, Joachim moller.Semiconductors for Solar Cells. Artech House Press.1993:27-31
    [2]2011年全球太阳能光伏产业发展报告.http://www.elexcon.com/news/128538.html
    [3]2011年世界新能源发电发展简述.http://www.chinaero.com.cn/zxdt/djxx/ycwz/2012/04/119354.shtml
    [4]太阳能光伏产业“十二五”发展规划,2012年2月24日由工信部发布
    [5]宁鲁光.薄膜电池的发展前景要优于晶硅电池,2012
    [6]新日光能源Neomono电池单晶硅片转换效率达到18.5%.http://www.solarzoom.com/article-8925-1.html
    [7]Narasimha S, Rohatgi A. IEEE Transaction on Electron Deviccs.1998,45-1776
    [8]梁宗存,沈辉,李戬洪.太阳能电池及材料研究.材料导报.2008,14(8):38-40
    [9]许伟民,何湘鄂,赵红兵等.太阳能电池的原理及种类.发电设备.2011,25(2):137-140
    [10]M. K.Nazeeruddin, A. Kay etal. [J]. Am.Chem. Soc.1993,115,6382
    [11]Aswani Yella. Hsuan-Wei Lee, Hoi Nok Tsao etal. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science 4 November 2011:Vol.334 no. 6056 pp.629-634
    [12]胡智学,钱鸣毅.染料敏化纳米薄膜太阳电池的研究进展.化学工程师.2007.(12):29-30
    [13]林红,李建保.日本染料敏化太阳能电池最新研究动向[J].世界科技研究与发展.2004,(5):5-9
    [14]邹永刚,李林,刘国军等. GaAs太阳能电池的研究进展.长春理工大学学报. Vol.33 No.1Mar.2010
    [15]S. Wanger, J. L. Shay, P. Migliorato etal. CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters.1974,25:434-435
    [16]R. R. Potter, C. Eberspacher, L. B. Fabick. Device analysis of CuInSe2/(Cd, Zn)S/ZnO solar cells [C] 18th IEEE Photovoltaic Specialists Conference, Las Vegas:IEEE Piscataway.1985:1659-1664
    [17]Repins, Contreras MA, Egaas B etal.19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics:Research and Applications.2008,16:235-239
    [18]CIGS薄膜太阳能电池新转换效率达20.3%.http://info.ec.hc360.com/2010/08/260933321467.shtml
    [19]胡志伟,吉宗威.太阳能电池制备工艺理论研究.中国新技术新产品.2011(17):138-139
    [20]李长健,乔在祥,张力.Cu(In,Ga)Se2薄膜太阳电池研究进展(Ⅰ).电源技术.2008:77-80
    [21]ContrerasM A, NakadaT, HongoM, et al. ZnO/ZnS (O,OH)/Cu (In,Ga) Se2/Mo solar cellwith18.6% efficiency. Proceeding 3rd World Conference of Photovoltaic Energy Conversion [C]. Osaka, Japan, 2003:216
    [22]李长健,乔在祥,张力.Cu(In,Ga)Se2薄膜太阳电池研究进展(Ⅱ).电源技术.2008:159-164
    [23]郑桂波,李凤岩等CIS (CIGS)太阳电池的背接触Mo衬底的研究[J].第八届光伏会议论文集.2001:173-176
    [24]Roekett A. The effect of Na in Polycrystalline and epitaxial single crystal CuIn1-xGaxSe2 [J]. Thin Solid Films,2005,480-481:2
    [25]叶飞,禹争光CIGS薄膜太阳电池研究进展.东方电气评论.2011,98(25):61-67
    [26]施敏主编.现代半导体器件物理.科学出版社,2001年第一版370
    [27]徐传明,许小亮,闵海军,等.周期顺序蒸发工艺生长的Cu(In,Ga)Se2薄膜结构.、半导体学报.2003,24(10):1057-1062
    [28]Jiyon Song, Sheng S Li, C H Huang, et al. Device modeling and simulation of the performance of Cu(In1-x, Gax)Se2 solar cells[J]. Solid-State Electronics,2004,48:73-79
    [29]ZHENG Guang-fu, YANG Hong-xing. A Novel Semiconductor CIGS Photovoltaic Materialand Thin-Film EDTechnology[J]半导体学报.2001,22:1357-1363
    [30]J.hedstrom, H.ohlsen, M.bodegard, A.Kylner and L. stolt:proc.23rd IEEE photovoltaic Specialists Conf, (1993)364
    [31]Granata J E, Sites J R, Asher S, Matson R J. Quantitative Incorporation of Sodium in CulnSe2 and Cu(In,Ga)Se2 Photovoltaic Devices.1997:JEEE INC
    [32]D.Braunger, D Hariskos, G Bilger, U Rau, H W Schock. Influence of sodium on the growth of polycrystalline Cu(Inl-x,Gax)Se2 thin films[J]. Thin Solid Films.2000,361:161-166
    [33]S.Marsillac, P.D.Paulson, M.W.Haimbodi, et al. High-efficiency solar cells based on CuInAlSe2 thin films. Applied Physics Letters.2002,81 (7):1350-1352
    [34]敖建平,何青,孙国忠等.化学水浴沉积CdS薄膜晶相结构及性质.半导体学报.2005,26(7):1347-1352
    [35]韩俊峰,廖成,江涛等.CdS薄膜的制备及其在CdTe电池中的应用.真空.2011,48(1):9-12
    [36]Xue Yuming. Sun Yun, He Qing etal. Structural Characteristic of CdS Thin Films and Their Influences on Cu (In, Ga) Se2 (CIGS) Thin Film Solar Cells半导体学报.2005,26(2):225-228
    [37]赵静,王智平,王克振等CIGS薄膜太阳能电池缓冲层的研究及其发展.资源环境.2010,39(3):70-72
    [38]Gao X D, LiXM, YuW D. Morphology and optical properties of amorphous ZnS films deposited by ultrasonic-assisted successive ionic layer adsorp tion and reaction method. Thin Solid Films.2004,468: 43-47
    [39]黄书万.光电材料.上海:上海科学技术出版社,1987:75-78
    [40]Roy P, Ota J R, Srivastava S K. Crystalline ZnS thin films by chemical bath deposition method and its characterization. Thin Solid Films.2006,515(4):1912,
    [41]Nawalage F C, Katsumi K, Atsushi F, et al. Large area ZnO films optimized for graded band-gap Cu(In,Ga)Se2-based thin-film mini-modules. Solar Energy Materials & Solar Cells.1997,49:291-297
    [42]Contrera M A, Nakada T, Hongo M, etal. ZnO/ZnS(O,OH)/Cu (In,Ga) Se2/Mo solar cell with 18.6% efficiency. Proceeding 3rd World Conference of Photovoltaic Energy Conversion, Osaka, Japan,2003: 570-573
    [43]Bhattacharya R N, Contreras M A, Teeter G.18.5% copper indium gallium diselenide (CIGS) device using single-layer, chemical-bath-deposited ZnS(O,OH). Japan Journal of Applied Physics.2004,43: L1475-L1476
    [44]Kushiya K, Ohshita M, Hara I, etal. Yield issues on the fabrication of 30cm×30cm sized Cu(In,Ga)Se2-based thin-film modules, Solar Energy Materials & Solar Cells.2003,75:171-178
    [45]崔占奎,邹正光,龙飞.ZnS薄膜的水浴法制备及其光学性.材料导报.2008,22(2):132-134
    [46]Saez-Araoz R, Ennaoui A, Kropp T. Use of different Zn precursors for the deposition of Zn(S,O) buffer layers by chemical bath for chalcopyrite based Cd-free thin-film solar cells. Physica status solidi (a). Volume 205, issue 10 (October 2008), p:2330-2334
    [47]ContrerasM A, NakadaT, HongoM, etal. ZnO/ZnS (O,OH)/Cu (In,Ga) Se2/Mo solar cellwith18.6% efficiency. Proceeding 3rd World Conference of Photovoltaic Energy Conversion [C]. Osaka, Japan, 2003:216
    [48]朱协彬,段学臣.铟的应用现状及发展前景.稀有金属与硬质合金.2008,36(1):51-55
    [49]涂洁磊,刘祖明,廖华等.三源真空蒸发CulnSe2薄膜的性能.半导体光电.1998,19(2):123-132
    [50]田民波,刘德令.薄膜科学与技术手册(上、下).北京:机械工业出版社,1991:576-598
    [51]王家骅,李长键,牛文成.半导体器件与物理[M].北京科学出版社,1983:2673-2679
    [52]Bhattacharya Raghu N, Fernandez Arturo M. Cu (In1-xGax) Se2 based photovoltaic cells from electrodeposited precursor films [J]. Sol.En.Mat & Sol.Cells.2003,76:331
    [53]Shioda R, Okada Y, Oyanagi H. Characterization of molecular beamepitaxy grown CuInSe2 on GaAs (001) J. Journal of Crystal Growth.1995,150:1196
    [54]李建军,邹正光,龙飞.CIS(CIGS)太阳能电池研究进展[J].能源技术.2005,26(4):164-168
    [55]Kapur V K, Basol B M, Le P. Non-vacuum processing of Cu(In1-xGax)Se2 solar cells on rigid and flexible substrates using nano-particle precursor inks[J]. Thin Solid Films.2003,431:53
    [56]Matsushita H, Taakizawa T. Studies on monocrystalline CuInSe2 and CuIn3Se5 J. Journal of Crystal Growth.1997:179-503
    [57]薛钰芝,Martin Green. Al/Al2O3多层膜的表面和界面的分析研究[J].真空科学与技术学报.2002,22(1)
    [58]张力,薛钰芝.非晶硅太阳电池的研究与发展[J].太阳能.2004年,第2期
    [59]Ting L Chu, Shirkey S Chu. Recent progress in thin film cadmium telluride solar cells[J]. Progress in photovoltaic Research and applications.1993:31-42
    [60]赵静,王智平,王克振等.CIGS薄膜太阳能电池缓冲层的研究及其发展.资源环境.2010,3(29):70-72
    [61]憨勇,郑修磷,刘止堂.ZnS的不同制备方法及性能的对比[J].材料导报.1995,9(4):35-38
    [62]Vidal J, Vigil O, Melo O, et al. Influence of NH3 concentration and annealing in the properties of chemical bath deposited ZnS films. Materials Chemistry and Physics.1999,61:139-142
    [63]熊锡成,谢泉,闫万珺.β-FeSi2薄膜的厚度与光子波长的关系研究光学学报.2011年05期
    [64]A.Antony, K.V.Murali, R.Manoj, M.K.Jayara. The effect of the pH value on the growth and properties of chemical bath deposited ZnS thin films. Materials Chemistry and Physics.2005,90:106-111
    [65]方容川.固体光谱学[M].中国科学技术大学出版社,2001:23-96
    [66]向华,庄大明等.前驱膜Al含量对铜铟铝硒薄膜成分和结构的影响,太阳能学报.2009年01期
    [67]李建军,邹正光,龙飞.CIS(CIGS)太阳能电池研究进展,能源技术.2005,8:164-167
    [68]周学东,赵修建,夏冬林,等.电沉积制备CuInSe2薄膜及性能研究.武汉理工大学学报,2005年07期
    [69]王波,刘平,李伟等.铜铟镓硒薄膜太阳能电池的研究进展[J].材料导报.2010年10月
    [70]方玲,张弓等.Cu-In膜成分偏析对CIS膜结构的影响.清华大学学报.2004年05期
    [71]黄灿领,胡彬彬,王广君等.宽带隙Cu(In,Al)Se2薄膜的制备及表征.高等学校化学学报.2011年12期
    [72]周学东,赵修建,夏冬林等.电沉积制备CuInSe2薄膜及性能研究.武汉理工大学学报.2005年07期
    [73]Zheng Guangfu, Yang Hongxing. A novel semiconductor CIGS photovoltaic materialand thin-film ED technology [J]. Chinese J Semiconductors.2001,22:1357
    [74]唐伟忠,薄膜材料制备原理、技术及应用,冶金工业出版社,2008
    [75]薛增泉,吴全德等.薄膜物理
    [76]陈世朴,王永瑞.金属电子显微分析,机械工业出版社
    [77]李文漪,蔡殉,周之斌等.蒸镀Cu-In合金硒化制CuInSe2薄膜.上海交通大学学报,2002,36(5):617-618
    [78]Y.Bharath Kumar Reddy, V.Sundara Raja. Preparation and characterization of Cu(Ino.3Al0.7)Se2 thin films for tandem solar cells, Solar Energy Materials & Solar Cells,90 (2006), p 1656
    [79]陆家和,陈长彦等.表面分析技术,电子工业出版社,1987 p195-198
    [80]憨勇,郑修磷,刘正堂.ZnS的不同制备方法及性能的对比[J].材料导报.1995,9(4):35-38
    [81]X.Wu, J, C.Keane, R.G.Dhere, C.DeHart, D.S.Albin, A.Duda, T.A.Gessert, S.Asher, D.H.LeV and P.Sheldon.16.5%-Efficient CdS/CdTe Polycrystalline Thin-films solar cell [J],17th European PHotovoltaic Solar Energy Conference. October 2001,22-26
    [82]王万录,季秉厚.多晶薄膜与薄膜太阳电池[J].太阳能学报.1999,特刊:102-114
    [83]Lee J, Lee S, Cho S et al. Role of growth parameters on structural and optical properties of ZnS nanocluster thin films grown by solution growth technique[J]. Mater Chem Phys.2002,77:254
    [84]Setty M.S, Sinha A. P.B.:Thin Solid Films.1447(1986)
    [85]应根裕编著.光电导物理及其应用[M].北京电子工业出版社,1990:1-154
    [86]A.Antony, K.V.Murali, R.Manoj, M.K.Jayara. The effect of the pH value on the growth and properties of chemical bath deposited ZnS thin films. Materials Chemistry and Physics.2005,90:106-111
    [87]李卫,蔡亚平,张景全等.太阳电池CdS多晶薄膜的微结构及性能.半导体学报.20051(26):46-50
    [88]叶良修.半导体物理学下[M].北京高等教育出版社,1983:497-873
    [89]张辉,马向阳,杨德仁.太阳能光电材料CuInSe2的研究进展[J].材料导报.2001,15(5):11-13
    [90]Sahay P P, Nath R K, Tewari S. Optical propert ies of hermally evaporated CdS thin films [J] ryst Res Technol.2007,42(3):275-280
    [91]Kapur V K, Basol B M, Le P. Non-vacuum processing of Cu(In1-xGax)Se2 solar cells on rigid and flexible substrates using nano-particle precursor inks[J]. Thin Solid Films.2003,431:53
    [92]Deroubaix G, Marcus P. Surf. Interface Anal.18,39(1992)
    [93]Peisert H, Chasse T, Streubel P, Meisel A, Szargan R.J. Electron Spectrosc Relat Phenom.68, 321 (1994)
    [94]Wagner C.D, Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E.. Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. 55344(1979)
    [95]Gaarenstroom S.W., Winograd N. J. Chem. Phys.67,3500 (1977)
    [96]Strohmeier B.R., Hercules D.M. J. Catal.86,266(1984)
    [97]Deroubaix G., Marcus P. Surf. Interface Anal.18,39 (1992)
    [98]憨勇,郑修磷,刘正堂.ZnS的不同制备方法及性能的对比[J].材料导报,1995,9(4):35-38
    [99]段宇波,张弓,庄大明.水浴温度对化学浴沉积CdS薄膜性能的影响[J].中国表面工程,2010,23(5):21-26
    [100]吴桂芳,宋学平,刘勇,等[J].安徽大学学报(自然科学版),2004,28(3):27232
    [101]王应民,张萌,徐鹏,等.化学浴沉积法制备薄膜[J].南昌大学学报(理科版)2006,280-281
    [102]江锡顺,曹春斌,蔡琪,等.衬底温度对ZnS薄膜微结构和应力的影响[J].功能材料,2006,7(37):121-1123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700