用户名: 密码: 验证码:
油品金属银吸附和过氧化氢氧化脱硫过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含硫燃油燃烧生成的尾气已经成为主要的大气污染源之一,脱除油品中的噻吩硫是环境保护的重点和难点。和其他脱硫方法相比,选择性吸附脱硫对含芳烃燃油品质的影响较小。考虑到纤维材料的外表面开放度很高、能促进流体传质,本文采用水相还原-脱水法把单质银负载于脱脂棉纤维表面,从而制备出了新型吸附脱硫剂。这种吸附剂具有银负载量极低、制备简便、能耗低、无毒物释放等优点。
     通过分析吸附试验、热重分析(TG)/差热分析(DTA)、环境扫描电子显微镜(ESEM-EDX)的有关数据,首次确定了含银吸附剂的活性组分是金属银而不是银离子。提出了关于络合吸附的表面极性协调机理:硝酸银和噻吩-正辛烷(模拟油)的极性相差很大,分子相互排斥;而单质银和噻吩-正辛烷的极性接近,分子相互吸引。
     在吸附试验中,预先不用溶剂排气,避免了无硫溶剂对硫含量检测的干扰。直接把500ppm的模拟油压入吸附柱,在恒温环境中进行固液吸附脱硫,考察了温度和停留时间对吸附容量的影响。通过场发射扫描电镜(FESEM)解释了在一定范围内的银棉脱硫率随负载量的降低而升高的现象。从吸附速率随温度升高而增加可以看出这种络合吸附的本质是化学反应。50℃时,脱硫率较大,2小时内的脱硫率达到27.6%。温度高于60℃时,脱硫率下降。绘制了30℃时的银棉的吸附等温线,从等温线可以看出络合吸附受噻吩浓度和吸附位点浓度的双重限制,也可以看出银棉吸附剂适于处理硫含量高于500ppm的模拟油。
     单位质量银棉吸附剂的床层压降为0.62KPa/g,而氧化铝和硅胶床层相应的压降值达到2.35和3.73KPa/g,分别是银棉吸附剂的3.8和6.0倍。56cm装填高度的氧化铝、硅胶的床层压降高达58.2KPa和63.8KPa,而相同装填高度银棉吸附剂的床层压降却仅有5.3KPa,氧化铝、硅胶单位床层高度的压降分别是银棉吸附剂的11和12倍。纤维吸附剂本身的开放式立体结构和低装填密度对床层压降的降低都有一定程度的贡献。
     在100℃下加热0.5h,用蒸发脱油法对银棉吸附剂进行了简单再生;提出了用浓缩-电解法回收银元素的工艺路线。
     对过氧化氢氧化脱硫进行了研究。脉冲式超声场对油水两相强烈的乳化作用会导致萃取效果的下降,不利于氧化-萃取脱硫。
     在60℃下,磷钨酸催化-司班80反胶团催化-DMF萃取氧化脱硫体系的平均脱硫率能达到84.6%。并提出了DMF、固体酸的再生方案。
Exhaust gas generated from the combustion of sulfur-containing fuel oils hasbeen one of the main polluting sources of ambient air and the removal of thiophenicsulfur has been of great importance and difficulties. Selective adsorption hasdemonstrated minimal influence on the quality of aromatics containing fuelscomparing with other desulfurization pathways. Considering the exposed exterior offibers for mass transfer, metallic silver was supported on adsorbent cotton fibers and anovel adsorbent was prepared by aqueous reduction-dehydration method with virtuessuch as extra low silver loading (0.2wt%), facile preparation, low energy consumptionand no toxics emission.
     On the basis of adsorption tests, thermo gravimetric analysis (TG)/differentialthermal analysis (DTA) and energy-dispersive X-ray spectroscopy (ESEM-EDX), it isfirstly confirmed that the active component of adsorption is Ag~0instead of Ag~+. It isattributed to the distinct polarities of thiophene-octane (model oil) and AgNO_3thatthese molecules repulse with each other, while thiophene-octane and Ag~0contactmutually on account of similar polarity. Superficial polarity congruity mechanismabout coordinative adsorption was proposed firstly.
     During adsorption tests, model oil (500ppmw sulfur) was pressed into anadsorption column without solvent for degassing to avoid the interference ofsulfur-free solvent. Temperature and retention time dependences of capacity wereinvestigated below60℃and at flow rates of0.2and0.3ml/min. The phenomenonthat sulfur removals increased as the declination of silver loadings has been elucidatedby Field Emission Scanning Electron Microscopy (FESEM). The adsorption issubstantially coordinative reaction in view of the adsorption rate elevating as theimprovement of temperature. Higher capacities were determined at50℃in2h withan average sulfur removal of27.6%and the sulfur removal declined at above60℃.Adsorption isotherm was drawn on the basis of static adsorption tests at30℃. As canbe seen from the isotherm curve, the coordinative adsorption was constrained byeither the concentration of thiophene or the density of adsorption sites, andsilver/cotton is adaptive to deal with model oil with sulfur contents above500ppm.
     The bed pressure drop of per gram of silver/cotton is0.62KPa/g, while thepressure drops of alumina and silica are2.35and3.73KPa/g respectively, which are3.8and6.0times the amount of that of silver/cotton. Bed pressure drops of aluminaand silica with a loading height of56cm are58.2KPa and63.8KPa respectively,while that of silver/cotton is only5.3KPa. The pressure drops of alumina and silicawith a unit of loading height are11and12times the amount of that of silver/cotton.The open dimensional structure of fiber adsorbents with characteristics and lowloading density both contribute to the low pressure drop to some extent.
     The simple regeneration of silver/cotton was conducted via removing oil usingevaporation at100℃for0.5h. A recovery route of silver by concentration-electrolysiswas proposed.
     Oxidative desulfurization using peroxide has been investigated. Intenseemulsification effect on oil-water system resulting from pulsed ultrasound results inthe decrease of extractive efficiency, which is a disadvantage to oxidation-extractiondesulfurization.
     The oxidative desulfurization system comprising tungstophosphoric acid, reversemicelles catalyst and DMF extraction can reach an average sulfur removal of84.6%at60℃. A regeneration scheme of DMF and solid acid has been proposed.
引文
[1] Babich I V, Moulijn J A, Science and Technology of Novel Processes for DeepDesulfurization of Oil Refinery Streams: A Review☆, Fuel,2003,82(6):607-631
    [2]丁国安,徐晓斌,王淑凤等,中国气象局酸雨网基本资料数据集及初步分析,应用气象学报,2004,:85-94
    [3]赵青儒,国外酸雨对森林的危害及对策,世界林业研究,1988,(3):50-51
    [4]沈高峰,酸雨对2种草坪草生长及生理代谢的影响,中国农学通报,2011,(16):116-121
    [5]侯青,赵艳霞,2007年中国区域性酸雨的若干特征,气候变化研究进展,2009,(1):7-11
    [6]陈宇炼,酸雨对人体健康的潜在危害,环境与健康杂志,1990,(2):96-97
    [7]胡敏哲,酸雨对人体健康的危害及气象学预防措施,中国科技信息,2011,(20):41
    [8]刘源月,江洪,李雅红等,模拟酸雨对亚热带阔叶树苗土壤呼吸的影响,土壤学报,2011,(3):563-569
    [9]杨彬,李泽然,任凌霄等,酸雨和铅对大豆种子萌发的复合影响,农业环境科学学报,2011,(12):2608
    [10] Study On the Toxicity of Acid Rain to Microbiota in Soils, Journal ofEnvironmental Sciences,1991,(2):17-26
    [11]马满英,汪良珠,酸雨对钢质储酸罐腐蚀的分析,湖南有色金属,2004,(6):35-37
    [12]陈梦成,王凯,谢力,酸雨侵蚀下水泥基材料的腐蚀损伤与评价——酸雨介质成分的影响,建筑科学,2012,(3):20-24
    [13]刘君峰,宋之光,许涛,广州地区雨水化学组成与雨水酸度主控因子研究,环境科学,2006,(10):1998-2002
    [14]文涛,袁河清,李萍,长沙市酸雨的特点及防治措施研究,华南师范大学学报(自然科学版),2008,(3):89-94
    [15]梅雪英,杨扬,史利江等,上海地区酸雨强度的格局转变规律,环境科学与技术,2010,:129-132
    [16] Cychosz K A, Wong-Foy A G, Matzger A J, Enabling Cleaner Fuels:Desulfurization by Adsorption to Microporous Coordination Polymers, J AmChem Soc,2009,131(40):14538-14543
    [17]饶竹,梁汉东,李艳芳,中高含硫量煤中硫的形态分析,岩矿测试,2001,(3):183-186
    [18]吴文忠,朱莉,煤中硫的研究现状,山西煤炭,2010,(7):73-76
    [19]朱雪莉,煤中硫的赋存规律,科技情报开发与经济,2010,(17):183-184
    [20]王龙延,杨伯伦,刘现锋等,流化催化裂化反应器的技术进展,现代化工,2003,(2):11-14
    [21]山红红,李春义,钮根林等,流化催化裂化技术研究进展,石油大学学报(自然科学版),2005,(6):135-150
    [22]唐津莲,许友好,刘宪龙等,流化催化裂化汽油含硫化合物生成规律的考察,石油化工,2009,(1):30-34
    [23] Mota C J A, Rawet R, Mechanism of Aromatic Hydrocarbon Formation in FCCNaphtha, Industrial&engineering chemistry research,1995,34(12):4326-4332
    [24] Filley R M, Eser S, Analysis of Hydrocarbons and Sulfur Compounds in TwoFCC Decant Oils and their Carbonization Products, Energy&fuels,1997,11(3):623-630
    [25] Hooper J B, Petroleum and Coal. Introduction., Anal Chem,1995,67(12):315
    [26] Rodgers R P, Mckenna A M, Petroleum Analysis., Anal Chem,2011
    [27] Babich I V, Moulijn J A, Science and Technology of Novel Processes for DeepDesulfurization of Oil Refinery Streams: A Review☆, Fuel,2003,82(6):607-631
    [28] Nair S, Tatarchuk B J, Supported Silver Adsorbents for Selective Removal ofSulfur Species From Hydrocarbon Fuels, Fuel,2010,89(11):3218-25
    [29]马瑞,北京:机动车排放国Ⅲ准开始执行,环境保护,2006,(1):55
    [30]2008年北京市车用燃油执行新燃油标准抽查结果公告,中国石油和化工标准与质量,2008,(7):34
    [31]崔梅生,郭耘,汽车尾气催化技术发展现状,化工进展,2000,19(006):9-12
    [32]熊晓东,王胜国,梁敬博等,铑在均相催化工业中的应用,稀有金属,2005,29(4):403-407
    [33]章青,贺小昆,黄荣光等,汽车尾气净化Pd催化剂的研究现状,进展及展望,贵金属,2006,27(1):69-74
    [34]秦正龙,杨汉培,复合氧化物催化剂在汽车尾气净化中硫中毒及抗硫中毒机理——TPD研究,化学反应工程与工艺,1997,(1):78-81
    [35]钟敏宜,林峰桦,王锐明等,柴油车尾气净化催化剂硫中毒的研究,材料研究与应用,2008,(4):380-382
    [36]余林,宋一兵,郝志峰等,稀土基汽车尾气催化剂的研究Ⅰ:催化剂老化和SO2添加对催化活性的影响,精细化工,2002,(11):640-643
    [37]陈军锋,帅石金,肖建华,含Mmt汽油对三效催化剂老化性能影响的试验研究,汽车工程,2012,(2):129-132
    [38] Cole R M, Davidson D D, Hydrodesulfurization of Gasoline Fractions withTungsten–Nickel Sulfide Catalyst, Industrial&Engineering Chemistry,1949,41(12):2711-2715
    [39]陈赓良,板式塔和填料塔中硫化氢和二氧化碳在胺醇水溶液中吸收过程的模型化,石油与天然气化工,1983,12(002):41-45
    [40]高建保,王锐,醇胺法炼厂气脱硫装置的离线调优,石油炼制,1992,(010):43-48
    [41] Schacht P, Rami rez S, Ancheyta J, Como/Ti-Mcm-41/Alumina Catalysts:Properties and Activity in the Hydrodesulfurization (HDS) of Dibenzothiophene(DBT), Energy&Fuel,2009,23(10):4860-4865
    [42] Sa nchez-Minero F, Rami rez J, Cuevas-Garcia Ret al., Kinetic Study of the Hdsof4,6-DMDBT Over NiMO/Al2O3SiO2(X) Catalysts, Ind Eng Chem Res,2009,48(3):1178-1185
    [43] Isoda T, Takase Y, Kusakabe Ket al., Changes in Desulfurization Reactivity of4,6-Dimethyldibenzothiophene by Skeletal Isomerization Using a Ni-SupportedY-Type Zeolite, Energ&Fuel,2000,14(3):585-590
    [44]柯明,申志兵,周娜等,催化裂化汽油选择性加氢脱硫前后组成分析,石化技术与应用,2011,(1):72-77
    [45]傅杨武,陈明君,梁克中等,二环非经典噻吩电子结构和性质的DFT理论研究,计算机与应用化学,2011,(3):295-299
    [46]吕鑫,徐昕,王南钦等,六元和五元环芳香化合物在Si(001)-2×1面上的Diels-Alder加成反应——结合能与芳香化合物共振能的相关性,中国科学(B辑化学),2001,(6)
    [47]姚子鹏,任平达,高翔,五元芳杂环的芳香性和亲电取代活性顺序,大学化学,1999,(2):56-57
    [48]焦耳,米尔斯等,杂环化学,北京:科学出版社,2004.187-190
    [49]李丽娜,王海彦,魏民等,MoP/TiO2-ZrO2加氢脱硫催化剂的研制,石油炼制与化工,2008,39(2):16-20
    [50]沈俭一,石国军,燃料油深度加氢脱硫催化剂的研究进展,石油化工,2009,37(11):1111-1120
    [51] Liu Y, Liu C, Que G, Hydrodesulfurization of Dibenzothiophene Over CobaltMolybdenum Nitride Catalysts, Energ&Fuel,2002,16(3):531-535
    [52] Gong S W, Chen H K, Li Wet al., Catalytic Behaviors ofВ-Mo2N0.78as aHydrodesulfurization Catalyst, Energ&Fuel,2006,20(4):1372-1376
    [53] Pessayre S, Geantet C, Bacaud Ret al., Platinum Doped Hydrotreating Catalystsfor Deep Hydrodesulfurization of Diesel Fuels, Ind Eng Chem Res,2006,46(12):3877-3883
    [54] Mayo S, Brevoord E, Gerritsen Let al., Process Ultra-Low Sulfur Diesel,Hydrocarbon Process,2001,80(2):84
    [55] Yu G, Lu S, Chen Het al., Oxidative Desulfurization of Diesel Fuels withHydrogen Peroxide in the Presence of Activated Carbon and Formic Acid,Energ&Fuel,2004,19(2):447-452
    [56] De Filippis P, Scarsella M, Verdone N, Oxidative Desulfurization I:Peroxyformic Acid Oxidation of Benzothiophene and Dibenzothiophene, IndEng Chem Res,2010,49(10):4594-4600
    [57] Shiraishi Y, Tachibana K, Hirai Tet al., Desulfurization and DenitrogenationProcess for Light Oils Based on Chemical Oxidation followed by Liquid LiquidExtraction, Ind Eng Chem Res,2002,41(17):4362-4375
    [58] Wan M, Yen T, Portable Continuous Ultrasound-Assisted OxidativeDesulfurization Unit for Marine Gas Oil, Energ&Fuel,2008,22(2):1130-1135
    [59] Etemadi O, Yen T F, Selective Adsorption in Ultrasound-Assisted OxidativeDesulfurization Process for Fuel Cell Reformer Applications, Energ Fuel,2007,21(4):2250-2257
    [60] Denmark S E, Gould N D, Wolf L M, A Systematic Investigation of QuaternaryAmmonium Ions as Asymmetric Phase-Transfer Catalysts. Synthesis of CatalystLibraries and Evaluation of Catalyst Activity, The Journal of Organic Chemistry,2011,76(11):4260-4336
    [61] Kowalkowska A, Jończyk A, Effect of Phase-Transfer Catalyst onStereochemistry of tert-Butyl-3-aryl(alkyl)-Substituted Glycidates, Org ProcessRes Dev,2010,14(3):728-731
    [62]赵地顺,任红威,周二鹏等,季铵盐相转移催化氧化噻吩的研究,燃料化学学报,2007,35(1):47-50
    [63]周二鹏,赵地顺,刘会茹等,相转移催化氧化脱除噻吩的应用研究,化学工程,2008,36(4):34-36
    [64]黎先财,徐庆荣,曾晓放等,Dawson结构杂多磷钨酸钠催化氧化噻吩脱硫,石油化工,2009,37(10):1070-1074
    [65]田薇薇,李会鹏,赵华,负载型磷钨酸对汽油模型化合物氧化脱硫研究,化学工业与工程,2011,28(3):5-8
    [66] Murata S, Murata K, Kidena Ket al., A Novel Oxidative Desulfurization Systemfor Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts andAldehydes, Energ&Fuel,2003,18(1):116-121
    [67] Venkateshwar Rao T, Sain B, Kafola Set al., Oxidative Desulfurization of HDSDiesel Using the Aldehyde/Molecular Oxygen Oxidation System, Energ Fuel,2007,21(6):3420-3424
    [68] Hirai T, Ogawa K, Komasawa I, Desulfurization Process for Dibenzothiophenesfrom Light Oil by Photochemical Reaction and Liquid Liquid Extraction, IndEng Chem Res,1996,35(2):586-589
    [69] Shiraishi Y, Hirai T, Komasawa I, A Deep Desulfurization Process for Light Oilby Photochemical Reaction in an Organic Two-Phase Liquid Liquid ExtractionSystem, Ind Eng Chem Res,1998,37(1):203-211
    [70]赵地顺,刘翠微,马四国,催化裂化汽油光催化氧化脱硫光敏剂的研究,石油与天然气化工,2006,(3):191-194
    [71]胡松青,张军,刘冰等,离子液体萃取脱硫的探索性研究,石油学报(石油加工),2007,(1):100-103
    [72]王坤,刘大凡,何爱珍等,离子液体萃取脱硫的研究,石油化工,2010,(6):675-680
    [73] Shiraishi Y, Hirai T, Komasawa I, A Deep Desulfurization Process for Light Oilby Photochemical Reaction in an Organic Two-Phase Liquid Liquid ExtractionSystem, Ind Eng Chem Res,1998,37(1):203-211
    [74]陈娜,张文林,米冠杰等,FCC汽油萃取脱硫过程萃取剂筛选,化工进展,2006,(11):1345-1348
    [75] Rebelo L P N, Najdanovic-Visak V, de Azevedo R Get al., Phase Behavior andThermodynamic Properties of Ionic Liquids, Ionic Liquid Mixtures, and IonicLiquid Solutions,2005,901:270-291
    [76]靳玲玲,李秀奇,王洪国等,影响Ce-Y分子筛吸附脱硫性能因素的研究,工业催化,2008,(10):71-74
    [77] Hernández-Maldonado A J, Yang R T, Desulfurization of Commercial LiquidFuels by Selective Adsorption via π-Complexation with Cu(I) Y Zeolite, IndEng Chem Res,2003,42(13):3103-3110
    [78] Fan J, Wang G, Sun Yet al., Research on Reactive Adsorption Desulfurizationover Ni/ZnO SiO2Al2O3Adsorbent in a Fixed-Fluidized Bed Reactor, Ind EngChem Res,2010,49(18):8450-8460
    [79] Olah G A, Chemical&Engineering News Archive,2003,81(36):42
    [80] Marín-Rosas C, Ramírez-Verduzco, Murrieta-Guevara et al., Desulfurization ofLow Sulfur Diesel by Adsorption Using Activated Carbon: AdsorptionIsotherms, Ind Eng Chem Res,2010,49(9):4372-4376
    [81] Xiao J, Song C, Ma Xet al., Effects of Aromatics, Diesel Additives, NitrogenCompounds, and Moisture on Adsorptive Desulfurization of Diesel Fuel overActivated Carbon, Ind Eng Chem Res,2012,51(8):3436-3443
    [82] Cychosz K A, Wong-Foy A G, Matzger A J, Enabling Cleaner Fuels:Desulfurization by Adsorption to Microporous Coordination Polymers, J AmChem Soc,2009,131(40):14538-14543
    [83]张志刚,洪丽珍,范俊刚等,活性炭改性及其对噻吩吸附性能的研究,功能材料,2012,(6):748-751
    [84]董群,李春红,宋金鹤等,柴油吸附脱硫活性炭改性吸附剂研究,天然气化工(C1化学与化工),2009,(5):31-33
    [85] Collins K E, Collins C H, Maroneze C Met al., Evaluations of the BET, I-Point,and α-Plot Procedures for the Routine Determination of External SpecificSurface Areas of Highly Dispersed and Porous Silicas, Langmuir,2010,27(1):187-195
    [86] Bae Y, Yazayd n A O, Snurr R Q, Evaluation of the BET Method forDetermining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores,Langmuir,2010,26(8):5475-5483
    [87] van de Ven-Lucassen I M J J, Kerkhof P J A M, Diffusion Coefficients ofTernary Mixtures of Water, Glucose, and Dilute Ethanol, Methanol, or Acetoneby the Taylor Dispersion Method, Journal of Chemical&Engineering Data,1998,44(1):93-97
    [88] Cottet H, Biron J, Martin M, Taylor Dispersion Analysis of Mixtures, AnalChem,2007,79(23):9066-9073
    [89] Cottet H, Martin M, Papillaud Aet al., Determination of DendrigraftPoly-l-Lysine Diffusion Coefficients by Taylor Dispersion Analysis,Biomacromolecules,2007,8(10):3235-3243
    [90] Mrazek R V, Wicks C E, Prabhu K N S, Dependence of the diffusion coefficienton composition in binary gaseous systems, Journal of Chemical&EngineeringData,1968,13(4):508-510
    [91] Wills G B, Yeh H, Diffusion coefficient of aqueous nitric acid at25.deg. asfunction of concentration from0.1to1.0M, Journal of Chemical&EngineeringData,1971,16(1):76-77
    [92] Leaist D G, Diffusion coefficient of aqueous sulfur dioxide at25.degree.C,Journal of Chemical&Engineering Data,1984,29(3):281-282
    [93] Tyrrell H J V, The origin and present status of Fick's diffusion law, J Chem Educ,1964,41(7):397
    [94] Cross J H, Reevaluation of the Employment of Fick's Law for DiffusionDosimeters, Environ Sci Technol,2003,37(8):1633-1638
    [95] Nicholas D M, Shah Y T, Carbon Monoxide Oxidation over a Platinum-PorousFiber Glass Supported Catalyst, Product R&D,1976,15(1):35-40
    [96] Helminen J, Paatero E, Hotanen U, Hydrogenation of Plant Sterols over aPolymer Fiber-Supported Pd Catalyst, Org Process Res Dev,2005,10(1):51-63
    [97] Christensen H, Kiil S, Dam-Johansen Ket al., Applicability of a Fiber-SupportedCatalyst on a Buchwald–Hartwig Amination Reaction, Org Process Res Dev,2007,11(6):956-965
    [98] Deschamps G, Caruel H, Borredon Met al., Oil Removal from Water bySelective Sorption on Hydrophobic Cotton Fibers.1. Study of SorptionProperties and Comparison with Other Cotton Fiber-Based Sorbents, Environ SciTechnol,2003,37(5):1013-1015
    [99] Fan X, Li C, Zeng Get al., Removal of Gas-Phase Element Mercury by ActivatedCarbon Fiber Impregnated with CeO2, Energ Fuel,2010,24(8):4250-4254
    [100] Yue Z, Mangun C, Economy Jet al., Removal of Chemical Contaminants fromWater to below USEPA MCL Using Fiber Glass Supported Activated CarbonFilters, Environ Sci Technol,2001,35(13):2844-2848
    [101]王涛,贺思敏,陈捷等,预辐射聚丙烯纤维接枝N―异丙基丙烯酰胺及其对金属离子的吸附,银川,2005
    [102]张祥麟,络合物化学,北京:冶金工业出版社,1979.267-269
    [103]严志弦,络合物化学,北京:人民教育出版社,1960.152-154
    [104] Milenkovic A, Schulz E, Meille Vet al., Selective elimination ofalkyldibenzothiophenes from gas oil by formation of insoluble charge-transfercomplexes, Energy&fuels,1999,13(4):881-887
    [105] Gasser R P H,金属的化学吸附和催化作用导论,北京:北京大学出版社,1991.78-82
    [106] Boudart M J, Parravano G, Chemisorption and Surface Catalysis, Industrial&Engineering Chemistry,1957,49(3):611-613
    [107]李作骏,多相催化反应动力学基础,北京:北京大学出版社,1990.138-142
    [108]刘旦初,多相催化原理,上海:复旦大学出版社,1997.248-252
    [109] Wovchko E A, Yates J T, Nitrogen Chemisorption On the CoordinativelyUnsaturated Rh Site On Al2O3, J Am Chem Soc,1996,118(42):10250-10256
    [110] Heiz U, Sherwood R, Cox D Met al., CO Chemisorption On MonodispersedPlatinum Clusters On SiO2: Detection of CO Chemisorption On SinglePlatinum Atoms, The Journal of Physical Chemistry,1995,99(21):8730-8735
    [111] Yim W, Gong X G, Liu Z, Chemisorption of NO2On Carbon Nanotubes, TheJournal of Physical Chemistry B,2003,107(35):9363-9369
    [112] Bus E, Miller J T, van Bokhoven J A, Hydrogen Chemisorption OnAl2O3-Supported Gold Catalysts, The Journal of Physical Chemistry B,2005,109(30):14581-14587
    [113] Mériaudeau P, Dufaux M, Naccache C, Support Effect On Chemisorption andCatalytic Properties of Noble Catalysts,1986,298:118-122
    [114] Haberlandt H, Ritschl F, Quantum Chemical Investigation of Support-MetalInteractions and their Influence On Chemisorption.2. Strong Metal-SupportInteraction in H...Ni-Mox (M=Titanium, Silicon), The Journal of PhysicalChemistry,1986,90(18):4322-4330
    [115] Opekar F, Bruckenstein S, Determination of Gaseous Hydrogen Sulfide byCathodic Stripping Voltammetry After Preconcentration On a Silver MetalizedPorous Membrane Electrode, Anal Chem,1984,56(8):1206-1209
    [116] Schiavon G, Zotti G, Toniolo Ret al., Electrochemical Detection of TraceHydrogen Sulfide in Gaseous Samples by Porous Silver Electrodes SupportedOn Ion-Exchange Membranes (Solid Polymer Electrolytes), Anal Chem,1995,67(2):318-323
    [117] Nair S, Tatarchuk B J, Supported Silver Adsorbents for Selective Removal ofSulfur Species From Hydrocarbon Fuels, Fuel,2010,89(11):3218-3225
    [118] Takahashi A, Yang F H, Yang R T, New Sorbents for Desulfurization byπ-Complexation: Thiophene/Benzene Adsorption, Industrial&engineeringchemistry research,2002,41(10):2487-2496
    [119] Yang R T, Hernandez-Maldonado A J, Yang F H, Desulfurization ofTransportation Fuels with Zeolites Under Ambient Conditions, Science,2003,301(5629):79-81
    [120]赵振国,吸附作用应用原理,北京:化学工业出版社,2005.58-62
    [121]倪静安,商少明,翟滨,无机及分析化学,北京:化学工业出版社,2005.89-92
    [122]沈斐凤,现代无机化学,上海:上海科学技术出版社,1985.58-62
    [123]严宣申,王长富,普通无机化学,北京:北京大学出版社,1999.118-122
    [124]焦耳,米尔斯等,杂环化学,北京:科学出版社,2004.67-69
    [125]薛永强,王志忠等,现代有机合成方法与技术,北京:化学工业出版社,2003.278-291
    [126]杨丰科,李明等,基础有机化学,北京:化学工业出版社,2001.324-336
    [127]俞凌翀,基础理论有机化学,北京:高等教育出版社,1993.348-362
    [128]金松寿,唐新硕,朱逸飞,Π键及大Π键对正电集团和负电集团的作用——分子间引力的选择性,物理化学学报,1985,(2):186-192
    [129]张坚,张明瑜,孙延波等,新型过渡金属Co,Rh和Ir硅硼烷夹心化合物的理论研究,高等学校化学学报,2003,(10):1880-1882
    [130]邹海艳,麻娜娜,李雪等,7,10,12顶点Fe(Ⅱ)碳硼烷夹心配合物NIO性质的DFT研究,化学学报,2012,(7):897-902
    [131] Kauffman G B, The Bronsted-Lowry Acid Base Concept, J Chem Educ,1988,65(1):28
    [132] Leussing D L, The Lewis Acid-Base Concepts: An Overview, J Chem Educ,1982,59(5):179
    [133] Pearson R G, Hard and Soft Acids and Bases, J Am Chem Soc,1963,85(22):3533-3539
    [134] Pearson R G, Songstad J, Application of the Principle of Hard and Soft Acidsand Bases to Organic Chemistry, J Am Chem Soc,1967,89(8):1827-1836
    [135]李君发,计算活度系数的Unifac基团贡献法(Ⅰ),化学工程,1991,19(4):12-23
    [136]梁英华,马沛生,基团贡献法估算烃的辛烷值,石油化工,2000,29(006):432-435
    [137]梁英华,马沛生等,用对应状态基团贡献法估算纯物质的饱和蒸汽压,化学工程,2001,29(3):55-58
    [138] Seredych M, Bandosz T J, Role of Microporosity and Nitrogen FunctionalityOn the Surface of Activated Carbon in the Process of Desulfurization ofDigester Gas, The Journal of Physical Chemistry C,2008,112(12):4704-4711
    [139] Allian A D, Takanabe K, Fujdala K Let al., Chemisorption of CO andMechanism of CO Oxidation On Supported Platinum Nanoclusters, J Am ChemSoc,2011,133(12):4498-4517
    [140] Mason S E, Grinberg I, Rappe A M, Orbital-Specific Analysis of COChemisorption On Transition-Metal Surfaces, The Journal of PhysicalChemistry C,2008,112(6):1963-1966
    [141] Rodriguez J A, Hrbek J, Electronic and Chemical Properties of Silver-LithiumAlloy Films: The Ag-Li, O2/Ag-Li, and CO/Ag-Li Systems, The Journal ofPhysical Chemistry,1994,98(15):4061-4068
    [142] Landau M V, Herskowitz M, Hoffman Tet al., Ultradeep Hydrodesulfurizationand Adsorptive Desulfurization of Diesel Fuel On Metal-Rich NickelPhosphides, Ind Eng Chem Res,2009,48(11):5239-5249
    [143] Velu S, Ma X, Song Cet al., Desulfurization of JP-8Jet Fuel by SelectiveAdsorption Over a Ni-Based Adsorbent for Micro Solid Oxide Fuel Cells,Energ&Fuel,2005,19(3):1116-1125
    [144]金松寿,唐新硕,分子间引力的选择性,高等学校化学学报,1981
    [145]唐睿康,分子间选择性作用力和控制论化学,化学进展,2009,21(6)
    [146]陈国华,王光信,电化学方法应用,北京:化学工业出版社,2003.212-215
    [147]郭鹤桐,覃奇贤,电化学教程,天津:天津大学出版社,2000.178-192
    [148] Gasser R P H,金属的化学吸附和催化作用导论,北京:北京大学出版社,1991.238-241
    [149]刘献友,周立幸,尹安学等,用于气/固吸附的微分吸附热测定装置,物理化学学报,1987,(3):252-257
    [150]郑青榕,顾安忠,蔡振雄等,氢在多壁碳纳米管上的等量吸附热,化学工程,2007,(4):42-45
    [151]郭亮,吴占松,使用SGC技术测量气-固吸附体系的等量吸附热,清华大学学报(自然科学版),2008,(8):1321-1325
    [152]刘冠华,李宣文,刘兴云等,苯在Na-Y沸石上的吸附热及红外光谱研究,物理化学学报,1990,(6):28-34
    [153]何余生,李忠,奚红霞等,气固吸附等温线的研究进展,离子交换与吸附,2004,(4):376-384
    [154]刘元法,裘爱泳,王兴国,Freundlich方程在不同吸附剂的油脂脱色体系中的应用,食品与生物技术学报,2007,26(1)
    [155]杨敏,豆小敏,张昱,固液界面吸附机制与模型,环境科学学报,2006,26(10):1581-1585
    [156]叶振华,化工吸附分离过程,北京:中国石化出版社,1992.158-162
    [157] Mazumder B S, Maity H, Chadda T, Turbulent Flow Field Over FluvialObstacle Marks Generated in a Laboratory Flume, International Journal ofSediment Research,2011,(1):62-77
    [158] Turbulent Flows Around Sand Dunes in Alluvial Rivers, Journal ofHydrodynamics,2010,(1):103-109
    [159] Bloomfield V A, Dewan R K, Viscosity of Liquid Mixtures, The Journal ofPhysical Chemistry,1971,75(20):3113-3119
    [160] Carmichael L T, Berry V M, Sage B H, Viscosity of Hydrocarbons. Propane.,Journal of Chemical&Engineering Data,1964,9(3):411-415
    [161] Carmichael L T, Berry V, Sage B H, Viscosity of Hydrocarbons. Methane.,Journal of Chemical&Engineering Data,1965,10(1):57-61
    [162] Lee A L, Ellington R T, Viscosity of N-Pentane., Journal of Chemical&Engineering Data,1965,10(2):101-104
    [163] Sage B H, Inman B N, Lacey W N, Viscosity of Hydrocarbon Solutions,Industrial&Engineering Chemistry,1937,29(8):888-892
    [164]程丽华,石油炼制工艺学,北京:中国石化出版社,2005.79-81
    [165]周耀坤,石油炼制化学,兰州:兰州大学出版社,1993.81-83
    [166]杨红旭,郭子方,周俊领,高性能淤浆法聚乙烯催化剂的研究,石油化工,2007,36(11):1119-1122
    [167]余启炎,郝雪松,杨晓红等,仲丁醇脱氢制甲乙酮催化剂的研究,石油化工,2005,34(009):818-821
    [168]郭子方,殷大斌,周俊领等,乙烯淤浆聚合BCE催化剂生产双峰聚乙烯树脂的工业应用,石油化工,2009,37(9):937-940
    [169] Howard H C, Hulett G A, A Study of the Density of Carbon, The Journal ofPhysical Chemistry,1923,28(10):1082-1095
    [170]汪程刚,李涛,应卫勇等,乙烯氧化合成环氧乙烷管式反应器的模拟,化工生产与技术,2009,16(6):23-25
    [171]朱健,杨祝红,李伟等,非均相光催化水处理管式反应器的放大设计,现代化工,2005,25(5):55-58
    [172]王洪立,刘立新,欧阳福生,管式反应器中合成甲基叔戊基醚动力学研究,炼油技术与工程,2007,36(12):18-22
    [173] Kamata M, Paku M, Exploring Faraday's Law of Electrolysis Using Zinc–AirBatteries with Current Regulative Diodes, J Chem Educ,2007,84(4):674
    [174] Jeevanandam P, Klabunde K J, Tetzler S H, Adsorption of Thiophenes Out ofHydrocarbons Using Metal Impregnated Nanocrystalline Aluminum Oxide,Micropor Mesopor Mat,2005,79(1):101-110
    [175] Wang Y, Yang R T, Desulfurization of Liquid Fuels by Adsorption OnCarbon-Based Sorbents and Ultrasound-Assisted Sorbent Regeneration,Langmuir,2007,23(7):3825-3831
    [176]陈岁元,马利霞,刘常升等,硝酸银溶液中Zn置换微细Ag粒子的激光辐照银制备法,东北大学学报(自然科学版),2005,26(6):550-553
    [177] Nassar N N, Asphaltene Adsorption onto Alumina Nanoparticles: Kinetics andThermodynamic Studies, Energ&Fuel,2010,24(8):4116-4122
    [178] Dringen R, Koehler Y, Derr Let al., Adsorption and Reduction of GlutathioneDisulfide Onα-Al2O3Nanoparticles: Experiments and Modeling, Langmuir,2011,27(15):9449-9457
    [179]何小超,郑经堂,于维钊,燃油活性炭吸附深度脱硫的机理及研究进展,炼油技术与工程,2007,37(7):8-12
    [180]王萍,吕志凤,战风涛,活性炭吸附法脱除加氢催化柴油中的硫化物,石化技术与应用,2006,24(3):194-196
    [181]张文平,王珏,沉淀—电解法回收COD分析废液中的银,化工环保,1995,15(6):355-359
    [182]赵逸云,冯若,频率对声致羟自由基形成的影响,声学技术,1998,17(001):12-4
    [183]谢冰,超声波作用下有机污染物的降解,水处理技术,2000,26(2):114-9
    [184]陈伟,范瑾初,超声——过氧化氢技术降解水中4-氯酚,中国给水排水,2000,16(2):1-4
    [185]徐向荣,王文华,荧光法测定Fenton反应产生的羟自由基,分析化学,1998,26(12):1460-3
    [186]赵保路,氧自由基和天然抗氧化剂,北京:科学出版社,2002.32-6
    [187]王关兴,徐宝财,胶团催化在化学反应中的应用研究进展,精细化工,2008,(z1):1-3
    [188]杨传芳,洪滨,陈家镛,反向胶团或微乳液在超细颗粒制备中的应用,过程工程学报,1996,1:13
    [189]朱砂瑶,石洪涛,黄建滨等,正负离子表面活性剂反胶团与反相微乳研究,化学学报,2001,59(6):913-91
    [190]张桂菊,徐宝财,反胶团技术应用研究进展,精细化工,2008,(z1):4-7
    [191]陈靖,王士柱,极性溶剂提高电破乳效率的研究,膜科学与技术,1995,15(1):51-5
    [192]雷志刚,许峥,溶剂加盐对分离非极性体系的影响,石油化工,2001,30(3):200-4
    [193]刘钰,路福绥,陈甜甜等,溶剂极性对高效氯氟氰菊酯微乳液相行为及其稳定性的影响,应用化学,2008,25(1):73-6
    [194]姬乔娜,催化氧化法超深度脱除燃油中有机噻吩硫的探讨,华南理工大学,2010
    [195]李贤辉,活性炭纤维脱除燃油中含硫化合物的应用研究[D],大连理工大学,2007
    [196]郑宾国,梁丽珍,李春光等,分子氧氧化脱除燃油中有机噻吩硫研究进展,材料导报,2010,24(011):89-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700