用户名: 密码: 验证码:
电芬顿阴极材料的制备与转盘工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电芬顿技术(EF)作为一种新型、高效、清洁的电化学高级氧化技术,近年来备受研究者的关注。由于阴极材料的性能决定了H202的原位生成,从而直接影响电芬顿处理有机污染物的能效,因此探索综合性能好的阴极材料成为该领域的一大研究热点。本研究以三维结构的商品化石墨毡为基础阴极材料,采用化学或电化学方法对材料进行改性,试图改善阴极氧还原反应(ORR)催化活性,在材料表征的基础上,系统的考察了改性过程对材料H202产率和电芬顿催处理污染物的影响。另外,电催化应用领域的另一重要研究方面涉及工艺运行方式的选择与优化,本研究构建了双阴极旋转式电芬顿反应器,并考察运行中各种工艺参数的影响,主要结论如下:
     1.采用成本较低的乙醇和水合肼对石墨毡(软毡)材料进行改性。改性后石墨毡纤维表面附着有大量碳颗粒,材料表面的亲水性有所增强。XPS分析结果表明,水合肼在石墨毡材料表面引入含量约0.56at.%的氮元素,且以“石墨型氮”结构、吡啶型氮基团和不同的氮氧化物基团(如-NOx或N-O-C)形式存在;材料表面具有亲水性的含氧基团增多。与未改性的石墨毡阴极相比,经过改性的电极表现出更强的电流响应,析氢电位也向负电位方向移动,并且促进了ORR的电子传递动力学过程。化学改性提高了H202的产量,经过乙醇-水合肼改性的阴极CF-B系统中H202的产量最高,达到175.8mg/L。改性有利于改善电芬顿系统的催化氧化性能,矿化率最高达到51.4%,较改性前提高了29.2%。改性电极具有良好的稳定性,CF-B在第十次使用时,改性电极对p-Np的矿化率仍保持在45%以上。
     2.优化了化学改性石墨毡阴极产H2O2的主要影响因素。确定了最佳的水合肼组分浓度为10%,此时系统中H2O2的产量约为改性前的2.6倍。考察了不同阴极电位、初始pH和02曝气流量对H2O2产量与电流效率的影响,结果发现,在阴极电位-0.75V,pH为中性条件,O2曝气流量为0.4L/min的条件下,H2O2产量最高,约为247.2mg/L。电流效率随阴极电位的上升、pH的下降呈现下降趋势,此外,适宜的02曝气量的选择不仅能够促进系统中H202的生产过程,同时也能够有效节约运行成本。
     3.采用无毒、简单、快速的电化学氧化方法对石墨毡(硬毡)材料进行改性。材料表面O元素与C元素含量的比例(O/C)随着电化学氧化处理循环次数的增加而不断升高。与未改性的石墨毡材料相比,改性过程增加了材料表面的亲水性基团,有利于改善材料的亲水性能,而且经过阳极氧化处理的电极在相同电位下具有更强的电流响应,并且电流响应值随着电化学氧化循环次数的增加而明显增大,析氢电位也向负电位方向移动。与未改性的电极相比,改性使氧还原过程的激发电位(|E|)约正向偏移了约0.1V。电化学阳极氧化的最佳循环次数确定为10次,改性后系统对对硝基苯酚的矿化率提高了27.9%~35.3%。
     4.采用新型的双阴极转盘式电芬顿反应器进行H202的生产和电催化降解污染物的过程,通过对比静止和转动条件下的线性伏安扫描曲线,确定了转动过程对系统氧还原电流响应的促进作用。在0.05mM Na2SO4电解液中,施加电流为100mA,阴极转盘转速为10rpm,电解60min,系统内的H202浓度可达到108.1mg/L,电流效率为40.9%,H2O2产率约为转盘静止条件下的3倍。以染料甲基橙(MO)为目标污染物,考察了阴极转盘电芬顿系统中不同的Fe3+浓度、pH、支持电解质以及污染物初始浓度对系统催化效果的影响,结果发现,Fe3+在MO色度去除和TOC去除方面具有不同的作用,由于Fe3+会与偶氮染料发生络合作用,使偶氮显色基团更加稳定,脱色过程较不加Fe3+略有减缓,但是Fe3+加入后有利于系统TOC的去除,当Fe3+浓度为0.2mM时系统达到最佳的TOC的去除率,约为48.2%,与主要依靠直接电解和H2O2氧化作用的无Fe3+系统相比提高了26.6%。转盘式电芬顿反应系统与典型的电芬顿系统具有类似的pH条件要求,反应最佳的pH为3左右,在30min即可完全去除溶液中的色度。MO在不同电解液中的降解效果为NaNO3>NaCl>Na2SO4,且在NaNO3电解液中的矿化率可达到51.2%。
Electro-Fenton technology (EF) is a new, efficient and clean electrochemical advanced oxidation technology, which has attracted a great deal of attention in recent years. Since the production of H2O2is significantly dependent on the cathodes used, which directly influence the degradation efficiencies of pollutants in EF system, developing new efficient cathodic materials becomes one of the research focuses in the area.In this study, the commercial graphite felts with three-dimensional structure were used as the pristine cathode materials, chemical and electrochemical modification methods were used to improve the catalytic activities of oxygen reduction reaction (ORR), and the effects of the modification on the production of H2O2and EF degradation efficiency were investigated on the basis of characterization. In addition, the other important aspect for the EF——the reactor was also discussed, and a new dual-cathode rotating disk EF reactor was developed, impacts of the operational parameters were also studied. The main conclusions can be drawn as follows:
     1. Low-cost chemical reagents ethanol and hydrazine hydrate were used to modify the graphite felts (soft felts). The XPS analysis showed that after modification, plenty of carbon particles appeared on the surface of graphite felt fibers, and the hydrophilicity of the materials was improved. Approximately0.56at.%nitrogen element was detected in the hydrazine hydrate-ethanol modified sample (CF-B) in the forms of "graphite nitrogen" structure, pyridine nitrogen groups and the type of nitrogen oxide groups (such as-NOx or NOC), and there were more hydrophilic groups. Compared with the unmodified cathode, the modified ones showed stronger current responses, more negative hydrogen evolution potentials, and the increased electron transfer kinetics for ORR process. The highest H2O2accumulation was achieved at CF-B, up to175.8mg/L. The modification could improve the performance of EF, and the highest mineralization ratio in modified cases was51.4%,29.2%higher than before. CF-B was detected above45%of the mineralization of p-Np after10cycles of use, indicating a good stability of the modified electrodes.
     2. The influencing factors during the production of H2O2were investigated at the chemically modified graphite felt electrodes. The optimal concentration of hydrazine hydrate in the chemical modification was determined as10%, when the yield of H2O2was approximately as2.6time as before. The influence of the cathode potentials, pH and O2flow rate on the H2O2production and current efficiency (CE) were also investigated. The highest H2O2accumulation was achieved at-0.75V, neutral pH and0.4L/min of O2flow rate, up to247.2mg/L. The CE tended to decrease with the increase of potentials and decrease of pH, and a suitable aeration amount of O2is not only to promote the production of H2O2, also could effectively reduce operating costs.
     3. A non-toxic, simple, rapid electrochemical modification, so call "anodisation", was used to modify the graphite felt materials (hard felts). The ratio between O and C (O/C) on the electrode surfaces was detected increasing with with the increase of the electrochemical oxidation treatment cycles. Compared with the pristine cathode, the hydrophilic groups increased on the modified surface, which was favorable to improve the hydrophilic properties of the materials. After anodisation, the cathodes had stronger current responses, which were significantly increased with the increase of the anodising cycle times, the hydrogen evolution potential was more negative, and the trigger potential of ORR at modified. cathodes was about0.1V more positive than pristine one. The optimum anodising cycle times was10, when the mineralization ratio of the/p-Np increased27.9%-35.3%.
     4. A new dual-cathode rotating disk EF reactor was used for H2O2production and electrocatalytic degradation of pollutants. The positive effects of the rotating conditions on the current responses toward ORR were determined by linear sweep voltammetry. The highest yields of H2O2was achieved at100mA, with rotating speed of10rpm, in0.05mM Na2SO4electrolyte, up to108.1mg/L, and the CE was40.9%, which was as3times as at static conditions. The operational parameters such as Fe3+concentration, pH, support electrolytes and initial concentration of pollutants on the catalytic performance of the rotating disk system were investigated using the Methyl Orange (MO) as a target pollutant. The different influences of Fe3+on the decoloration and mineralization was found, due to the complexation between Fe3+and azo dyes, the addition of Fe3+can make the chromophore more stable. However, the existence of Fe3+was conducive to the removal of TOC, and the optimum concentration of Fe3+was0.2mM, when the mineralization ratio was48.2%, which was26.6%higher than the system without Fe3+. The suitable pH in rotating disk reactor was similar with other EF systems, and the decoloration can be completed within30min at pH around3. The degradation efficiency of MO in different electrolytes followed the order NaNO3> NaCl> Na2SO4, and the mineralization ratio in NaNO3electrolyte was51.2%.
引文
[1]李广贺主编.水资源利用与保护.北京:中国建筑工业出版社,2002.
    [2]国家环保总局.2003年全国环境统计公报.北京,2004.
    [3]沈光范.关于城市污水治理政策的思考.中国环保产业,2004,2:16-18.
    [4]董家华.中国的水污染现状和防治对策.水工业市场,2011,4:18-21.
    [5]江曙光.中国水污染现状及防治对策.水产科技情报,2010,37:177-181.
    [6]廖超登,杨汝德,周盛.生物技术在持久性污染物生物修复中的研究进展.环境科学与技术,2010,33(6E):175-179.
    [7]黄栩,骆苑蓉,胡忠,等.持久性有机污染物POPs生物修复研究进展.环境科学学报,2006,26(3):353-361.
    [8]Morais L C, Freitas O M, Goncalves E P, et al. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark:variables that define the process. Water Res,1999,33:979-988.
    [9]Rajeshwarisivaraj, Sivakumar S, Senthilkumar P, et al. Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresour Technol,2001,80:233-235.
    [10]Girgis B S, Yunis S S, Soliman A M. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater Lett,2002,57:164-172.
    [11]Namasivayam C, Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm,2002,54:47-58.
    [12]Chiou M. S., Li H. Y. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J. Hazard. Mater.,2002, B93:233-248.
    [13]Juang R S, Wu F C, Tseng R L. Use of chemically modified chitosan beads for sorption and enzyme immobilization. Adv Environ Res,2002,6:171-177.
    [14]许力,王九思.氢氧化镁对染料废水的脱色研究.兰州铁道学院学报(自然科学版),2002,21(4):83-85.
    [15]马子川,董丽丽,康跃惠,等.新生态Mn02吸附剂对酸性媒介染料废水脱色特性研究.环境污染治理技术与设备,2002,3(1):19-22.
    [16]贺启环,方华,张勇.二氧化氯催化氧化处理难降解废水技术研究进展.环境污染治理技术与设备,2002,3(9):63-65.
    [17]李文书,李咏梅,顾国维.高级氧化技术在持久性有机污染物处理中的应用.工业水处理,2004,24(11):9-12.
    [18]钟灿鸣,洪浩峰,潘湛昌.电化学技术与环境保护的应用.化学工程与装备,2010,7:157-159.
    [19]李天成,朱慎林.电催化氧化技术处理苯酚废水研究.电化学,2005,11(1):101-104.
    [20]盛怡,李光明,胡惠康,等.有机废水电化学氧化阳极材料的研究进展.工业水处理,2006,26(3):4-7.
    [21]Ohashi T, Sugimoto W, Takasu Y. Catalytic roughening of surface layers of BDD for various applications. Electrochim Acta,2009,54:5223-5229.
    [22]Abaci S, Tamer U, Pekmez K, et al. Performance of different crystal structures of PbO2 on electrochemical degradation of phenol in aqueous solution. Appl Surf Sci,2005,240:112-119.
    [23]张乃东,李宁,彭永臻.电镀烧结法制备Ti/SnO2-Sb2O4电极的研究.无机化学学报,2002,18(11):1173-1176.
    [24]Nidheesh P V, Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment:An overview. Desalination,2012,299:1-15.
    [25]Kremer M L. Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys,1999,1:3595-3605.
    [26]Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere,2000,41:409-417.
    [27]Laat J D, Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(Ⅲ) in homogeneous aqueous solution:mechanism and kinetic modeling. Environ Sci Technol,1999,33: 2726-2732.
    [28]Pignatello J J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Env Sci Tec, 2006,36:1-84.
    [29]Chrlstensen H, Sehested K, Corfitzen H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J Phys Chem,1982,86:1588-1590.
    [30]Rothschild W G, Allen A O. Studies in the radiolysis of ferrous sulfate solutions III. Air-free solutions at higher pH. Radiat Res,1958,8:101-110.
    [31]Chan P C, Bielski B H. Enzyme-catalyzed free radical reactions with nicotinamide adenine nucleotides. Ⅱ. Lactate dehydrogenase-catalyzed oxidation of reduced nicotinamide adenine dinucleotide by superoxide radicals generated by xanthine oxidase. J Biol Chem,1974,250: 1317-1319.
    [32]Brillas E, Sire's I, Oturan M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev,2009,109:6570-6631.
    [33]肖华,周荣丰.电芬顿法的研究现状与发展.上海环境科学,2004,23(6):235-256.
    [34]Drogui P, Elmaleh S, Rumeau M, et al. Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell. Water Res,2001,35:3235-3241.
    [35]Foller P C, Bombard R T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J Appl Electrochem,1995,25:613-627.
    [36]Brillas E, Maestro A, Moratalla M. Electrochemical extraction of oxygen from air via hydroperoxde ion. J Appl Electrochem,1997,27:83-92.
    [37]Agladze G R, Tsurtsumia G S, Jung B I, et al. Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells. J Appl Electrochem,2007,37:375-383.
    [38]刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用.环境科学与技术,2003,26(2): 44-46.
    [39]Gallegos A A, Garcia Y V, Zamudio A. Solar hydrogen peroxide. Sol Energy Mater Sol Cells,2005,88:157-167.
    [40]Brillas E, Bastida R M, Llosa E. Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-Fed Cathode. J Electrochem Soc,1995,142: 1733-1741.
    [41]Pozzo A D, Palma L D, Merli C, et al. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J Appl Electrochem,2005,35:413-419.
    [42]Alvarez-Gallegos A, Pletcher D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim Acta,1998,44:853-861.
    [43]Do J S, Chen C P. In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. J Electrochem Soc,1993,140:1632-1637.
    [44]Brillas E, Mur E. Iron(Ⅱ) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J Electrochem Soc,1996,143:L49-L53.
    [45]Ozcan A, Sahin Y, Savas K A, et al. Carbon sponge as a new cathode material for the electro-Fenton process:Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem,2008,616:71-78.
    [46]Fu J L, Zhang X W, Lei L C. Fe-modified multi-walled carbon nanotube electrode for production of hydrogen peroxide. Acta Phys -Chim Sin,2007,23:1157-1162.
    [47]Oloman C, Watkinson A P. Hydrogen peroxide production in trickle-bed electrochemical reactors. J Appl Electrochem,1979,9:117-123.
    [48]Oloman C. Trickle bed electrochemical reactors. J Electrochem Soc,1979,126:1885-1891.
    [49]Tomat R, Vecchi E. Electrocatalytic production of OH radicals and their oxidative addition benzene. J Appl Electrochem,1971,1:185-188.
    [50]Tzedakis T, Savall A, Clifton M J. The electrochemical regeneration of Fenton's reagent in the hydroxylation of aromatic substrates:batch and continuous processes. J Appl Electrochem, 1989,19:911-921.
    [51]Wang C T, Hu J L, Chou W L, et al. Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater,2008,152: 601-606.
    [52]El-Desoky H S, Ghoneim M M, El-Sheikh R, et al. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent. J Hazard Mater,2010,175:858-865.
    [53]Harrington T, Pletcher D. The removal of low levels of organics from aqueous solutions using Fe(Ⅱ) and hydrogen peroxide formed in situ at as diffusion electrodes. J Electochem Soc, 1999,146:2983-2989.
    [54]Brillas E, Calpe J C, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res,2000,34:2253-2262.
    [55]Zhou M, Yu Q, Lei L. The preparation and characterization of a graphite-PTFE cathode system for the decolorization of C.I. Acid Red 2. Dyes Pigm,2008,77:129-136.
    [56]Sheng Y, Song S, Wang X, et al. Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film. Electrochim Acta,2011,56:8651-8656.
    [57]Shen Z M, Yang J, Hu X F, et al. Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environ Sci Technol,2005,39:1819-1826.
    [58]Friedrich J M, Ponce-de-Le6n C, Reade G W, et al. Reticulated vitreous carbon as an electrode material. J Electroanal Chem,2004,561:203-217.
    [59]Zarei M, Salari D, Niaei A, et al. Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochim Acta,2009, 54:6651-6660.
    [60]Isarain-Chavez E, Arias C, Cabot P L, et al. Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B,2010,96:361-369,
    [61]Zhou M, Tan Q, Wang Q, et al. Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater,2012,215-216:287-293.
    [62]Wang A, Qu J, Ru J, et al. Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode. Dyes Pigm,2005,65:227-233.
    [63]Lei H, Li H, Li Z, et al. Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Saf Environ,2010,88:431-438.
    [64]Badellino C, Rodrigues C A, Bertazzoli R. Oxidation of pesticides by in situ electrogenerated hydrogen peroxide:Study for the degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater, 2006,137:856-864.
    [65]Ozcan A, hin Y, Koparal A S, et al. A comparative study on the efficiency of electro-Fenton process in the removal of propham from water. Appl Catal B,2009,89:620-626.
    [66]Chu Y, Zhang D, Liu L, et al. Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2-Sb2O5-IrO2 anode:Kinetics, byproducts and biodegradability. J Hazard Mater,2013,252-253:306-312.
    [67]Qiang Z, Chang J H, Huang C P. Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Res,2003,37:1308-1319.
    [68]Sires I, Garrido J A, Rodriguez R M, et al. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B,2007,72:382-394.
    [69]Oturan M A. An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants:Application to herbicide 2,4-D. J Appl Electrochem,2000,30:475-482.
    [70]Oturan N, Oturan M A. Degradation of three pesticides used in viticulture by electrogenerated Fenton's reagent. Agron Sustain Dev,2005,25:267-270.
    [71]Pimentel M, Oturan N, Dezotti M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B,2008,83:140-149.
    [72]Chen J, Liu M, Zhang J, et al. Electrochemical degradation of bromopyrogallol red in presence of cobalt ions. Chemosphere,2003,53:1131-1136.
    [73]Gallard H, De-Laat J, Legube B. Etude comparative de la vitesse de decomposition de H2O2 et de l'atrazine par les systemes Fe(Ⅲ)/H2O2, Cu(Ⅱ)/H2O2 et Fe(Ⅲ)/Cu(Ⅱ)/H2O2. Rev Sci Eau, 1999,12:713-728.
    [74]Brillas E, Banos M A, Camps S, et al. Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J Chem, 2004,28:314-322.
    [75]Sires I, Garrido J A, Rodriguez R M, et al. Electrochemical Degradation of Paracetamol from Water by Catalytic Action of Fe2+, Cu2+ and UVA Light on Electrogenerated Hydrogen Peroxide. J Electrochem Soc,2006,153:D1-D9.
    [76]Flox C, Ammar S, Arias C, et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B,2006,67:93-104.
    [77]Flox C, Cabot P, Centellas F, et al. Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl Catal B,2007,75:17-28.
    [78]Rosales E, Pazos M, Longo M A, et al. Electro-Fenton decoloration of dyes in a continuous reactor:A promising technology in colored wastewater treatment. Chem Eng J,2009,155:62-67.
    [79]Su C C, Chang A T, Bellotindos L M, et al. Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Sep Purif Technol,2012,99:8-13.
    [80]Sudoh M, Kodera T, Sakai K, et al. Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent. J Chem Eng Jpn,1986,19:513-518.
    [81]Sudoh M, Kitaguchi H, Koide K. Electrochemical production of hydrogen peroxide by reduciton of oxygen. J Chem Eng Jpn,1985,18:409-414.
    [82]Sudoh M, Kitaguchi H, Koide K. Polarizaiton characteristics of packed bed electrode reactor for electroreduciton of oxygen to hydrogen peroxide. J Chem Eng Jpn,1985,18:364-371.
    [83]Do J S, Chen C P. Kinetics of in situ degradation of formaldehyde with electrogenerated hydrogen peroxide. Ind Eng Chem Res,1994,33:387-394.
    [84]Da Pozzo A, Petrucci E, Merli C. Electrogeneration of hydrogen peroxide in seawater and application to disinfection. J Appl Electrochem,2008,38:997-1003.
    [85]Wang H, Wang J L. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments. J Hazard Mater,2008,154:44-50.
    [86]Fang J M, Sun R. C, Salisbury D, et al. Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions. Polym Degrad Stab,1999,66:423-432.
    [87]Badellino C, Rodrigues C A, Bertazzoli R. Oxidation of herbicides by in situ synthesized hydrogen peroxide and fenton's reagent in an electrochemical flow reactor:study of the degradation of 2,4-dichlorophenoxyacetic acid. J Appl Electrochem,2007,37:451-459.
    [88]Plgnatello J J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol,1992,26:944-951.
    [89]Faust B C, Hoigne J. Photolysis of Fe (Ⅲ)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environ A. General Topics,1990,24:79-89.
    [90]Zou Y, Holgne J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅱ)-oxalato complexes. Environ Sci Technol,1992,26: 1014-1022.
    [91]Ting W P, Lu M C, Huang Y H. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). J Hazard Mater,2008,156:421^27.
    [92]Liu W, Ai Z, Zhang L. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. J Hazard Mater,2012,243:257-264.
    [93]范可,程芳琴.三维电极/电Fenton法降解苯酚.环境工程学报,2012,6(2):451-454.
    [94]Crini G. Non-conventional low-cost adsorbents for dye removal:A review. Bioresour Technol,2006,97:1061-1085.
    [95]Wang S. A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm,2008,76:714-720.
    [96]Brillas E, Casado J. Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere,2002,47:241-248.
    [97]Guivarch E, Trevin S, Lahitte C, et al. Degradation of azo dyes in water by electro-Fenton process. Environ Chem Lett,2003,1:38-44.
    [98]Lahkimi A, Oturan M A, Oturan N, et al. Removal of textile dyes from water by the electro-Fenton process. Environ Chem Lett,2006,5:35-39.
    [99]Cruz-Gonzalez K, Torres-Lopez O, Garcia-Leon A, et al. Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode. Chem Eng J,2010,160:199-206.
    [100]Ai Z H, Xiao H Y, Mei T, et al. Electro-Fenton degradation of Rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes. J Phys Chem C,2008,112: 11929-11935.
    [101]Zhou M, Yu Q, Lei L, et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep Purif Technol,2007,57:380-387.
    [102]Ghoneim M M, El-Desoky H S, Zidan N M. Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination,2011,274:22-30.
    [103]Wang C T, Chou W L, Chung M H, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination,2010,253: 129-134.
    [104]Kowalkowski T, Gadzala-Kopciuch M, Kosobucki P, et al. Organic and inorganic pollution of the Vistula River basin. J Environ Sci Heal A,2007,42:421-426.
    [105]Barcelo D. Environmental Protection Agency and other methods for the determination of priority pesticides and their transformation products in water. J Chromatogr A,1993,643: 117-143.
    [106]邹明强.农药与农药污染.大学化学,2004,19(6):1-8.
    [107]张家泉,肖宇伦.我国湖泊水环境中有机氯农药污染的研究进展.黄石理工学院学报,2012,28(1):22-27.
    [108]王泰,张祖麟,黄俊,等.海河与渤海湾水体中溶解态多氯联苯和有机氯农药污染状况调查.环境科学,2007,28(4):730-735.
    [109]Yatmaz H C, Uzman Y. Degradation of pesticide monochrotophos from aqueous solutions by electrochemical methods. Int J Electrochem Sci,2009,4:614-626.
    [110]Boye B, Dieng M M, Brillas E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ Sci Technol,2002,36:3030-3035.
    [111]Edelahi M C, Oturan N, Oturan M A, et al. Degradation of diuron by the electro-Fenton process. Environ Chem Lett,2003,1:233-236.
    [112]Abdessalem A K, Oturan N, Bellakhal N, et al. Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B,2008,78: 334-341.
    [113]Ozcan A, Sahin Y, Koparal A S, et al. Degradation of picloram by the electro-Fenton process. J Hazard Mater,2008,153:718-727.
    [114]Kaichouh G, Oturan N, Oturan M A, et al. Mineralization of herbicides imazapyr and imazaquin in aqueous medium by, Fenton, photo-Fenton and electro-Fenton processes. Environ Technol,2008,29:489-496.
    [115]Pozzo A, Merli C, Sires I, et al. Removal of the herbicide amitrole from water by anodic oxidation and electro-Fenton. Environ Chem Lett,2005,3:7-11.
    [116]Abdessalem A K, Bellakhal N, Oturan N, et al. Treatment of a mixture of three pesticides by photo-and electro-Fenton processes. Desalination,2010,250:450-455.
    [117]Rivas F J, Beltran F J, Gimeno O, et al. Treatment of brines by combined Fen ton's reagent-aerobic biodegradation II. Process modelling. J Hazard Mater,2003, B96:259-276.
    [118]Gernjak W, Krutzler T, Glaser A, et al. Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere,2003,50:71-78.
    [119]Kavitha V, Palanivelu K Degradation of nitrophenols by Fenton and photo-Fenton processes. J Photochem Photobiol A,2005,170:83-95.
    [120]Yuan S H, Lu X H Comparison treatment of various chlorophenols by electro-Fenton method:relationship between chlorine content and degradation. J Hazard Mater,2005,118: 85-92.
    [121]Yuan S, Tian M, Cui Y, et al. Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J Hazard Mater,2006,137:573-580.
    [122]Irmak S, Kusvuran E, Erbatur O. Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl Catal B,2004,54:85-91.
    [123]Oturan N, Panizza M, Oturan M A. Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics. J Phys Chem A,2009,113:10988-10993.
    [124]Narayanan T S N S, Magesh G, Rajendran N. Degradation of O-chlorophe nol from aqueous solution by electro-Fenton process. Fresenius Environ Bull,2003,12:776-780.
    [125]Zhang H, Fei C, Zhang D, et al. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater,2007,145:221-232.
    [126]Papastavrou C, Mantzavinos D, Diamadopoulos E. A comparative treatment of stabilized landfill leachate:Coagulation and activated carbon adsorption vs. electrochemical oxidation. Environ Technol,2009,30:1547-1553.
    [127]Altin A. An alternative type of photoelectro-Fenton process for the treatment of landfill leachate. Sep Purif Technol,2008,61:391-397.
    [128]Mohajeri S, Aziz H A, Isa M H, et al. Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. J Hazard Mater,2010,176:749-758.
    [129]Zhang H, Zhang D, Zhou J. Removal of COD from landfill leachate by electro-Fenton method. J Hazard Mater,2006,135:106-111.
    [130]Atmaca E. Treatment of landfill leachate by using electro-Fenton method. J Hazard Mater, 2009,163:109-114.
    [131]Lin S H, Chang C C. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Res,2000,34:4243-4249.
    [132]Yamarik T A. Safety assessment of dichlorophene and chlorophene. Int J Toxicol,2004,23: 1-27.
    [133]Sires I, Arias C, Cabot P L, et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere,2007,66:1660-1669.
    [134]Isarain-Chavez E, Garrido J A, Rodriguez R M, et al. Mineralization of metoprolol by electro-Fenton and photoelectro-Fenton processes. J Phys Chem A,2011,115:1234-1242.
    [135]Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal B,1998,16:31-42.
    [136]Ting W P, Huang Y H, Lu M C. Catalytic treatment of petrochemical wastewater by electro-assisted Fenton technologies react. Kinet Catal Lett,2007,92:41-48.
    [137]Zhu X, Tian J, Liu R, et al. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology. Sep Purif Technol, 2011,81:444-450.
    [138]Agladze G R, Tsurtsumia G S, Jung B I, et al. Comparative study of chemical and electrochemical Fenton treatment of organic pollutants in wastewater. J Appl Electrochem,2007, 37:985-990.
    [139]Chen W S, Lin S Z. Destruction of nitrotoluenes in wastewater by electro-Fenton oxidation. J Hazard Mater,2009,168:1562-1568.
    [140]Ayoub K, Nelieu S, van Hullebusch E D, et al. Electro-Fenton removal of TNT:Evidences of the electro-chemical reduction contribution. Appl Catal B,2011,104:169-176.
    [141]Ting W P, Lu M C, Huang Y H. Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process. J Hazard Mater,2009,161:1484-1490.
    [142]Martins A F, Wilde M L, Vasconcelos T G, et al. Nonylphenol polyethoxylate degradation by means of electrocoagulation and electrochemical Fenton. Sep Purif Technol,2006,50: 249-255.
    [143]Ghosh P, Samanta A N, Ray S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination,2011, 266:213-217.
    [144]Kurt U, Apaydin O, Gonullu M T. Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. J Hazard Mater,2007,143:33-40.
    [145]Bonakdarpour A, Esau D, Cheng H, et al. Preparation and electrochemical studies of metal-carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim Acta, 2011,56:9074-9081.
    [146]Assumpcao M H M T, Moraes A, De Souza R F B, et al. Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl Catal A,2012,411-412: 1-6.
    [147]Lee Y H, Li F, Chang K H, et al. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl Catal B,2012,126:208-214.
    [148]Zhang X, Fu J, Zhang Y, et al. A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in electro-Fenton system. Sep Purif Technol, 2008,64:116-123.
    [149]Zhang X, Lei L, Xia B, et al. Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in electro-Fenton. Electrochim Acta,2009,54:2810-2817.
    [150]Forti J C, Nunes J A, Lanza M R V, et al. Azobenzene-modified oxygen-fed graphite/PTFE electrodes for hydrogen peroxide synthesis. J Appl Electrochem,2007,37:527-532.
    [151]Forti J C, Rocha R S, Lanza M R V, et al. Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone. J Electroanal Chem, 2007,601:63-67.
    [152]Ma Q, Liu T, Tang T, et al. Drinking water disinfection by hemin-modified graphite felt and electrogenerated reactive oxygen species. Electrochim Acta,2011,56:8278-8284.
    [153]Zhang G, Yang F, Gao M, et al. Electrocatalytic behavior of the bare and the anthraquinonedisulfonate/polypyrrole composite film modified graphite cathodes in the electro-Fenton system. J Phys Chem C,2008,112:8957-8962.
    [154]Sellers R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(Ⅳ) oxalate. Analyst,1980,105:950-954.
    [155]Oiang Z, Chang J H, Huang C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res,2002,36:85-94.
    [156]Zheng M T, Liu Y L, Xiao Y, et al. An easy catalyst-free hydrothermal method to prepare monodisperse carbon microspheres on a large scale. J Phys Chem C,2009,113:8455-8459.
    [157]Panchakarla L S, Govindaraj A, Rao C N R. Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano,2007,1:494-500.
    [158]Kundu S, Wang Y, Xia W, et al. Thermal stability and reduccibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces:A quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C,2008,112:16869-16878.
    [159]Liu S H, Chen S C, Sie W H. Heat-treated platinum nanoparticles embedded in nitrogen-doped ordered mesoporous carbons:Synthesis, characterization and their electrocatalytic properties toward methanol-tolerant oxygen reduction. Int J Hydrogen Energ,2011,36: 15060-15067.
    [160]Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen-doped graphenevia thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011,5:4350-4358.
    [161]Okpalugo T I T, Papakonstantinou P, Murphy H, et al. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon,2005,43:153-161.
    [162]Tammeveski K, Kontturi K, Nichols R J, et al. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J Electroanal Chem,2001,515:101-112.
    [163]Sarapuu A, Vaik K, Shiffrin D J, et al. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J Electroanal Chem,2003, 541:23-29.
    [164]Alexeyeva N, Shulga E, Kisand V, et al. Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions. J Electroanal Chem,2010,648:169-175.
    [165]Shen W Z, Li Z J, Liu Y H. Surface chemical functional groups modification of porous carbon. Recent Patents on Chemical Eng,2008,1:27-40.
    [166]Khare B, Wilhite P, Tran B, et al. Functionalization of carbon nanotubes via nitrogen glow discharge. J Phys Chem B,2005,109:23466-23472.
    [167]Basova Y V, Hatori H, Yamada Y, et al. Effect of oxidation-reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers. Electrochem Commun,1999,1: 540-544.
    [168]曹海琳,黄玉东,张志谦.H3P04溶液中碳纤维表面电化学改性机理研究.航空材料学报,2004,24(3):32-35.
    [169]Oztekin Y, Tok M, Nalvuran H, et al. Electrochemical modification of glassy carbon electrode by poly-4-nitroaniline and its application for determination of copper(Ⅱ). Electrochim Acta,2010,56:387-395.
    [170]'Temocin Z. Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid. Sens Actuators B,2013,176:796-802.
    [171]Verma P, Maire P, Novak P. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality. Electrochim Acta,2011,56:3555-3561.
    [172]Sun Y P, Fan X Z, Lu Y H, et al. Electrocatalytic performance and pseudo-capacitive characteristics of modified graphite electrodewith Fe3+/Fe2+ in H2SO4 Solution. Acta Phys -Chim Sin,2012,28:603-608.
    [173]Wang C C, Hu C C. Electrochemical catalytic modification of activated carbon fabrics by ruthenium chloride for supercapacitors. Carbon,2005,43:1926-1935.
    [174]Zhou M, Chi M, Wang H, et al. Anode modification by electrochemical oxidation:A new practical method to improve the performance of microbial fuel cells. Biochem Eng J,2012,60: 151-155.
    [175]Wu Z, Cong Y, Zhou M, et al. Nitrophenol abatement by the combination of electrocatalysis and activated carbon. Chem Eng J,2005,106:83-90.
    [176]Ishag M I O, Moseley P G N. Effects of UV light on dilute aqueous solutions of m-and p-nitrophenol. Tetrahedron,1977,33:3141-3144.
    [177]Wei L, Zhu H, Mao X, et al. Electrochemical oxidation process combined with UV photolysis for the mineralization of nitrophenol in saline wastewater. Sep Purif Technol,2011,77: 18-25.
    [178]Shen S, Chang Z, Liu H. Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater. Sep Purif Technol,2006,49:217-222.
    [179]Bo L, Quan X, Chen S, et al. Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Res, 2006,40:3061-3068.
    [180]Chu Y Y, Qian Y, Wang W J, et al. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J Hazard Mater,2012,199-200: 179-185.
    [181]Roldan L, Santos I, Armenise S, et al. The formation of a hydrothermal carbon coating on graphite microfiber felts for using as structured acid catalyst. Carbon,2011,50:1363-1372.
    [182]Hsieh C T, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon,2002,40:667-674.
    [183]Sires I, Oturan N, Oturan M A, et al. Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta,2007,52:5493-5503.
    [184]Kruusenberg I, Alexeyeva N, Tammeveski K. The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon,2009,47:651-658.
    [185]Wass J R T J, Ahlberg E, Panas I, et al. Quantum chemical modelling of the rate determining step for oxygen reduction on quinones. Phys Chem Chem Phys,2006,8:4189-4199.
    [186]张翼,马军,李雪峰,等.活性炭生物转盘法处理化工废水.化工环保,2006,26(4):272-275.
    [187]吴桂萍,杜春慧,徐又一.内置转盘式膜/生物反应器处理污水的工艺条件研究.环境科学,2006,27(11):2217-2221.
    [188]吕永涛,董凌霄,叶向德,等.厌氧氨氧化在生物转盘系统中的实现.环境科学学报,2007,27(5):753-757.
    [189]李星文,唐启明,张彬.纤维转盘过滤技术在城市污水深度处理中的应用.中国环保产业,2009,5:38-40.
    [190]李英柳,邬红娟,李爱莲.转盘式反应器光催化氧化含酚废水的试验研究.工业水处理,2006,26(10):33-35.
    [191]Xu Y, He Y, Jia J, et al. Cu-TiO2/Ti dual rotating disk photocatalytic (PC) reactor:Dual electrode degradation facilitated by spontaneous electron transfer. Environ Sci Technol,2009,43: 6289-6294.
    [192]Xu Y, He Y, Cao X, et al. TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor:A combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Environ Sci Technol,2008,42:2612-2617.
    [193]Yao Y, Li K, Chen S, et al. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chem Eng J, 2012,187:29-35.
    [194]Zhong D, Yang J, Xu Y, et al. De-colorization of Reactive Brilliant Orange X-GN by a novel rotating electrochemical disc process. J Environ Sci,2008,20:927-932.
    [195]袁慧慧,钟登杰,方宁,等.电化学转盘/电凝聚法处理模拟活性染料废水的研究.环境工程学报,2007,1(5):15-20.
    [196]Zhang A, Zhou M, Zhou Q. A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent. Anal Chim Acta,2011,686:133-143.
    [197]Zhang A, Zhou M, Han L, et al. Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes:A comparative study. Appl Catal A,2010,385:114-122.
    [198]Zhang A, Zhou M, Liu L, et al. A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode. Electrochim Acta,2010,55: 5091-5099.
    [199]Zhang A, Zhou M, Han L, et al. The combination of rotating disk photocatalytic reactor and TiO2 nanotube arrays for environmental pollutants removal. J Hazard Mater,2011,186: 1374-1383.
    [200]李庄,曾光明,高兴斋.偶氮染料废水处理研究现状及其发展方向.湖南化工,2000,30(6):12-15.
    [201]Shen C, Shen Y, Wen Y, et al. Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res,2011,45:5200-5210.
    [202]曹振宇.金属络合染料的研究进展.河南工程学院学报(自然科学版),2009,21(2):14-19.
    [203]Zhang M, An T, Hu X, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide. Appl Catal A,2004,260:215-222.
    [204]Wang K H, Hsieh Y H, Chou M Y, et al. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl Catal B,1999,21:1-8.
    [205]Abdullah M, Low G K C, Matthews R W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J Phys Chem,1990, 94:6820-6825.
    [206]De Laat J, Truong Le G, Legube B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2. Chemosphere,2004,55:715-723.
    [207]Diagne M, Oturan N, Oturan M A. Removal of methyl parathion from water by electrochemically generated Fenton's reagent. Chemosphere,2007,66:841-848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700