用户名: 密码: 验证码:
70MPa复合材料氢气瓶液压疲劳试验装置及压力和温度控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能因其具有储量丰富、燃烧值高、可再生等优点,被认为是21世纪最具发展前景的清洁能源,对于解决目前困扰世界的“能源短缺”和“环境污染”两大难题具有重要的战略意义。随着燃料电池技术的发展,氢燃料电池汽车正逐渐成为世界汽车厂商竟相研发的热点。
     高压储氢技术具有设备结构简单、充放速度快、压缩氢气能耗低等优点,是目前氢燃料电池汽车采用的主要储氢方式。复合材料氢气瓶承压能力强,质量轻,耐腐蚀性能好,是当前氢燃料电池汽车用氢气瓶的首选型式。由于储存的介质是易燃易爆的氢气,在使用过程中具有潜在的泄漏和爆炸危险,因此其安全性能是氢燃料电池汽车得以被公众广泛接受和市场化推广的关键。
     液压疲劳试验是检测复合材料气瓶宏观强度、安全裕度、结构设计合理性与可靠性的重要手段。美国、欧盟、日本、ISO和我国标准对于液压疲劳试验都提出了明确的要求。然而,目前国内还没有完全满足相关标准要求的70MPa复合材料气瓶液压疲劳试验的装置。另外,在进行液压疲劳试验时,应对压力和温度实施有效的控制,而对于复合材料气瓶在液压疲劳试验过程中的升压规律和温度变化规律的研究却很少,目前还没有一套能够准确控制升压速率和气瓶温度的方法。
     在国家高技术研究计划目标导向课题(“863"计划)项目“高压容器储氢技术和装备(项目编号:2006AA05Z143)”、国家重点基础研究发展计划("973"计划)课题“高密度车载储氢新体系及其安全性预测理论研究(项目编号:2007CB209706)”和国家质量监督检验检疫总局公益性行业科研专项经费项目“车用纤维缠绕高压氢气瓶标准基础研究”(项目编号:10-131)等的支持下,针对复合材料氢气瓶液压疲劳试验的要求,本文从液压疲劳试验装置研制,试验过程中压力和温度的变化规律以及升压速率和气瓶温度控制方法等方面开展研究,主要的研究内容和成果如下:
     (1)基于公称压力为70MPa的复合材料氢气瓶水压试验、爆破试验和常温压力循环试验的技术要求,确定了液压疲劳试验装置的介质种类、压力等级、输出流量等方面关键技术参数。综合考虑液压疲劳试验的要求、增压装置的特点和工作原理,提出了试验装置总体设计方案。对压力循环过程的实现方式进行研究,提出采用三通型和二通型气动换向阀联合作用的方式,有效降低了保压和卸压过程的能耗。对气动泵和柱塞泵流量特性进行分析,得到气动泵流量与输出压力和驱动气压的关系,基于增压泵流量特性,提出采用驱动气压调节和转速调节的方式实现气动泵和柱塞泵的流量调节。综合考虑了压力调节和流量调节的特性和相关元件的调节范围,提出通过流量控制的方式实现下限压力的调节。在此基础上进行流程设计,搭建液压疲劳试验装置,并通过试验验证了试验装置的功能。该装置的成功研制提升了我国复合材料氢气瓶安全性能检测能力。
     (2)在考虑介质的压缩性和气瓶容积变化的基础上,建立了复合材料氢气瓶增压过程的理论分析模型。基于水的状态方程,推导出压缩系数计算式。结合有限元分析方法,提出气瓶容积的计算方法。结合理论分析模型和介质压缩系数、气瓶容积及增泵流量特性,得到复合材料气瓶升压速率和升压时间的计算方法。通过对比计算结果和试验结果,验证了升压速率计算方法的准确性。分析了气瓶容积变化、介质温度和增压泵流量对升压速率的影响规律,结果表明:气瓶容积变化对升压速率存在较大影响,介质温度对升压速率的影响可以忽略,指出通过控制增压泵流量能有效控制升压速率。基于升压速率的计算方法,提出升压速率的控制方法,得到了保证升压速率要求下增压泵流量限制值。对于柱塞泵可采用调节电机转速的方式,对于气动泵可采用调节驱动气压的方式,并得到柱塞泵电机转速和气动泵驱动气压的取值范围。
     (3)基于变质量系统热力学理论,建立了复合材料氢气瓶压力循环试验过程的热力学模型,模型考虑了介质的压缩与膨胀、介质与内壁的对流传热、气瓶壁的导热以及外壁与环境的自然对流换热等。开展了复合材料氢气瓶压力循环过程温度变化试验研究,通过试验验证了理论模型的准确性。基于该热力学模型,对氢能与燃料电池国际合作伙伴计划(International Partnership for Hydrogen and Fuel Cell in Economy, IPHE)组织循环对比试验所用24.8MPa、54L的Ⅳ型气瓶在充入介质温度、循环频率、环境温度等参数影响下的压力循环试验过程进行了数值模拟研究,得到了各参数对气瓶平衡温度的影响规律。研究结果表明:经过一定的循环次数,气瓶温度逐渐达到稳定状态;气瓶壁面平衡温度与充入介质温度和环境温度近似呈线性关系,循环频率对气瓶壁面平衡温度的影响并不明显。依据数值计算结果得出了较为精确的气瓶平衡温度计算公式。基于该平衡温度计算公式,提出了控制气瓶温度的方法,通过控制充入介质温度可以有效控制气瓶温度,并得出保证气瓶温度要求的不同试验条件下充入介质温度取值范围。
Hydrogen has become the most promising clean energy of21st century because of its excellent advantages such as rich reserve, high combustion efficiency and reproducible ability. It has important strategic significance for solving the problems of energy shortage and environmental pollution puzzling all over the world. With the development of fuel cell technology, hydrogen fuel cell vehicle has become the focus of the world automobile manufacturers.
     High pressure gaseous hydrogen storage is the most popular and mature method for fuel cell vehicle due to its technical simplicity, fast filling-releasing rate and low energy consumption for compressing hydrogen. Composite cylinder as the first choice for on-board hydrogen storge has the advantages of high-pressure-resistant ability, light weight and corrosion resistance. The safety performance of high-pressure hydrogen storage with potential risk of leakage and explosion is the important factor that infuences the public to accept fuel cell vehiceles and marketing promotion.
     Hydraulic fatigue test is the important means to detect macroscopic strength, safety margin, construction rationality and reliability of composite cylinder. Definite requirements have been proposed in relevant standards of US, EU, Japan, ISO and China. However, it is found that there is no hydraulic fatigue test system for70MPa composite cylinder in China. Pressure and temperature should be controlled during hydraulic fatigue test. However, little research has been done on the law of pressure rise and temperature variation, and contorl method of pressure and temperature during hydraulic fatigue test has not been established.
     Researches on development of hydraulic test system and pressure rise and temperature rise of high-pressure hydrogen cylinder during hydraulic test and pressure cycling test is conducted in this paper, which is supported by the National High Technology Research and Development Program of China (863Program)"Technology and equipment of high pressure hydrogen storage vessels"(No.2006AA05Z143), Key Project of China National Programs for Fundamental Research and Development of China (973Program)"New high-density on-board hydrogen storage system and its theoretical safety prediction research"(No:2007CB209706), and the nonprofit industry research project of General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China(No:10-131). The main contents and conclusions of this paper are as follows:
     (1) Based on requirements of hydraulic test, burst test and pressure cycling test for70MPa composite hydrogen cylinder, parameters of hydraulic fatigue test system are determined such as type of medium, pressure class and flow rate. Considering the feature of hydraulic fatigue test and working principle of pressure device, a general design scheme of hydraulic fatigue system is proposed. The combination of3-way and2-way pneumatic directional valves is proposed by studing on the realization modes of pressure cycle, which effectively reduces energy consumption during pressure keeping and relief. The flow rate of air driven pump with output pressure and pneumatic pressure through analyzing the flow characteristics of booster pumps. Motor speed and pneumatic pressure regulation are used to change the flow rate for air driven pump and plunger pump. And flow control is used to control the lower limit pressure. On this basis, a process design is conducted and the hydraulic fatigue test system for70MPa composite hydrogen cylinder is built which improves detection ability of safety performance and provides strong support for design and experimental study of high pressure composite hydrogen cylinder.
     (2) A theoretical analysis model has been established for pressurization of composite cylinder in which compressibility of medium and volume change of cylinder are comprehensively considered. Based on the equation of state of water, a formula of compressibility is derived. A calculation method for the volume of composite cylinder with pressure is proposed by finite element method. A calculation method of pressure rise rate and time is established combined with the theoretical analysis model, compressibility of water, volume of composite cylinder and flow characteristics of booster pumps. The calculation method is verified by experimental data. Effects of the volume change of cylinder, medium temperature and flow rate of pump on the pressure rise rate are investigated. It is revealed that the pressure rise rate is greatly affected by volume change of composite cylinder and is little affected by medium temperature, and pressure rise rate can be controlled by controlling the flow rate of pump. Furthermore, the control method of pressure rise rate is brought out. The value range of motor speed for plunger pump and pneumatic pressure for air driven pump is obtained.
     (3) Based on the theory of variable mass thermodynamics system, a thermodynamic model has been established for pressure cycling process, in which compression and expansion of medium, convective heat transfer between medium and inner surface, heat conduction in cylinder, and convective heat transfer between outer surface and environment are fully considered. A experimental study is taken on the temperature rise of composite hydrogen cylinder during pressure cycling test. The accuracy of the model is verified by the comparison between the experimental and simulation results. The thermodynamic model is employed to analyze the influence law of test parameters on equilibrium temperature of cylinder. It is shown that the temperature of cylinder surface is stable after several cycles, the equilibrium temperature of cylinder surface increase linearly with the increase of filling medium temperature and ambient temperature, and frequency has no significant effect on equilibrium temperature of cylinder surface for24.8MPa/54L type4composite cylinder used in IPHE round robin test. Based on simulation results, an equation for equilibrium temperature of cylinder surface is put forward. Furthermore, the control method of temperature of cylinder is brought out. Temperature of cylinder can be controlled by controlling the filling medium temperature. The value range of filling medium temperature for test requirement with various conditions was obtained.
引文
[1]毛宗强.氢能及其近期应用前景[J].科技导报,2005,23(2):34-38.
    [2]U.S. National Research Council. The hydrogen economy:opportunities, costs, barriers, and R&D needs[M]. Washington DC:National Academy Press,2004.
    [3]BARRETO L, MAKIHIRA A, RIAHIK. The hydrogen economy in the 21 st century: a sustainable development scenario [J]. International Journal of Hydrogen Energy, 2003,28(3):267-284.
    [4]王东军,李建忠,刘彬等.国内外制氢技术的研究进展[J].石油化工,2012,41(Z):398-400.
    [5]FUNK J E. Thermochemical hydrogen production:past and present[J]. International Journal of Hydrogen Energy,2001,26(3):185-190.
    [6]LIU Z X, QIU Z M, LUO Y, et al. Operation of first solar-hydrogen system in China[J]. International Journal of Hydrogen Energy,2010,35(7):2762-2766.
    [7]郭烈锦,赵亮,敬登伟等.太阳能高效低成本规模转化制氢研究[J].工厂动力,2010,(2):36-47.
    [8]HONNERY D, MORIARTY P. Energy availability problems with rapid deployment of wind-hydrogen systems[J]. International Journal of Hydrogen Energy,2011,36(5): 3283-3289.
    [9]斯蒂普,张立霞.氢能源为风力发电发展带来新的机遇[J].风力发电,2003,19(4):26-28.
    [10]毛宗强.氢能知识系列讲座(1)氢能:人类未来的清洁能源——由《百年备忘录》说开去[J].太阳能,2007,(1):9-11.
    [11]WINTER C J. Hydrogen energy-Abundant, efficient, clean:A debate over the energy-system-of-change[J]. International Journal of Hydrogen Energy,2009,34(14, Supplement 1):S1-S52.
    [12]毛宗强.走出认识误区积极开发氢能[J].中国科技成果,2006,(2):11-13.
    [13]毛宗强.氢能——21世纪的绿色能源[M].北京:化学工业出版社,2005.
    [14]王赓,郑津洋.氢能技术——标准体系与战略[M].北京:化学工业出版社,2013.
    [15]毛宗强.氢能知识系列讲座(2)氢从哪里来?[J].太阳能,2007,(2):20-22.
    [16]毛宗强.氢能知识系列讲座(3)如何把氢储存起来?[J].太阳能,2007,(3):17-19.
    [17]毛宗强.氢能知识系列讲座(4)如何把氢储存起来?[J].太阳能,2007,(4):18-20.
    [18]毛宗强.世界各国加快氢能源市场化步伐——记第18届世界氢能大会(WHEC2010)[J].中外能源,2010,(7):29-34.
    [19]顾钢.国外氢能技术路线图及对我国的启示[J].国际技术经济研究,2004,4(7):34-37.
    [20]Hydrogen and Fuel Cell Budget[OL]. http://www.hydrogen.energy.gov/budget.html.
    [22]2011 Budget Submission to the Government of Canada[R]. Canadian Hydrogen and Fuel Cell Association,2010.
    [23]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321.
    [24]李平,谌海霞.现代汽车环保与节能技术的发展[J].公路与汽运,2006,(2):5-7.
    [25]蓝庆新,曾向东.后哥本哈根时代世界经济发展趋势及中国的对策[J].南京社会科学,2010,(8):23-28,37.
    [26]梁付娟.燃料电池汽车技术产业化潜力研究[D].北京:北京工业大学,2010.
    [27]毛宗强.氢燃料电池汽车新进展[J].太阳能,2012,(8):17-22.
    [28]Committee on Review of the FreedomCAR and Fuel Research Program, National Research Council. Review of the Research Program of the FreedomCAR and Fuel Partnership:First Report[M]. Washington DC:National Academy Press,2005.
    [29]Committee on Review of the FreedomCAR and Fuel Research Program, Phase 2, National Research Council. Review of the Research Program of the FreedomCAR and Fuel Partnership:Second Report[M]. Washington DC:National Academy Press, 2008.
    [30]WANCURA H. The European Fuel Cell and Hydrogen Joint Technology Initiative:Accelerating the Innovation Cycle[R]. New Energy World Industry Grouping,2008.
    [31]陈家昌,王菊,伦景光.国际燃料电池汽车技术研发动态和发展趋势[J].汽车工程,2008,30(5):380-385.
    [32]General Motors Hy-wire[EB/OL]. http://en.wikipedia.org/wiki/Hy-wire.
    [33]GM HydroGen3[EB/OL]. http://en.wikipedia.org/wiki/GM_HydroGen3.
    [34]杨妙梁.通用"HYDROGEN 3"与“HY Wrie"燃料电池车的试验[J].汽车与配件,2003,(14):26-29.
    [35]General Motors Sequel[EB/OL]. http://en.wikipedia.org/wiki/GM_Sequel.
    [36]明轩.通用汽车Sequel氢燃料电池车——从概念车向实用化发展[J].汽车与配件,2005,(15):24-27.
    [37]Chevrolet Equinox[EB/OL]. http://en.wikipedia.org/wiki/Chevrolet_Equinox.
    [38]雪佛兰Equinox氢燃料电池车驶向上海世博会[J].电源技术,2010,34(10):993-994.
    [39]Mercedes-Benz B-Class[OL]. http://en.wikipedia.org/wiki/Mercedes-Benz_B-Class.
    [40]雅坤.与”氢”一起飞翔——MERCEDES-BENZ B-CLASS F-CELL[J].世界汽车,2010,(3):28-31.
    [41]杨妙梁.面临挑战并承载希望的本田“上市版”FCX Clarity[J].汽车与配件,2008,(13):34-36.
    [42]杨妙梁.世界燃料电池车发展动向(三)——丰田燃料电池车开发与制氢、储氢技术概况[J].汽车与配件,2005,(5):34-37.
    [43]Hydrogen fuel-cell[OL]. http://en.wikipedia.org/wiki/Toyota#Hydrogen_fuel-cell.
    [44]吴憩棠.我国燃料电池产业化的先驱——访上海神力科技有限公司总经理胡里清博士[J].汽车与配件,2004,(5):19-21.
    [45]忻文.服务奥运的帕萨特领驭燃料电池绿色车队[J].汽车与配件,2008,(39):15-19.
    [46]ZHANG T. The Development of Fuel Cell Vehicles in China[R] International Partnership for hydrogen and fuel cells in the economy,2010.
    [47]文风.福田欧V“零排放”客车服务北京奥运[J].城市车辆,2008,(8):16.
    [48]豪彦.上海世博会零排放园区新能源汽车[J].汽车与配件,2009,(26):16-17.
    [49]MORI D, HIROSE K. Recent challenges of hydrogen storage technologies for fuel cell vehicles[J]. International Journal of Hydrogen Energy,2009,34(10):4569-4574.
    [50]ZUTTEL A. Materials for hydrogen storage[J]. Materials Today,2003,6(9):24-33.
    [51]Jena Puru. Materials for Hydrogen Storage:Past, Present, and Future[J]. The Journal of Physical Chemistry Letters,2011,2 (3):206-211.
    [52]VAN HUMBECK J. Hydrogen Storage for Mobile Applications[R]. MacMillan Group Meeting,2010.
    [53]王振庭,郑青榕,徐轶群.车载储氢研究新进展[J].硅谷,2008,(20):117-118.
    [54]陈卓,廖有贵.储氢技术的研究发展现状[J].化工技术与开发,2012,41(8):29-31.
    [55]郑津洋,傅强,开方明等.轻质高压贮氢容器的现状及发展趋势[J].太阳能学报,2004,25(5):576-581.
    [56]郑津洋,刘贤信,徐平等.高压储氢技术研究进展[A].中国动力工程学会工业气体专业委员会2009年技术论坛[C].杭州,2009.
    [57]ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy,2012,37(1): 1048-1057.
    [58]IRANI R S. Hydrogen Storage:High-Pressure Gas Containment J]. MRS Bulletin, 2002,27(9):680-682.
    [59]THOMAS C, NONY F, VILLALONGA S, et al. Research and development towards new generations of full composite tanks dedicated to 70MPa gaseous hydrogen storage[C]. Wichita, KS, US:Soc. for the Advancement of Material and Process Engineering,2009.
    [60]SIROSH N. Hydrogen composite Tank Program[A]. The 2002 U.S. DOE Hydrogen Progmm Review Meeting[C]. Colorado,2002.
    [61]Hydrogen Fuel Tank Overview[OL]. http://lincolncomposites.com/products/tuffshell-hydrogen-fuel-tanks/.
    [62]Hydrogen Overview[OL]. http://www.dynetek.com/hydrogen.php.
    [63]Material Hydrogen Technology[OL]. http://www.mahytec.com/en/hpstorage.html.
    [64]傅强.轻质高压储氢容器整体优化设计[D].杭州:浙江大学,2004.
    [65]XU P, ZHENG J Y, CHEN H G, et al. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm[J]. International Journal of Hydrogen Energy,2010,35(7):2840-2846.
    [66]LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics[J]. Materials Science and Engineering:A,2008,485(1-2):711-717.
    [67]ZHENG J Y, LIU P F. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates[J]. Computational Materials Science,2008,42(3):453-461.
    [68]LIU P F, XU P, ZHENG J Y. Artificial immune system for optimal design of composite hydrogen storage vessel [J]. Computational Materials Science,2009, 47(1):261-267.
    [69]XU Ping, ZHENG Jinyang, LIU Pengfei. Finite element analysis of burst pressure of composite hydrogen storage vessels[J]. Materials & Design,2009,30(7):2295-2301.
    [70]王余,崔巍.加快新能源产品研发抢占市场竞争制高点[J].科技成果纵横,2011,(6):7.
    [71]车载高压供氢瓶与组合电磁瓶阀研究开发课题通过验收[EB/OL].http://www.most.gov.cn/kjbgz/201110/t20111027_90489.htm.
    [72]U.S. Department of Transportation. DOT CFFC Standard, Basic Requirements for Fully Wrapped Carbon Fiber Reinforced Aluminum Lined Cylinder[S].2000.
    [73]European Committee for Standardization. EN12245, Transportable gas cylinders-Fully wrapped composite cylinders[S].2002.
    [74]International Organization for Standardization. ISO 11439:Gas cylinders-High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles[S].2000.
    [75]GRPE Informal Group. GGH2R Draft Revision 12b, Hydrogen/Fuel Cell Vehicles Draft ECE Compressed Gaseous Hydrogen Regulation Revision 12b[S].2003.
    [76]日本産業か ス協会. JIGA-T-S,压缩水素运送自勤车用容器の技術基準[S].2004.
    [77]International Organization for Standardization. ISO/DIS 15869, Gaseous hydrogen and hydrogen blends-Land vehicle fuel tanks[S].2009.
    [78]Fuel Cell Standards Committee. SAE J 2579 PropDft, Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles[S].2008.
    [79]United Nations ECE/TRANS/WP.29/2013/42. HFCV-GTR, Draft Global Technical Regulation on Hydrogen and Fuel Cell Vehicles[S].2010.
    [80]郑津洋,别海燕,徐平等.车用纤维全缠绕高压储氢气瓶标准研究[J].压力容器,2007,24(11):48-56.
    [81]全国气瓶标准化技术委员会.GB/T 9251-2011气瓶水压试验方法[S].2012.
    [82]全国气瓶标准化技术委员会.GB/T 15385-2011气瓶水压爆破试验方法[S].2012.
    [83]CHEN H G, ZHENG J Y, XU P, et al. Study on real-gas equations of high pressure hydrogen[J]. International Journal of Hydrogen Energy,2010,35(7):3100-3104.
    [84]王培强,姜雪梅,陶幸珍等.气液泵及其控制系统简介[J].现代制造技术与装备,2006,(1):31,35.
    [85]MAXIMATOR. Air Driven Liquid Pumps[Z]. Nordhausen, Germany: MAXIMATOR GmbH,2008.
    [86]HII Products:Air Driven Liquid Pumps[OL]. http://www.hii-pumps.com/liquidpumps.html.
    [87]HASKEL:Air Driven Liquid Pumps[OL]. http://www.haskel.com/corp/details/0,,CLI1_DIV 139_ETI9763,00.html.
    [88]SC PRODUCTS:Liquid Pumps[OL]. http://schydraulic.com/liquidpumps.html.
    [89]MAXIMATOR Products:High Pressure Pumps[OL]. http://www.maximator.de/flycms/en/web/2/-QDQuLzuWJSn7cj07eyxkcpoLF07nFw =/Products.html.
    [90]SCANWILL. The MP-Series of Hydraulic Pressure Intensifier[Z]. Sjaellandsgade, Denmark:Scanwill Fluid Power Aps,2008.
    [91]陈洪,洪建忠,黎启胜.0.5-600MPa自动控制液压试验系统研制[J].液压与气动,2012,(2):59-62.
    [92]王培强,姜雪梅,陶幸珍等.气瓶疲劳试验装置的发展及其应用[J].化工装备技术,2006,27(6):28-30.
    [93]WONG J. Composite Tank Testing, Certification, and Field Performance[R]. International Forum on Pressure Vessels for Hydrogen and Natural Gas Vehicles, Beijing,2010.
    [94]NAKATANI T. Introduction to JARI's Test and Research Facilities[R].1st Asia Automobile Institute Summit, Tokyo,2012.
    [95]Quantum Fuel Systems Technologies Worldwide, Inc.. High-Pressure Hydrogen Storage Systems[R]. Hydrogen and Fuel Cell Summit Ⅷ,2004.
    [96]VILLALONGA S, NONY F, MAGNIER C, et al. Composite 700 bar-vessel for on-board compressed gaseous hydrogen storage[A]. Proceedings of 17th International Conference on Composite Materials[C]. Edinburgh, UK,2009.
    [97]压力脉冲试验台[OL] http://www.maximator.cn/msg.php?id=82.
    [98]HASKEL. High Pressure Systems Technology[Z]. California, USA:Haskel international, inc.
    [99]全国气瓶标准化技术委员会.GB/T 9252-2001气瓶疲劳试验方法[S].2001.
    [100]喻镇涛,熊燕,李鸿飞.汽车储气筒耐压性试验系统的研制[J].汽车零部件,2010,(12):45-47.
    [101]奚晓明,史定国.高压气瓶水压试验装置的设计[J].压力容器,2005,22(8):53-55.34.
    [102]气瓶耐压/疲劳试验机[OL]http://www.shjinran.com/chanpinzhongxin-35079-0-item-35303.html?backurl=/chan pinzhongxin-35079-42429.html.
    [103]气瓶水压爆破试验机[OL] http://www.ivscn.com/products_show-515.html.
    [104]鲁士军,郭海艳,杨永立等.一种超高压水压试验装置[J].工程机械,2010,41(1):5-8.
    [105]刘玉虎,邢科礼,王祖林.高压气瓶疲劳试验系统的开发[J].机床与液压,2008,36(6):88-90.
    [106]周一卉,由宏新,刘润杰.微机测控高压气瓶疲劳试验装置研制[J].压力容器,2005,22(2):45-47.
    [107]DYMOND J H, MALHOTRA R. The Tait Equation:100 Years On[J]. International Journal of Thermophysics,1988,9(6):941-951.
    [108]LI Y H. Equation of State of Water and Sea Water[J]. Journal of Geophysical Research,1967,72(10):2665-2678.
    [109]CHEN C T, MILLERO F J. The equation of state of seawater determined from sound speed[J]. Journal of Marine Research,1978,36(4):657-691.
    [110]FISHER F H, DIAL O E, Jr. Equation of State of Pure Water and Sea Water[R]. Marine Physical Laboratory of the Scripps Institution of Oceanography, San Diego, 1975.
    [111]GIBSON R E. The Influence of the Concentration and Nature of the Solute on the Compressions of Certain Aqueous Solutions[J]. Journal of the American Chemical Society,1935,57:284-293.
    [112]CHEN C T, FINE R A, MILLERO F J. The equation of state of pure water determined from sound speeds[J]. The Journal of Chemical Physics,1977,66(5): 2142-2144.
    [113]CHEN C T, MILLERO F J. The equation of state of seawater determinded from sound speeds[J]. Journal of Marine Research,1978,36(4):657-691.
    [114]周小祥.复合材料板冲击拉伸性能的实验研究与数值模拟[D].杭州:西北工业大学,2012.
    [115]GUEDES R M, VAZ M A, FERREIRA F J, et al. Response of CFRP Laminates under High Strain Rate Compression until Failure[J]. Science and Engineering of Composite Materials,2011,12(1-2):145-152.
    [116]KIM J K, Yu T X. Strain Rate Effects on GRP, KRP and CFRP Composite Laminates[J]. Key Engineering Materials,1998,141-143:427-452.
    [117]TANIGUCHI N, NISHIWAKI T, KAWADA H. Tensile strength of unidirectional CFRP laminate under high strain rate[J]. Advanced Composite Materials,2007, 16(2):167-180.
    [118]ZHOU Y X, WANG Y, JEELANI S, et al. Experimental Study on Tensile Behavior of Carbon Fiber and Carbon Fiber Reinforced Aluminum at Different Strain Rate[J]. Applied Composite Materials,2007,14(1):17-31.
    [119]黄卫星,李建明,肖泽仪.工程流体力学[M].北京:化学工业出版社,2010.
    [120]FINE R A, MILLERO F J. Compressibility of Water as a Function of Temperature and Pressure[J]. The Journal of Chemical Physics,1973,59(10):5529-5536.
    [121]宋维凤,郝延平,马毅等.对铝合金内胆碳纤维全缠绕复合气瓶的水压试验结果分析[J].低温与特气,2012,30(1):43-48.
    [122]惠晓涛,黄志敏.压力容器水压试验升降压速度的计算[J].锅炉技术,2000,31(7):6-8,22.
    [123]张锡璋.压力容器水压试验加压时间的计算[J].安装,2004,(2):13-14.
    [124]吴大声.压力容器水压试验升压时间的计算[J].中国特种设备安全,2006,22(7):26-28.
    [125]苏文献,祝彦寿,马宁等.车用压缩天然气全缠绕复合材料气瓶强度试验及数值模拟[J].上海理工大学学报,2010,32(2):174-178.
    [126]TOMIOKA J, KIGUCHI K, TAMURA Y, et al. Influence of Temperature on the Fatigue Strength of Compressed-Hydrogen Tanks for Vehicles[J]. International Journal of Hydrogen Energy,2011,36(3):2513-2519.
    [127]MAIR G W. Fatigue Testing and its Operational Relevance[R]. StorHy Final Event, 2008.
    [128]BERTIN M, TOUCHARD F, LAFARIE-FRENOT M-C. Experimental study of the stacking sequence effect on polymer/composite multi-layers submitted to thermomechanical cyclic loadings. International Journal of Hydrogen Energy, 2010,35(2):397-404.
    [129]韩孟虎,曹克强,胡良谋等.基于AMESim的柱塞泵热力学模型及仿真[J].机床与液压,2012,40(1):136-138.
    [130]HIROSHI R, TOMIOKA J, MAEDA Y, et al. Thermal behavior in hydrogen storage tank for fuel cell vehicle on fast filling[R]. Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France.2006.
    [131]MATSUNO Y, MAEDA Y, OTSUKA N, et al. Attained temperature during gas fueling and defueling cycles of compressed hydrogen tanks for FCV[R]. International Conference on Hydrogen Safety (ICHS) 4th, San Francisco, California, USA.2011.
    [132]LIU Y L, ZHAO Y Z, ZHAO L, et al. Experimental studies on temperature rise within a hydrogen cylinder during refueling[J]. International Journal of Hydrogen Energy,2010,35:2627-2632.
    [133]ZHAO L, LIU Y L, YANG J, et al. Numerical simulation of temperature rise within hydrogen vehicle cylinder during refueling[J]. International Journal of Hydrogen Energy,2010,35:8092-8100.
    [134]ZHENG J Y, GUO J X, YANG J, et al. Experimental and numerical study on temperature rise within a 70 MPa type Ⅲ cylinder during fast refueling[J]. International Journal of Hydrogen Energy,2013,38(25):10956-10962.
    [135]别海燕.铝内胆纤维全缠绕高压氢气瓶耐火及抗疲劳性能研究[D].杭州:浙江大学,2011.
    [136]ENERPAC.4-Way Directional Control Valves[Z]. Wisconsin, USA:ENERPAC, 2013.
    [137]HYDRAFORCE. SOLENOID VALVES -SV10-47A Spool,4-Way,3-Position, Tandem Center[Z]. Illinois, USA:HYDRAFORCE,2013.
    [138]PARKER:Solenoid Valves [OL]. http://www.parker.com/literature/Literature%20Files/IHD/PCsection.pdf.
    [139]CLARK COOPER. High Pressure Solenoid Valves[Z]. New York, USA:CLARK COOPER Division,2012.
    [140]HIP. High Pressure Equipment[Z]. Pennsylvania, USA:High Pressure Equipment Company,2005.
    [141]PRATISSOLI. PNRV1-Pneumatic-adjustable pressure regulator[Z]. Reggio Emilia, Italy:Interpump Group S.P.A,2008.
    [142]MAXIMATOR. Valves, Fittings, Tubing[Z]. Nordhausen, Germany:MAXIMATOR GmbH,2008.
    [143]AUTOCLAVE:Needle Valves[OL]. http://www.autoclave.com/products/needle_valves/index.html.
    [144]陈盛强.气动增压泵的参数与特性[J].凿岩机械气动工具,1985,(4):1-7,20.
    [145]SMC.电气比例阀ITV1000·2000·3000系列[Z].北京:SMC(中国)有限公司,2004.
    [146]李云,姜培正.过程流体机械[M].第2版.北京:化学工业出版社,2008.
    [147]王瑾,孙艳萍.变频调速技术及应用[M].北京:化学工业出版社,2012.
    [148]赵新泽.液压传动基础[M].武汉:华中科技大学出版社,2012.
    [149]HII. Air Driven Liquid Pumps[Z]. Chatsworth, California, USA:Hydraulics Internatinal, Inc,2002.
    [150]PRATISSOLI. SH series Instruction Manual[Z]. Reggio Emilia, Italy:Interpump Group S.P.A,2008.
    [151]郑津洋,马歆,蔺建成等.自保护快速启闭式超高压食品加工容器:中国,ZL200520014214.0[P].2006-10-25.
    [152]Thermophysical Properties of Fluid Systems[DB/OL] http://webbook.nist.gov/chemistry/fluid/
    [153]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [154]苏文献,祝彦寿,马宁等.车用压缩天然气全缠绕复合材料气瓶强度试验及数值模拟[J].上海理工大学学报,2010,32(2):174-178.
    [155]侯少静.铝内胆碳纤维增强复合材料储氢气瓶多尺度失效性能分析[D].杭州: 浙江大学,2012.
    [156]沈维道,蒋智敏,童钧耕.工程热力学[M].第3版.北京:高等教育出版社,2001.
    [157]CHASE M W, Jr. NIST-JANAF Themochemical Tables, Fourth Edition. Journal of Physical and Chemical Reference Data,1998, Monograph(9):1-1951[OL] http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=2#Thermo-Condensed.
    [158]MEANS J D, ULRICH R D. Transient Convective Heat Transfer During and After Gas Injection Into Containers[J]. Journal of Heat Transfer,1975,97(2):282-287.
    [159]CLARK G L. Zero-dimensional model of compressible gas flow in networks of pressure vessels:program TRIC[R]. Sandia National Laboratories, Livermore, CA, USA,1983.
    [160]CHARTON V B, CORRIOU J P. A Simplified Model for Real Gas Expansion Between Two Reservoirs Connected by a Thin Tube[J]. Chemical Engineering Science,1996,51(2):295-308.
    [161]WINTERS W S, EVANS G H, RICE S F, et al. Transient PVT Measurements and Model Predictions for Vessel Heat Transfer-Part II[R], SAND 2010-4683 Unlimited Release,2010.
    [162]何潮洪,冯霄.化工原理(上册)[M].第2版.北京:科学出版社,2007.
    [163]WATANABE K. Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance[A]. The International Association for the Properties of Water and Steam[C]. Vejle, Denmark,2008.
    [164]FERNANDEZ-PRINI R. Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance[A]. The International Association for the Properties of Water and Steam [C]. London, England,1998.
    [165]MARTYNENKO O G, KHRAMTSOV P P. Free-Convective Heat Transfer[M]. Berlin Heidelberg:Springer-Verlag,2005.
    [166]英克鲁佩勒,德维特,伯格曼等.传热和传质基本原理[M].葛新石,叶宏,译.北京:化学工业出版社,2009.
    [167]刘格思.70MPa车用储氢气瓶快充温升研究[D].杭州:浙江大学,2012.
    [168]WOODFIELD P L, MONDE M, TAKANO T. Heat transfer characteristics for practical hydrogen pressure vessels being filled at high pressure[J]. J Therm Sci Tech, 2008,3(2):241-253.
    [169]李磊.加氢站高压氢系统工艺参数研究[D].杭州:浙江大学,2007.
    [170]Fuel Cell Standards Committee. SAE TIR J 2601, Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles[S].2010.
    [171]《工程材料实用手册》编委会.工程材料实用手册(第七卷)[M].第2版.中国标准出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700