用户名: 密码: 验证码:
石墨烯类流体制备技术及其自展平行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有独特的载流子输运性质、超高的比表面积、电导率、热导率以及机械强度,在自然科学界引起了广泛关注。然而,这种柔软的超薄二维碳质纳米材料极易自发形成褶皱和折叠结构,导致基于石墨烯的材料和器件性能大幅下降。因此,开发一种简单可行的方法消除石墨烯的褶皱和折叠结构、提高石墨烯材料和器件的性能具有重要的理论意义和应用价值。本博士论文通过采用三种不同的化学方法对石墨烯进行表面修饰制备了具有无溶剂纳米液体特性的石墨烯类流体,使石墨烯片层的褶皱、折叠结构被消除;系统研究了石墨烯类流体的结构、性能及潜在应用。主要研究内容和结果如下:
     1、通过苯胺单体在氧化石墨烯表面的原位氧化聚合制备了聚苯胺包覆石墨烯;利用聚苯胺的质子酸掺杂机制将柔性长链离子引入到体系中,得到聚苯胺包覆法石墨烯类流体(PANI-GF)。红外光谱(FT-IR)、紫外可见光谱(UV-vis)、元素分析、扫描电镜(SEM)以及透射电镜(TEM)结果表明PANI-GF是以石墨烯为主体、以柔性长链离子掺杂聚苯胺微纤为包覆层的片状杂化纳米材料;流变性能测试数据显示PANI-GF具有类液体特性,室温下粘度为2800Pa.s。
     2、通过对聚苯胺包覆氧化石墨烯进行化学还原制备了水溶性石墨烯。元素分析数据表明,这种水溶性石墨烯中聚苯胺的质量分数仅为3%。SEM和TEM图片显示,在这种水溶性石墨烯表面不存在聚苯胺微纤结构。如此低含量的修饰分子就能够保证石墨烯材料具有优异的水分散性,这为制备水溶性石墨烯材料提供了一种简单可行的新方法。
     3、通过3-(三甲氧基硅丙基)二甲基十八烷基氯化铵(DC5700)与氧化石墨烯表面含氧官能团的脱水缩合反应制备了氧化石墨烯有机离子盐;用柔性长链离子与经过化学还原的石墨烯有机离子盐(RGO-DC5700)进行离子交换制备了偶联接枝法石墨烯类流体(CG-GF)。FT-IR和能量弥散X射线(EDX)能谱表明DC5700以及柔性长链离子已接枝到石墨烯表面;TEM图片显示CG-GF中的石墨烯片层十分平整,没有褶皱和折叠结构。流变性能数据表明CG-GF具有类液体性质,粘度比PANI-GF低,室温下为120Pa.s。
     4、合成了对氨基苯磺酸重氮盐,利用石墨烯表面电子向重氮盐的自发转移机制将重氮盐接枝到石墨烯表面,得到磺化石墨烯(SG);通过柔性长链离子与SG离子交换制得重氮化合物接枝法石墨烯类流体(Dia-GF)。X射线光电子能谱(XPS)、FT-IR以及EDX能谱表明重氮化合物和柔性长链离子已接枝到石墨烯表面;TEM图片显示Dia-GF也具有平整的微观形貌,在片层表面观察不到任何褶皱与折叠结构;流变性能数据表明Dia-GF具有类液体性质,室温下粘度为170Pa.s;电性能测试结果表明Dia-GF的室温电导率高达233S/m。
     5、将石墨烯类流体的微观形貌与零维及一维类流体建立了科学的联系,构建了石墨烯类流体的展平模型,提出了石墨烯类流体结构微元相互排斥、流动解缠以及流动取向的自展平机制。通过研究NPE-SG、CTAB-SG以及NPEQ-LG-SG的形貌结构及流变特性,揭示了石墨烯自展平行为的三个关键影响因素,即:有机配体间的离子键作用形式、有机配体的柔性链结构以及有机配体的接枝密度。
     6、将石墨烯类流体悬浮液滴延在普通铝箔基板上进行SEM观察,发现类流体中的石墨烯片层在铝箔表面完全展平开来;采用涂膜器将石墨烯类流体涂覆在平整的PET基板上并测试宏观薄膜的导电性能,结果表明薄膜电导率高达260S/m,比具有同样有机含量的普通石墨烯薄膜材料的电导率高15倍。这可以归结为不褶皱石墨烯中相邻π电子云的“肩并肩”交叠程度增大,使石墨烯中的π电子离域程度提高。
     7、分别将石墨烯类流体(Dia-GF)和溶剂热法石墨烯(ST-RGO)与聚偏氟乙烯(PVDF)进行溶液共混;干燥并热压处理后得到石墨烯类流体/聚偏氟乙烯(GF/PVDF)和溶剂热法石墨烯/聚偏氟乙烯(Gr/PVDF)两种复合薄膜。介电性能测试结果显示,两种复合薄膜的渗流阈值比较接近,且均较低,约为0.32vo1.%。纯PVDF薄膜的介电常数仅在10左右,而GF/PVDF和Gr/PVDF在接近渗流阈值处(0.24vol.%)的介电常数分别高达376和139,并且GF/PVDF的介电常数明显更高,这是因为石墨烯类流体在聚合物基体中排列更加有序、片层更加伸展、能够形成更多的“纳电容器”结构。
Graphene possesses unique carrier transport properties, ultra-high specific surface area, remarkable electrical and thermal conductivity, as well as outstanding mechanical strength, and thus has attracted extensive attention from natural science communities. However, such soft and ultra-thin carbonaceous membrane tends to form wrinkled and folded structures spontaneously, resulting in substantial decrease of material and device performance. Therefore, developing a simple yet feasible route to eliminate those unfavorable structures and promote material and device performance is of great significance for both fundamental research and application. In this thesis, solvent-free graphene fluids with liquid-like feature were prepared via surface-modification of graphene by employing three different chemical methods, and in these graphene materials the wrinkled and folded structures were removed. We also systematically studied the structures, properties as well as potential applications of the solvent-free graphene fluids. The main content and result of this thesis were listed as follow:
     1. Polyaniline (PANI) coated graphene was prepared by employing in situ oxidizing polymerization of aniline monomers over the surface of graphene oxide, and then flexible long chain ionic liquid was doped to the backbone of PANI molecule by making use of the protonic acid doping mechanism of PAIN to produce solvent-free graphene fluid (PANI-GF). Fourier transform infrared (FT-IR) spectroscopy, UV-visual (UV-vis) spectroscopy, elemental analysis, scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM) revealed that such hybrid material consisted of graphene sheets coated with flexible long chain doped PANI nanofibers. The rheological measurement indicated that the resultant material behaved in a liquid-like manner and the viscosity was2800Pa-s at room temperature.
     2. By conducting a chemical reduction on GO@PANI, the water-soluble graphene was obtained. The result of elemental analysis indicated that the PANI fraction in water-soluble graphene was only as low as3%. The results of SEM and TEM observation demonstrated that there was no PANI nanofibers remained on the surface of graphene sheets. Remarkably, the product was very stable in aqueous medium, which offered a simple and feasible route to produce water-soluble graphene.
     3. By utilizing the dehydration and condensation reaction between organic silane (DC5700) and the oxygen-containing groups on graphene oxide, the graphene oxide organic salt was obtained, which could be chemically reduced to produce graphene organic salt (RGO-DC5700). By further implementing ion exchange on RGO-DC5700with flexible long chain ionic liquid, we obtained the second type of solvent-free graphene fluid (CG-GF). We verified the chemical composition of the product by using FT-IR spectroscopy and energy-dispersive X-ray (EDX) analysis. The TEM images showed that the sheets were completely flat with no detected wrinkled or folded structure. The CG-GF was also characteristic of liquid-like, and its viscosity was remarkably lower over that of the PANI-GF, presenting as120Pa-s at room temperature.
     4. We also prepared a third-type of solvent-free graphene fluid (Dia-GF) by utilizing the spontaneous electron transfer from graphene to diazonium species followed by a typical ion exchange procedure. X-ray photoelectron spectroscopy, FT-IR spectroscopy, as well as EDX analysis were employed to monitor the whole synthetic procedure and confirmed that the diazonium salt and ionic liquid were grafted to graphene. The TEM images also presented the flat morphology of the resultant sheets, and no any wrinkled or folded structures could be found. The result of rheological measurement implied that the product was virtually liquid-like, and the viscosity was as low as170Pa-s at room temperature. The conductivity measurement indicated that the electrical conductivity of the product reached as high as233S/m.
     5. Scientific relationship between microscopic morphology of solvent-free graphene fluids and that of solvent-free fluids based on0-dimensional and1-dimensional nanostructures was established. The model for the self-unfolding behavior was constructed. The self-unfolding mechanism of mutual repulsion between micro units as well as flow-induced untangling and flow-induced orienting effects was proposed. By investigating the microscopic morphology and rheological properties of NPE-SG, CTAB-SG and NPEQ-LG-SG, we revealed that the self-unfolding behavior was dominated by three key factors, namely, the ionic interaction between organic species, the soft chain segment and the appropriate grafting density.
     6. The suspension of a solvent-free graphene fluid was drop-casted on an aluminum foil and observed via SEM. It was found that the sheets with completely unfolded configuration could tie to the flat substrate. We also fabricated a bulk film of the solvent-free graphene fluid on PET substrate by using a wet film applicator. The fact that its conductivity was more than15folds higher over that of ordinary graphene film with the same organic fraction could be attributed to the highly overlapped π orbits of adjacent carbon atoms in a flat graphene sheet, which could promote the delocalization of π electrons.
     7. The Dia-GF and ST-RGO were fully mixed with PVDF, respectively, using DMF as the solvent. After drying and hot pressing, two kinds of composite films were obtained, which were GF/PVDF and Gr/PVDF. The results of dielectric performance measurement suggested that the two kinds of composite films had very similar percolation threshold which was relatively low, at around0.32vol.%. The permittivity of a pure PVDF film was approximately10, while those of the GF/PVDF and Gr/PVDF composite films near their percolation threshold (0.24vol.%) were as high as376and139, respectively. Besides, the permittivity of GF/PVDF was remarkably higher than that of Gr/PVDF, which was because that the graphene sheets in solvent-free graphene fluid were more orderly arranged and extended, and thus forming more "nano-capacitor" structures.
引文
[1]Novoselov K. S., Geim A. K., Morozov S.V., et al. Electric field effect in atomically thin carbon films. Science,2004,306:666-669.
    [2]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200.
    [3]Bolotin K. I., Sikes K. J., Jiang Z., et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications,2008,146:351-355.
    [4]Stoller M. D., Park S., Zhu Y., et al. Graphene-based ultracapacitors. Nano Letters,2008,8: 3498-3502.
    [5]Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene. Nano Letters,2008,8:902-907.
    [6]Lee C., Wei X., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321:385-388.
    [7]Zhang Y. B., Tan Y. W., Stormer H. L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438:201-204.
    [8]Heersche H. B., Jarillo-Herrero P., Oostinga J. B., et al. Bipolar supercurrent in graphene. Nature,2007,446:56-59.
    [9]Lin Y. M., Jenkins K. A., Valdes-Garcia A., et al. Operation of graphene transistors at gigahertz frequencies. Nano Letters,2009,9:422-426.
    [10]Lin Y. M., Dimitrakopoulos C., Jenkins K. A., et al.100-GHz Transistors from wafer-scale epitaxial graphene. Science,2010,327:662.
    [11]Liao L., Lin Y. C., Bao M., et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature,2010,467:305-308.
    [12]Dan Y. P., Lu Y., Kybert N. J., et al. Intrinsic response of graphene vapor sensors. Nano Letters,2009,9:1472-1475.
    [13]Robinson J. T., Perkins F. K., Snow E. S., et al. Reduced graphene oxide molecular sensors. Nano Letters,2008,8:3137-3140.
    [14]Tang L. H., Wang Y., Li Y. M., et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials,2009,19:2782-2789.
    [15]Ohno Y., Maehashi K., Yamashiro Y., et al. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters,2009,9:3318-3322.
    [16]Mohanty N., Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor:Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters,2008,8:4469-4476.
    [17]Becerril H. A., Mao J., Liu Z., et al. Evaluation of Solution-processed reduced graphene oxide films as transparent conductors. ACS Nano,2008,2:463-470.
    [18]Wang X., Zhi L. J., Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters,2008,8:323-327.
    [19]Eda G., Fanchini G., Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology,2008,3:270-274.
    [20]Cote L. J., Kim F., Huang J. X. Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society,2009,131:1043-1049.
    [21]Yoo E., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters,2008,8:2277-2282.
    [22]Pan D. Y., Wang S., Zhao B., et al. Li storage properties of disordered graphene nanosheets. Chemistry of Materials,2009,21:3136-3142.
    [23]Wang C. Y., Li D., Too C. O., et al. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chemistry of Materials,2009,21:2604-2606.
    [24]Lee J. K., Smith K. B., Hayner C. M., et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications,2010,46:2025-2027.
    [25]Jang B. Z., Zhamu A. Processing of nanographene platelets (NGPs) and NGP nanocomposites:a review. Journal of Material Science,2008,43:5092-5101.
    [26]Park S. J., Ruoff R. S. Chemical methods for the production of graphenes. Nature Nanotechnology,2009,4:217-224.
    [27]Loh K. P., Bao Q. L., Ang P. K., et al. The chemistry of graphene. Journal of Materials Chemistry,2010,20:2277-2289.
    [28]Bourlinos A. B., Herrera R., Chalkias N., et al. Surface-functionalized nanoparticles with liquid-like behavior. Advanced Materials,2005,17:234-237.
    [29]Rodriguez R., Herrera R., Archer L. A., et al. Nanoscale ionic materials. Advanced Materials, 2008,20,4353-4358.
    [30]Texter J., Qiu Z., Crombez R., et al. Nanofluid acrylate composite resins-initial preparation and characterization. Polymer Chemistry,2011,2:1778-1788.
    [31]Agarwal P., Qi H. B., Archer L. A. The ages in a self-suspended nanoparticle liquid. Nano Letters,2010,10:111-115.
    [32]Smarsly B., Kaper H. Liquid inorganic-organic nanocomposites:Novel electrolytes and ferrofluids. Angewandte Chemie International Edition,2005,44:3809-3811.
    [33]Bourlinos A. B., Stassinopoulos A., Anglos D., et al. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small,2006,2:513-516.
    [34]Liu D. P., Li G. D., Su Y., et al. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angewandte Chemie International Edition,2006,45:7530-7533.
    [35]Sun L. F., Fang J., Reed J. C., et al. Lead-salt quantum-dot ionic liquids. Small,2010,6: 638-641.
    [36]Nugent J. L., Moganty S. S., Archer L. A. Nanoscale organic hybrid electrolytes. Advanced Materials,2010,22:3677-3680.
    [37]Moganty S. S., Jayaprakash N., Nugent J. L., et al. Ionic liquid tethered nanoparticle hybrid electrolytes. Angewandte Chemie International Edition,2010,49:9158-9161.
    [38]Han B. H., Winnik M. A., Bourlinos A. B., et al. Luminescence quenching of dyes by oxygen in core-shell soft-sphere ionic liquids. Chemistry of Materials,2005,17:4001-4009.
    [39]Kim D., Archer L. A. Nanoscale organic-inorganic hybrid lubricants. Langmuir,2011,27: 3083-3094.
    [40]Huang X., Yin Z. Y., Wu S. X., et al. Graphene-based materials:Synthesis, characterization, properties and applications. Small,2011,7:1876-1902.
    [41]Peierls R. E. Quelques proprietes typiques des corpses solides. Annales de I'Institut Henri Poincare,1935,5:177-222.
    [42]Landau L. D. Zur Theorie eorie der phasenumwandlungen Ⅱ. Phys. Z. Sowjetunion,1937,11: 26-35.
    [43]Landau L. D., Lifshitz E. M. Statistical Physics, Part Ⅰ. Pergamon:Oxford,1980.
    [44]Venables J. A., Spiller G. D. T., Hanbucken M. Nucleation and growth of thin films. Reports on Progress in Physics,1984,47:399-459.
    [45]Evans J. W., Thiel P. A., Bartelt M. C. Morphological evolution during epitaxial thin film growth:Formation of 2D islands and 3D mounds. Surface Science Reports,2006,61:1-128.
    [46]Meyer J. C., Geim A. K., Katsnelson M. I., et al. The structure of suspended graphene sheets. Nature,2007,446:60-63.
    [47]Editorial. It's still all about graphene. Nature Materials,2011,10:1.
    [48]Geim A. K., Novoselov K. S. The rise of graphene. Nature Materials,2007,6:183-191.
    [49]Allen M. J., Tung V. C., Kaner R. B. Honeycomb carbon:A review of graphene. Chemical Review,2010,110:132-145.
    [50]Novoselov K. S., Jiang Z., Zhang Y., et al. Room-temperature quantum Hall effect in graphene. Science,2007,315:1379.
    [51]Sukhadolou A. V., Ivakin E. V., Ralchenko V. G., et al. Thermal conductivity of CVD diamond at elevated temperatures. Diamond and Related Materials,2005,14:589-593.
    [52]Kim P., Shi L., Majumdar A., et al. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters,2001,87:215502.
    [53]Pop E., Mann D., Wang Q., et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters,2006,6:96-100.
    [54]Balandin A. A., Ghosh S., Bao W. Z., et al. Superior thermal conductivity of single-layer graphene. Nano Letters,2008,8:902-907.
    [55]Balandin A. A., Wang K. L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Physical Review B, 1998,58:1544-1549.
    [56]Zou J., Balandin A. A. Phonon heat conduction in a semiconductor nanowire. Journal of Applied Physics,2001,89:2932-2938.
    [57]Zhao Q. Z., Nardelli M. B., Bernholc J. Ultimate strength of carbon nanotubes:A theoretical study. Physical Review B,2002,65:144105.
    [58]Lee C. G., Wei X. D., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321:385-388.
    [59]Nair R. R., Blake P., Grigorenko A. N., et al. Fine structure constant defines visual transparency of graphene. Science,2008,320:1308.
    [60]Li X. S., Cai W. W., An J. H., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324:1312-1314.
    [61]Li X. S., Cai W. W., Colombo L., et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters,2009,9:4268-4272.
    [62]Bae S., Kim H., Lee Y. B., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology,2010,5:574-578.
    [63]Berger C., Song Z. M., Li T. B., et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B,2004, 108:19912-19916.
    [64]Berger C., Song Z. M., Li X. B., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312:1191-1196.
    [65]Geim A. K. Graphene:Status and prospects. Science,2009,324:1530-1534.
    [66]Stankovich S., Dikin D. A., Piner R. D., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565.
    [67]Boukhvalov D. W., Katsnelson M. I. Modeling of graphite oxide. Journal of the American Chemical Society,2008,130:10697-10701.
    [68]Brodie B. C. Sur le poids atomique du graphite. Annales de chimie et de physique,1860,59: 466-472.
    [69]Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Berichte der Deutschen Chemischen Gesellschaft,1898,31:1481-1499.
    [70]Hummers W. S., Offeman R. E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80:1339.
    [71]He H., Riedl T., Lerf A., et al. Solid-state NMR studies of the structure of graphite oxide. Journal of Physical Chemistry,1996,100:19954-19958.
    [72]He H., Klinowski J., Forster M., et al. A new structural model for graphite oxide. Chemical Physics Letters,1998,287:53-56.
    [73]Lerf, A., He, H., Forster, M.& Klinowski, J. Structure of graphite oxide revisited. Journal of Physical Chemistry B,1998,102:4477-4482.
    [74]Cai W. W., Piner R. D., Stadermann F. J., et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science,2008,321:1815-1817.
    [75]Li D., Muller M. B., Gilje S., et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101-105.
    [76]Mattevi C., Eda G., Agnoli S., et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials,2009,19:2577-2583.
    [77]Schniepp H. C., Li J. L., McAllister M. J., et al. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B,2006,110: 8535-8539.
    [78]Williams G., Seger B., Kamat P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano,2008,2:1487-1491.
    [79]Stankovich S., Dikin D. A., Dommett G. H. B., et al. Graphene-based composite materials. Nature,2006,442:282-286.
    [80]Wang G. X., Yang J., Park J. S., et al. Facile Synthesis and Characterization of Graphene Nanosheets. Journal of Physical Chemistry C,2008,112:8192-8195.
    [81]Si Y. C., Samulski E. T. Synthesis of water soluble graphene. Nano Letters,2008,8: 1679-1682.
    [82]Fang X. B., Peng W. C., Li Y., et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation. Advanced Materials,2008,20: 4490-4493.
    [83]Dreyer D. R., Murali S., Yanwu Zhu Y. W., et al. Reduction of graphite oxide using alcohols. Journal of Materials Chemistry.2011,21:3443-3447.
    [84]Fan Z. J., Kai W., Yan J., et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano,2011,5:191-198.
    [85]Xu Y., Bai H., Lu G., et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 2008,130:5856-5857.
    [86]Park S. J., An J. H., Piner R. D., et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials,2008,20:6592-6594.
    [87]McAllister M. J., Li J. L., Adamson D. H., et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials,2007,19:4396-4404.
    [88]Elias D. C., Nair R. R., Mohiuddin T. M. G., et al. Control of graphene's properties by reversible hydrogenation:Evidence for graphane. Science,2009,323:610-613.
    [89]Bostwick A., Ohta T., McChesney J. L., et al. Renormalization of graphene bands by many-body interactions. Solid State Communications,2007,143:63-71.
    [90]Csanyi G., Littlewood P. B., Nevidomskyy A. H., et al. The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nature Physics, 2005,1:42-45.
    [91]Valla T., Camacho J., Pan Z. H., et al. Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy. Physical Review Letters,2009,102:107007.
    [92]Salavagione H. J., Gomez M. A., Martinez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules,2009,42: 6331-6334.
    [93]Xu Y. F., Liu Z. B., Zhang X. L., et al. A graphene hybrid material covalently functionalized with porphyrin:Synthesis and optical limiting property. Advanced Materials,2009,21: 1275-1279.
    [94]Niyogi S., Bekyarova E., Itkis M. E., et al. Solution properties of graphite and graphene. Journal of the American Chemical Society,2006,128:7720-7721.
    [95]Stankovich S., Piner R. D., Nguyen S. B. T., et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon,2006,44:3342-3347.
    [96]Yang H., Shan C., Li F., et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications,2009,3880-3882.
    [97]Wang S., Chia P. J., Chua L. L., et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Advanced Materials,2008,20:3440-3446.
    [98]Salvio R., Krabbenborg S., Naber W. J. M., et al. The formation of large-area conducting graphene-like platelets. Chemistry-A European Journal,2009,15:8235-8240.
    [99]Bekyarova E., Itkis M. E., Ramesh P., et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. Journal of the American Chemical Society,2009,131: 1336-1337.
    [100]Lomeda J. R., Doyle C. D., Kosynkin D. V., et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society,2008,130:16201-16206.
    [101]Xu Y. X., Zhao L., Bai H., et al. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical cetection of cadmium(Ⅱ) ions. Journal of the American Chemical Society,2009, 131:13490-13497.
    [102]Wang X., Tabakman S. M., Dai H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of the American Chemical Society,2008,130:8152-8153.
    [103]Wang Q. H., Hersam M. C. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nature Chemistry,2009,1:206.
    [104]Su Q., Pang S. P., Alijani V., et al. Composites of Graphene with Large Aromatic Molecules. Advanced Materials,2009,21:3191-3195.
    [105]H. Bai, Y. Xu, L. Zhao, et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications,2009,1667-1669.
    [106]Zhou S. Y., Gweon G. H., Fedorov A. V., et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials,2007,6:770-775.
    [107]Oostinga J. B., Heersche H. B., Liu X. L., et al. Gate-induced insulating state in bilayer graphene devices. Nature Materials,2008,7:151-157.
    [108]Zhang Y. B., Tang T. T., Girit C., et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature,2009,459:820-823.
    [109]Barone V., Hod O., Scuseria G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters,2006,6:2748-2754.
    [110]Son Y. W., Cohen M. L., Louie S. G. Energy gaps in graphene nanoribbons. Physical Review Letters,2006,97:216803.
    [111]Chen Z., Lin Y.-M., Rooks M. J., et al. Graphene electronics. Physica E,2007,40: 228-232.
    [112]Li X. L., Wang X. R., Zhang L., et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science,2008,319:1229-1232.
    [113]Kim P. Across the border. Nature Materials,2010,9:792-793.
    [114]Shim B. S., Chen W., Doty C., et al. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Letters,2008, 8:4151-4157.
    [115]Yim K. H., Zheng Z., Liang Z., et al. Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique. Advanced Functional Materials,2008, 18:1012-1019.
    [116]Zheng Z., Yim K. H., Saifullah M. S. M., et al. Uniaxial alignment of liquid-crystalline conjugated polymers by nanoconfinement. Nano Letters,2007,7:987-992.
    [117]Yim K. H., Zheng Z., Friend R. H., et al. Surface-directed phase separation of conjugated polymer blends for efficient light-emitting diodes. Advanced Functional Materials,2008, 18:2897-2904.
    [118]Duan X., Niu C., Sahi V., et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature,2003,425:274-278.
    [119]Rogers J. A., Bao Z., Baldwin K., et al. Paper-like electronic displays:Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences of the United States of America,2001, 98:4835-4840.
    [120]Nomura K., Ohta H., Takagi A., et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature,2004,432:488-492.
    [121]Briseno A. L., Tseng R. J., Ling M. M., et al. High-performance organic single-crystal transistors on flexible substrates. Advanced Materials,2006,18:2320-2324.
    [122]Kumar A., Zhou C. The race to replace tin-doped indium oxide:Which material will win? ACS Nano,2010,4:11-14.
    [123]Watcharotone S., Dikin D. A., Stankovich S., et al. Graphene-silica composite thin films as transparent conductors. Nano Letters,2007,7:1888-1892.
    [124]Li X. L., Zhang G. Y., Bai X. D., et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology,2008,3,538-542.
    [125]Biswas S., Drzal L. T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Letters,2009,9,167-172.
    [126]Hernandez Y., Nicolosi V., Lotya M., et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3:563-568.
    [127]De S., King P. J., Lotya M., et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 2009,6: 458-464.
    [128]Zhu Y., Cai W., Piner R. D., et al. Transparent self-assembled films of reduced graphene oxide platelets. Applied Physics Letters.2009,95:103104.
    [129]Chang H. X., Wang G. F., Yang A., et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Advanced Functional Materials,2010, 20:2893-2902.
    [130]Blake P., Brimicombe P. D., Nair R. R., et al. Graphene-based liquid crystal device. Nano Letters,2008,8:1704-1708.
    [131]Wu J., Agrawal M., Becerril H. A., et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano,2009,4:43-48.
    [132]Schedin F., Geim A. K., Morozov S. V., et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials,2007,6:652-655.
    [133]Huang B., Li Z. Y., Liu Z. R., et al. Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor. Journal of Physical Chemistry C,2008,112:13442-13446.
    [134]Wehling T. O., Novoselov K. S., Morozov S. V., et al. Molecular Doping of Graphene. Nano Letters,2008,8:173-177.
    [135]Leenaerts O., Partoens B., Peeters F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene:A first-principles study. Physical Review B,2008,77:125416.
    [136]Zhu Y. W., Murali S., Cai W. W., et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications. Advanced Materials,2010,22:3906-3924.
    [137]Dong X., Shi Y., Huang W., et al. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Advanced Materials,2010,22:1649-1653.
    [138]Mao S., Lu G., Yu K., et al. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Advanced Materials, 2010,22:3521-3526.
    [139]Mohanty N., Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor:Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters,2008,8:4469-4476.
    [140]Cohen-Kami T., Qing Q., Li Q., et al. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Letters,2010,10:1098-1102.
    [141]Shang N. G., Papakonstantinou P., McMullan M., et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials,2008,18:3506-3514.
    [142]Lim C. X., Hoh H. Y., Ang P. K., et al. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene:An insight into the role of oxygenated defects. Analytical Chemistry,2010,82:7387-7393.
    [143]Balapanuru J., Yang J. X., Xiao S., et al. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angewandte Chemie International Edition, 2010,49:6549-6553.
    [144]Lu C. H., Yang H. H., Zhu C. L., et al. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48:4785-4787.
    [145]Wang X., Wang C., Qu K., et al. Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Advanced Functional Materials,2010,20:3967-3971.
    [146]Swathi R. S., Sebastian K. L. Resonance energy transfer from a dye molecule to graphene. Journal of Chemical Physics,2008,129:054703.
    [147]Winter M., Besenhard J. O., Spahr M. E., et al. Insertion electrode materials for rechargeable lithium batteries. Advanced Materials,1998,10:725-763.
    [148]Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nature Materials,2008,7: 845-854.
    [149]Zhu Y., Murali S., Stoller M. D., et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon,2010,48:2118-2122.
    [150]Zhu Y., Stoller M. D., Cai W., et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano,2010,4: 1227-1233.
    [151]Zhang Y. P., Li H. B., Pan L. K., et al. Capacitive behavior of graphene-ZnOcomposite film for supercapacitors. Journal of Electroanalytical Chemistry,2009,634:68-71.
    [152]Chen S., Zhu J., Wu X., et al. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS, Nano 2010,4:2822-2830.
    [153]Yu D., Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. Journal of Physical Chemistry Letters,2009,1:467-470.
    [154]Wang D. W., Li F., Zhao J., et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano, 2009,3:1745-1752.
    [155]Murugan A. V., Muraliganth T., Manthiram A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chemistry of Materials,2009,21:5004-5006.
    [156]Wang H. L., Hao Q. L., Yang X. J., et al. Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications,2009,11:1158-1161.
    [157]Wu Q., Xu Y., Yao Z., et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano,2010,4:1963-1970.
    [158]Das B., Prasad K. E., Ramamurty U., et al. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology,2009,20:125705.
    [159]Ramanathan T., Abdala A. A., Stankovich S., et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology,2008,3:327-331.
    [160]Yu A., Ramesh P., Itkis M. E., et al. Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C,2007,111:7565-7569.
    [161]Bourlinos A. B., Chowdhury S. R., Herrera R., et al. Functionalized nanostructures with liquid-like behavior:Expanding the gallery of available nanostructures. Advanced Functional Materials,2005,15:1285-1290.
    [162]Li Q., Dong L. J., Deng W., et al. Solvent-free fluids based on rhombohedral nanoparticles of calcium carbonate. Journal of the American Chemical Society,2009,131:9148-9149.
    [163]Lei Y. A., Xiong C. X., Dong L. J., et al. Ionic liquid of ultralong carbon nanotubes. Small, 2007,3:1889-1893.
    [164]Warren S. C., Banholzer M. J., Slaughter L. S., et al. Generalized route to metal nanoparticles with liquid behavior. Journal of the American Chemical Society,2006,128: 12074-12075.
    [165]Feng Q. S., Dong L. J., Huang J., et al. Fluxible monodisperse quantum dots with efficient luminescence. Angewandte Chemie International Edition,2010,49:9943-9946.
    [166]Perriman A. W., Colfen H., Hughes R. W., et al. Solvent-free protein liquids and liquid crystals. Angewandte Chemie International Edition,2009,48:6242-6246.
    [167]Bourlinos A. B., Georgakilas V., Tzitzios V., et al. Functionalized carbon nanotubes: Synthesis of meltable and amphiphilic derivatives. Small,2006,2:1188-1191.
    [168]Lei Y. A., Xiong C. X., Guo H., et al. Controlled viscoelastic carbon nanotube fluids. Journal of the American Chemical Society,2008.130:3256-3257.
    [169]Zheng Y. P., Zhang J. X., Lan L., et al. Preparation of solvent-free gold nanofluids with facile self-assembly technique. Chemical Physics and Physical Chemistry,2010,11:61-64.
    [170]Zhou J., Tian D. M., Li H. B., et al. Multi-emission CdTe quantum dot nanofluids. Journal of Materials Chemistry,2011,21:8521-8523.
    [171]Bourlinos A. B., Giannelis E. P., Zhang Q., et al. Surface-functionalized nanoparticles with liquid-like behavior:The role of the constituent components. The European Physical Journal E,2006,20:109-117.
    [172]Yu H. Y., Koch D. L. Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir,2010,26:16801-16811.
    [173]Jespersen M. L., Mirau P. A., Von Meerwall E., et al. Canopy dynamics in nanoscale ionic materials. ACS Nano,2010,4:3735-3742.
    [174]Hong B. B., Chremos A, Panagiotopoulos A. Z. Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Discussions,2012,154:29-40.
    [175]Behabtu N., Lomeda J. R., Green M. J., et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnology,2010,5:406-411.
    [176]Joung D., Chunder A., Zhai L., et al. Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Applied Physics Letters,2010,97:093105.
    [177]Zhang K., Zhang L. L., Zhao X. S., et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials,2010,22:1392-1401.
    [178]Wu Q., Xu Y. X., Yao Z. Y., et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano,2010,4:1963-1970.
    [179]Kumar N. A., Choi H. J., Shin Y. R., et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano,2012,6:1715-1723.
    [180]Jana T., Nandi A. K. Sulfonic acid-doped thermoreversible polyaniline gels:Morphological, structural, and thermodynamical investigations. Langmuir,2000,16:3141-3147.
    [181]Huang J., Li Q., Wang Y., et al. Self-suspended polyaniline doped with a protonic acid containing a polyethylene glycol segment. Chemistry-an Asian Journal,2011,6: 2920-2924.
    [182]Marcano D. C., Kosynkin D. V., Berlin J. M., et al. Improved synthesis of graphene oxide. ACS Nano,2010,4:4806-4814.
    [183]Valles C., Jimenez P., Munoz E., et al. Simultaneous reduction of graphene oxide and polyaniline:Doping-assisted formation of a solid-state charge-transfer complex. Journal of Physical Chemistry C,2011,115:10468-10474.
    [184]An X. H., Simmons T., Shah R., et al. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Letters,2010,10:4295-4301.
    [185]Xu Y. X., Bai H., Lu G. W., et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 2008,130:5856-5857.
    [186]Yan J., Wei T., Shao B., et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon,2010,48:487-493.
    [187]Stejskal J., Kratochvil P., Jenkins A. D. The formation of polyaniline and the nature of its structures. Polymer,1996,37:367-369.
    [188]Dresselhaus M. S., Dresselhaus G. Intercalation Compounds of Graphite. Advances in Physics,2002,51:1-186.
    [189]Delamar M., Hitmi R., Pinson J., et al. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society,1992,114:5883-5884.
    [190]Liu Y. C., McCreery R. L. Reactions of organic monolayers on carbon surfaces observed with unenhanced Raman spectroscopy. Journal of the American Chemical Society,1995, 117:11254-11259.
    [191]Bahr J. L., Yang J., Kosynkin D. V., et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:A bucky paper electrode. Journal of the American Chemical Society,2001,123:6536-6542.
    [192]Xiong C., Lu S., Wang D., et al. Microporous polyvinyl chloride:Novel reactor for PVC/CaCO3 nanocomposites. Nanotechnology,2005,16:1787-1792.
    [193]Chaimberg M., Cohen Y. J. Note on the silylation of inorganic oxide supports. Journal of Colloid and Interface Science,1990,134:576-579.
    [194]Piasta D., Bellmann C., Spange S., et al. Endowing carbon black pigment particles with primary amino groups. Langmuir,2009,25:9071-9077.
    [195]Gomez-Navarro C., Meyer J. C., Sundaram R. S., et al. Atomic structure of reduced graphene oxide. Nano Letters,2010,10:1144-1148.
    [196]Gilje S., Han S., Wang M. S., et al. A chemical route to graphene for device applications. Nano Letters,2007,7:3394-3398.
    [197]Tung V. C., Allen M. J., Yang Y., et al. High-throughput solution processing of large-scale graphene. Nature Nanotechnology,2009,4:25-29.
    [198]Zhang Q. M., Li H., Poh M., et al. An all-organic composite actuator material with a high dielectric constant. Nature,2002,419:284-287.
    [199]Dang Z. M., Lin Y. H., Nan C. W. Novel ferroelectric polymer composites with high dielectric constants. Advanced Materials,2003,15:1625-1628.
    [200]Nan C. W. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993,37:1-116.
    [201]Chen Q., Du P. Y., Jin L., et al. Percolative conductor/polymer composite films with significant dielectric properties. Applied Physics Letters,2007,91:022912.
    [202]Dang Z. M., Wang L., Yin Y., et al. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Advanced Materials,2007,19: 852-857.
    [203]Wang H. L., Robinson J. T., Li X. L., et al. Solvothermal reduction of chemically exfoliated graphene sheets. Journal of the American Chemical Society,2009,131: 9910-9911.
    [204]He F. A., Lau S. T., Chan H. L., et al. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Advanced Materials,2009,21:710-715.
    [205]Panda M., Srinivas V., Thakur A. K. On the question of percolation threshold in polyvinylidene fluoride/nanocrystalline nickel composites. Applied Physics Letters,2008, 92:132905.
    [206]Li Y. J., Xu M., Feng J. Q., et al. Dielectric behavior of a metal-polymer composite with low percolation threshold. Applied Physics Letters,2006,89:072902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700