用户名: 密码: 验证码:
太阳能高效吸热陶瓷材料及吸热器的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在塔式太阳能热发电用空气吸热器中,吸热体材料是吸热器核心部件。由于塔式吸热器聚光能流密度不均匀性和不稳定性形成的吸热体局部热斑造成材料热应力破坏、空气流动稳定性差以及耐久性不高等问题,因而需迫切的开发具有抗高温氧化性好、抗热震性好、具有三维或者二维的连通结构、高比表面以及高热导率的新型吸热体材料。基于太阳能热发电吸热器的特点及对吸热体材料的要求,本文设计了用于塔式太阳能热发电系统的吸热体材料配方组成。实验中以Si3N4和SiC为基材,以红柱石、α-Al2O3、Y2O3以及Cr203等为添加剂,合成耐高温结合相,制备了可用于塔式太阳能热发电吸热体陶瓷材料。采用现代测试技术研究了用于塔式太阳能热发电系统的陶瓷吸热体材料料的组成、制备工艺对微观结构与性能的影响规律,探讨了提高陶瓷吸热体材料料抗氧化性及抗热震性的机理、途径。研制了适合塔式太阳能热发电用吸热体泡沫陶瓷。设计了高效容积式吸热器结构,以空气作为传热介质,利用本文所制备泡沫陶瓷为吸热体,采用Ansys Workbench对吸热体及吸热器温度场、压强场以及速度矢量场进行了模拟分析。本文的主要研究成果如下:
     (1)本文首先研究了以Si3N4和SiC为主要原料,红柱石和α-Al2O3为添加剂,采用无压烧成工艺,制备了莫来石结合Si3N4-SiC陶瓷。实验设计了A系列配方组成,测试和分析了烧成样品抗热震性、抗氧化性、相组成以及微观结构等性能。结果显示,在空气中进行烧成时,Si3N4和SiC复相陶瓷含有大量的石英玻璃相,导致烧成样品抗热震性能不佳。
     (2)研究了提高复相陶瓷材料抗热震性能途径。实验在A系列实验基础上,通过外加煅烧铝矾土提供铝源,使得高温反应过程中,更多游离Si02能够与Al203反应生成莫来石,从而降低样品中玻璃相量,提高样品抗热震性能。实验设计了B系列配方组成,分别研究了空气中无压烧成和埋粉烧成(用青岛石墨微粉将样品覆盖)两种烧成方式对烧成样品性能的影响规律。对埋烧样品研究表明,最佳样品为煅烧铝矾土添加量为15%的B3,其最佳烧成温度为1480℃,抗折强度为53.20MPa,1100℃至室温30次热震后样品抗折强度为87.86MPa,强度增加率为65.15%。相组成分析表明,样品热震前晶相为碳化硅、氮化硅以及莫来石,样品热震后晶相为碳化硅、氮化硅、方石英以及莫来石。热震后产生少量石英相,填充于气孔中,覆盖于Si3N4和SiC晶粒表面,阻止它们的进步氧化,从而提高了样品抗热震性。采用埋粉烧成方法,可以减少烧成样品中石英玻璃相的含量,可显著提高样品抗热震性。
     (3)研究了提高吸热体复相陶瓷材料致密度的方法。在B3配方基础上,通过添加各种添加剂,设计了F系列配方组成。研究结果显示,在B3配方中添加Y2O3,并采用埋烧工艺,可以极大提高烧成样品致密度,其致密度从2.06g.cm-3提升至2.57g.cm-3。最佳样品为外加9%Y2O3的F3,其最佳烧成温度为1500℃,抗折强度为100.02MPa。相组成分析表明,样品晶相为碳化硅、氮化硅、O’-塞隆及莫来石。样品断面SEM图显示样品结构紧密,样品晶界结合相以O’-塞隆为主,这种结合方式有助于烧成样品致密度的提高。
     (4)研究了提高吸热体陶瓷抗氧化性能方法。在F1和F3配方基础上,设计了G系列配方组成,研制结果表明,Cr2O3和Y2O3复合添加有利于提高复相陶瓷材料抗氧化性能。实验最佳配方为G1,其最佳烧成温度为1500℃,抗折强度为157.04MPa。在1300℃氧化100h后其氧化速率常数为1.7389mg2·cm-4·h-1,抗氧化性能优于改性前A、B、及F系列样品。样品的相组成以碳化硅、氮化硅、莫来石以及O’-塞隆为主。复合添加Cr2O3和Y2O3可以在样品表面形成一层保护膜,使得O在样品表面的扩散速率降低,从而提高烧成样品抗氧化性能。
     (5)研究了提高复相陶瓷材料抗热震性能的途径。实验中,通过在样品中引入ZrO2,利用ZrO2随温度变化时产生的微裂纹来增韧复相陶瓷材料,达到提高复合材料抗热震性能的目的。设计了H系列配方组成。研制结果表明,在G1配方基础上外加8%ZrO2及7.26%Y2O3时的H3配方,样品抗热震性能显著提高。经1480℃烧成的H3样品,抗折强度为100.26MPa,1100℃至室温经30次热震后,样品抗折强度不减反增,增加率为10.34%。样品的相组成均为碳化硅、氮化硅、莫来石以及O’-塞隆,同时还存在少量石英相。显微结构及EPMA结果表明添加ZrO2、Cr2O3以及Y2O3对样品形核作用明显,三种氧化物复合添加有利于形成花簇状和网络状结构固溶体,这种结构有助于样品抗热震性能的改善和提高。
     (6)制备和研究了适合塔式太阳能热发电用吸热体泡沫陶瓷。实验分别以最佳配方G1、H3以及流变剂为原料制备料浆,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺,制备了泡沫陶瓷吸热体材料。研究结果显示,利用G1配方浆料所制备泡沫陶瓷性能较优。最佳烧成温度为1500℃,气孔率为93.7%,抗压强度为0.27MPa,30次热震后抗压强度为0.30MPa。烧成后泡沫陶瓷主晶相为碳化硅、氮化硅、莫来石以及O’-塞隆相。G1泡沫陶瓷宏观结构及显微结构研究表明,泡沫陶瓷气孔均匀,孔径在1~3mm之间,孔肋骨架较粗壮,样品骨架较致密,有利于泡沫陶瓷强度提高。可望用作塔式太阳能热发电系统的陶瓷吸热体材料,解决目前吸热体材料抗高温氧化差以及抗热震性能差的不足。
     (7)设计了高效容积式吸热器结构,以空气作为传热介质,利用本文制备泡沫陶瓷为吸热体,采用Ansys Workbench对吸热体及吸热器温度场、压强场以及速度矢量场进行了模拟分析。设计吸热器开口角度为500,吸热器进口直径为180cm,吸热器出口直径为50cmm,吸热体总长为110cm。对不同孔隙率Si3N4-SiC复合材料吸热体温度场模拟结果显示,孔隙率越大,吸热体出口处空气温度越高。对不同孔隙率吸热体对吸热器压强分布分析显示,孔隙率越高,吸热器进出口压降越小,越有利于吸热器的强化换热,有利于吸热器换热效率的提高。同时,对孔隙率为0.95时,进口空气速度与吸热器压强分布的模拟结果显示,当进口空气速度在5-8m/s时,有利于吸热器的稳定工作。
The absorber material is the core components of the receiver in solar thermal power plant (STPP). Due to the energy flux density inhomogeneity and the instability which can easy lead to local hot spot in the absorber, and result to a series of proplems such as thermal stress damage, low air movement stability and durability. Therefore, it is urgent to develop new absorber material, which should have good oxidation resistance, good thermal shock resistance, with three or two dimensional connected structure, high specific surface area and high heat conductivity. Based on the requirement of the absorber material and the characteristic of the receiver, this paper have studied the batch formula composition which would use as absorber material in STPP system.In the experiment, Si3N4and SiC were used as substrate material, andalusite,α-Al2O3, Y2O3, Cr2O3and etc. were choosed as additives to synthesise high-temperature resistance binder phase, than form the ceramic composite absorber material which meet the demand of absorber material in STPP system.Modern testing techniques were taken to study the influence regularity of composition and preparation process on the microstructure and properties.The mechanism and methods to improve the oxidation resistance and thermal shock resistance of the ceramic absorber material were also discussed.The foam ceramic used as absorber which suitable for STPP was developed. A high efficient receiver was designed to fit the prepared absorber material by using the air as heat transfer medium.What's more, simulation analysis of the receiver and absorber material on temperature field, pressure field and velocity vector field was catched out by Ansys workbench. The main results of the research are as follows:
     (1) At first, the composite ceramic of mullite bonded SiC and Si3N4was conduct-ed by pressureless firing with SiC and Si3N4as the main materials, andalusite and α-Al2O3as additives. The batch formula of series A have designed, the thermal shock resistance, oxidation resistance, phase composition, microstructure and performances have been tested and analyzed. Results showed that while fired in the air, the composite ceramic of Si3N4-SiC ceramic contains a large number of quartz phase, which result the decrease of the thermal shock resistance.
     (2) Based on the experiments of series A, ways for improving thermal shock performance of the composite materials are researched. Through additional bauxite source of aluminum in the experiments, which enabled more free SiO2can react with Al2O3to generate mullite in high temperature reaction process, reducing glass phase in the samples and improving thermal shock resistance. Batch formula of series B is designed.The properties effects of the fired samples by pressureless firing in air and burying powder firing (using Qingdao graphite powder to cover sample in firing process) have been studied respectively. Study on the buried fired samples showed that B3is the optimal formula after firing, the addition of bauxite is15%, the optimum firing temperature is1480℃, the bending strength is53.20MPa, while the bending strength changed to87.86MP after thermal shocks from1100℃to room temperature for30times, which increased by65.15%. Phase compositions analysis showed that the phases are a-SiC, Si3N4and mullite before thermal shock, while it is α-SiC, Si3N4, quartz, and mullite after thermal shock. A small amount of quartz phase is generated after thermal shock, filling in the pores, covering on the crystal surface, thus improving the thermal shock resistance of samples. Using burying powder firing method can reduce the content of quartz phase, and improve the thermal shock resistance of fired samples.
     (3) On the basis of batch formula of B3, methods for improving the density of the absorber ceramic have been researched. By adding different additives in the experiments, the batch formula of series F is designed. Results showed that adding Y2O3in batch formula of B3with the burying firing process, can greatly improve the density of the fired samples, it has changed from2.06g.cm-3up to2.57g.cm-3.F3is the optimal formula, that is plusing9%of Y2O3in the B3formula to fire, and the best firing temperature is1500℃, the bending strength is100.02MPa. Phase compositions analysis showed that the main phases of the samples are α-SiC, Si3N4, O'-Sialon and mullite.The microstructure of the samples by using SEM showed a compact structure, meanwhile, massive O'-Sialon solid solution can be observed in the grain interface which is useful for improving of the density.
     (4) On the basis of burying firing of series F, methods for improving oxidation resistance performance of the absorber ceramic material are studied. Based on the formula F1and F3, batch formula of series G is designed, and results showed that adding Cr2O3and Y2O3is beneficial to improve the oxidation resistance of the composite ceramics. The optimum sample is formula Gl fired at1500℃, the bending strength is157.04MPa. The oxidation reaction rate constant is1.7389mg2·cm-4·h-1after oxidation for100h at1300℃, and oxidation resistance is better than the sample of batch formula series A, B and F. The main phases are a-SiC, Si3N4, mullite and O'-Sialon. The compound addition of Y2O3and Cr2O3can form a protective layer which could slow down the spread velocity of O, thus will mprove the oxidation resistance of the sample.
     (5) Methods to improve the thermal shock resistance performance of composite ceramics have been studied. By adding ZrO2in the samples, which can create small crack with temperature changing to toughening composites, thus improving the thermal shock resistance of composite ceramic materials. Batch formula of series H is designed in the experiment, and results showed that samples exposed good thermal shock resistance by adding8%ZrO2,7.26%Y2O3on the basis of Gl formula. The formula of H3fired at1480℃is the optimum, which have a bending strength of100.26MPa. The bending strength of samples increased after thermal shock for30times from1100℃to room temperature, the increase rate is10.34%. The phases of the fired samples are α-SiC, Si3N4, mullite and O'-Sialon; also a small amount of quartz (SiO2) existed. The microstructure and EPMA results indicated that adding Y2O3, Cr2O3and ZrO2had obvious effects on formatting nucleus, than generate flowers and reticular structure solid solution, which are useful for improving thermal shock resistance.
     (6) The foam ceramic used as the absorber for the STPP have been prepared and studied. The absorbers of foam ceramic have been prepared from polymeric sponge replication method by using the optimum formula of G1and H3as slurry matrix, rheological agent as solvent, and polyurethane foam as impregnation. Results showed that the foam ceramics that prepared by G1formula slurry had the best performance. The optimal firing temperature is1500℃, the porosity rate is93.7%, the compressive strength is0.27MPa, the compressive strength is0.30MPa after thermal shock for30times.The main phases of the optimum foam ceramic after firing are a-SiC, S13N4, mullite and O'-Sialon.The macrostructure and microstructure analysis of foam ceramics prepared by Gl formula showed an uniform aperture, ranging from1to3mm, and the sample frame is relatively sturdy.Microscopic image of the sample showed that the sample's skeleton is relatively dense. It has an expectation to use the foam ceramic as absorber in STPP system, which could solve the defects of high temperature oxidation and thermal shock performance to some degree.
     (7) Efficient volumetric receiver structure by using air as heat transfer medium and the prepared foam ceramic as absorber have been designed. The heat absorption temperature field, pressure field and velocity vector field have been simulated and analysed by using Ansys Workbench. In the design of the paper, the opening angle of the receiver is50°, inlet diameter is180cm, the outlet diameter of the receiver is50cm, and the total length of the absorber is110cm. Simulation results on heat absorption temperature field with different porosity of Si3N4-SiC foam ceramic showed that with the increasing of the porosity,the outlet air temperature increase as well.The pressure distribution analysis with different porosity showed that the higher of the foam ceramic porosity, the smaller of pressure drop in the receiver is, which is more conducive to strengthen heat transfer in the receiver, and benefit to the improvement of the thermal efficiency. At the same time, the inlet air velocity and receiver pressure distribution have simulated by adding the porosity of0.95, and the results showed that when the inlet air velocity is5-8m/s, it is advantageous to keep the receiver working steadily.
引文
[1]Omar Behar, Abdallah Khellaf, Kamal Mohammedi.A review of studies on central receiver solar thermal power plants[J].Renewable and Sustainable Energy Reviews,2013,23(7):12-39.
    [2]Qiang Yu, Zhifeng Wang, Ershu Xu.Simulation and analysis of the central cavity receiver's performance of solar thermal power tower plant[J].Solar Energy,2012,86(1):164-174.
    [3]Germain Augsburger, Daniel Favrat.Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant[J].Solar Energy,2013,87(1):42-52.
    [4]Qiang Yu, Zhifeng Wang, Ershu Xu, et al..Moeling and dynamic simulation of the collector and receiver system of 1MWe DAHAN solar thermal power tower plant [J].Renewable Energy, 2012,43(7):18-29.
    [5]M.J. Montes, A. Rovira, J.M. Martinez-Val, et al..Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers[J].Applied Thermal Engineering,2012,35(3):220-232.
    [6]Corey J. Noone, Amin Ghobeity, Alexander H. Slocum, et al.. Site selection for hillside central receiver solar thermal plants [J].Solar Energy,2011,85(5):839-848.
    [7]Jose I. Zapata, John Pye, Keith Lovegrove.A transient model for the heat exchange in a solar thermal once through cavity receiver[J].Solar Energy,2013,93(7):280-293.
    [8]Zhiyong Wu, Zhifeng Wang.Fully coupled transient modeling of ceramic foam volumetric solar air receiver [J].Solar Energy,2013,89(3):122-133.
    [9]Chao Xu, Zhifeng Wang, Xin Li, et al.. Energy and exergy analysis of solar power tower plants [J] Applied Thermal Engineerig,2011,31(17):3904-3913.
    [10]Nicholas Boerema, Graham Morrison, Robert Taylor, et al.. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal centeral receiver systems [J]. Solar Energy,2012, 86(9):2293-2305.
    [11]Manfred Bohmer, Cristina Chaza.The ceramic foil volumetric receiver[J].Solar Energy Materials,1991,24:182-191.
    [12]Antonio L. Avila-Marin. Volumetric receivers in solar thermal power plants with central receiver system technology:A review[J].Solar Energy,2011,3:1-17.
    [13]James M. Chavez, Cristina Chaza. Testing of a porous ceramic absorber for a volumetric air receiver[J].Solar Energy Materials,1991,24:172-181.
    [14]Francesco Reale, Gianpaolo Ruocco, Alberto Carotenuto, et al. Final design of a multi cavity volumetric solar receiver [J].Solar Energy Materials,1991,24:284-292.
    [15]A. Kribus, H. Ries, W. Spirkl. Inherent limitations of volumetric solar receivers [J].Solar Energy Engineering,1996,118:151-155.
    [16]Thomas Fend, Robert-Pitz-Paal, Oliver Reutter, et al. Two novel high-porosity materials as volumetric receivers for concentrated solar radiation [J].Solar Energy Materials and Solar cells,2004,84:291-304.
    [17]Hennecke, Hoffschmidt, Heinrich, et al. The solar power tower Julich-A solar thermal power plant for test and demonstration of air receiver technology [C].Germany:Solar Energy and Human Settlement 2007:1749-1753.
    [18]J. Karni, A. Kribus, P. Doron, et al. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers [J].Solar Energy Engineering,2011,85(9):2374-2385.
    [19]James M.Chavez, Cristina Chaza. Results of the design and testing of a porous ceramic absorber for a volumetric air receiver[J].Solar Energy Materials,1989,5:167-172.
    [20]Thomas Fend, Bernhard Hoffschmidt, Robert Pitz-Paal, et al. Porous materials as open volumetric solar receivers:experimental determination of thermophysical and heat transfer properties [J]. Energy,2004,29:823-833.
    [21]Bernhard Hoffschmidt, Felix M. Tellez, Antonio Valverde, et al. Performance evaluation of the 200-kW,h HiTRec-II open volumetric air receiver[J].Solar Energy,2011,85:2374-2385.
    [22]Thomas Fend, Bernhard Hoffschmidt, Cary Jorgensen, etc.. Comparative assessment of solar concentrator materials [J]. Solar Energy,2003,74:149-155.
    [23]Christos C. Agrafiotis, Ilias Mavroidis, Athanasios G. Konstandopoulos, et al. Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation [J].Solar Energy Materials and Solar cells,2007,91:474-488.
    [24]R. Pitz-paal, B. Hoffschmidt, M. Bohmer, et al. Experimental and numerical evaluation of the performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation [J].Solar Energy,1997,60:135-150.
    [25]I. Hischier, P.Leumann, A. Steinfeld, et al. Experimental and numerical analyses of a pressurized air receiver for solar driven gas turbines [J].Solar Energy Engineering,2012, 134:1-8.
    [26]I. Hischier, D. Hess, W. Lipinski, et al. Heat transfer analysis of a novel pressurized air receiver for concentrated solar power via combined cycles [J].Solar Energy,2009,1:1-6.
    [27]李翔.反应烧结氮化硅结合碳化硅成型中的颗粒级配研究[D].西安:西北工业大学,2001,3.
    [28]王林.制备工艺与氮化硅显微结构及性能的相关性[D].西北工业大学,2004,3.
    [29]张芳,赵光华,王惠民,等.提高氮化硅结合碳化硅窑具使用性能的研究[J].中国陶瓷,2011,47(3):61-64.
    [30]邹强.天线罩用氮化硅陶瓷材料烧结工艺的研究[D].天津:天津大学,2004,7.
    [31]李志强,肖俊明,刘铭,等.Si3N4结合SiC高速燃烧套管的研制.中国陶瓷,1997,33(4):19-21.
    [32]杜大明,赵世坤,李华平,等.氮化硅无压烧结研究进展[J].山东陶瓷,2003,26(4):32-35.
    [33]郭景坤.陶瓷的结构与性能[M].北京:科学出版社,1998,6.
    [34]师瑞霞,尹衍升,王英姿.烧结助剂对氮化硅陶瓷显微结构和性能的影响[J].现代技术陶瓷,2003,97(3):7-11.
    [35]尉磊,汪长安,董薇.烧结助剂含量对多孔氮化硅结构及性能的影响[J].宇航材料上艺,2011,1:109-112.
    [36]于方丽,于平平,王俭志.烧结助剂及p-Si3N4添加量对多孔氮化硅陶瓷性能的影响[J].人工晶体学报,2011,40(3):772-783.
    [37]赵世坤.碳纳米管增韧氮化硅陶瓷的研究[D].武汉:武汉理工大学,2004,5.
    [38]工润泽,刘延伶.某些碳化硅材料的内耗和热震损伤[J].耐火材料,1996,3(2):88-92.
    [39]J.A. Hawk, D.E. Alman, J.J. Petrovic. Abrasive wear of Si3N4-MoSi2 composites [J]. WEAR, 1997,203:247-256.
    [40]A. Ashkin, D. Ashkin, O. Babushkin, etc.. At-Temperature Observation of Phase Developent in Yttrium a-Sialon [J]. Journal of the European Ceramic Society,1995,15:1101-1109.
    [41]Gayle S. Painter, Paul F.Becher.Bond Energetics at Intergranular Interfaces in Alumina-Doped Silicon Nitride [J]. Journal of the American Ceramic Society,2002,85(1):65-67.
    [42]Isao Tanaka, Hirohiko Adachi. Calculation of Grain-Boundary Bonding in Rare-Earth-Doped P-Si3N4 [J]. Journal of the European Ceramic Society,1998,81(3):565-570.
    [43]Jae Young Choi, Chong Hee Kim, Do Kyung Kim. Carbothermic Synthesis of Monodis-persed Spherical Si3N4/SiC Nanocomposite Powder[J]. Journal of the American Ceramic Society,1999,82(10):2665-2671.
    [44]Jin-Joo Park, Osamu Komura, Akira Yamakawa. Change of Crystal Phases and Micro-structure of Amorphous Si-C-N Powder by Hot Pressing [J]. Journal of the American Ceramic Society,1998,81(9):2253-2260.
    [45]Xingguo Li, Akihiko Chiba, Yoshinori Nakata, etc.. Characterization of ultrafine SiC-Si3N4 composite powder after heat-treatment in Ar+N2[J]. Materials Science and Engineering, 1996,219:95-101.
    [46]JunIchiro Tsubaki, Hidetoshi Mori, Kohichi Ayama, etc.. Characterized microstructure of porous Si3N4 compacts prepared using the pyrolysis of polysilazane[J]. Journal of Membrane Science,1997,129:1-8.
    [47]Lubomir Benco. Chemical bonding at grain boundaries:MgO on β-Si3N4[J]. Surface Science, 1995,327:274-284.
    [48]E. Heikinheimo, I. Isomaki, A.A. Kodentsov, etc.. Chemical Interaction Between Fe and Silicon Nitride Ceramic[J]. Journal of European Ceramic Society,1997,17:25-31.
    [49]Thomas Fend, Bernhard Hoffschmidt, Cary Jorgensen, etc.. Comparative assessment of solar concentrator materials [J]. Solar Energy,2003,74:149-155.
    [50]Chang-an Wang, Yong Huang, Qingfeng Zan, etc.. Control of Composition and Structure in Laminated Silicon Nitride/Boron Nitride Composites [J]. Journal of American Ceramic Society,2002,85:2457-2465.
    [51]J.Schilm, M.Herrmann, C.Michael. Corrosion of Si3N4-ceramics in aqueous solutions [J]. Journal of European Ceramic Society,2007,27:3573-3588.
    [52]S.Mello Castanho, J.S.Moya, G.S.Blugan,etc. Si3N4-Al2O3/Si3N4-Y2O3 Couple Diffusion System [J]. Acta Materialia,1996,44(3):1001-1010.
    [53]Zafer Tatli, Derek P. Thompson. Densification behavior of oxide-coated silicon nitride powders [J]. Materials letters,2005,59:1897-1901.
    [54]Kang N.Lee, Robert A.Miller. Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics [J].Surface and Coatings Techonology,1996,86:142-148.
    [55]Akhtar Farid, Guo Shiju. Development of Si3N4/Al composite by pressureless melt infiltration [J].Transactions of Nonferrous Metals Society of China,2006,16:629-632.
    [56]Rong-Jun Xie, Mamoru Mitomo, Gou Dong Zhan. Diffusion Bonding of Silicon Nitride Using a Superplastic β-SiAlON Interlayer [J].Journal of American Ceramic Society, 2001,84(2):71-73.
    [57]Shoichirou Taira, Yasuyuki Yamasaki, Kunihiko Nakashima, etc.. Dissolution Rate of Silicon Nitride Ceramics into Molten CaO-Al2O3-SiO2 Slags [J].Journal of American Ceramic Society,1997,80(4):925-932.
    [58]Koji Watari, Kiyoshi Hirao, Motohiro Toriyama. Effect of Grain Size on the Thermal Conductivity of Si3N4 [J].Journal of American Ceramic Society,1999,82(3):777-779.
    [59]Angel de Pablos, Maria Isabel Osendi, Pilar Miranzo. Effect of Microstrucrure on the Thermal Conductivity of Hot-Pressed Silicon Nitride Materials [J].Journal of American Ceramic Society,2002,85(1):200-206.
    [60]Chihiro Kawai, Akira Yamakawa. Effect of Porosity and Microstructure on the Strength of Si3N4:Designed Microstructure for High Strength, High Thermal Shock Resistance, and Facile Machining [J].Journal of American Ceramic Society,1997,80(10):2705-2708.
    [61]Rongjun Xie, Liping Huang, Xiren Fu, etc.. Effects of Adhesive Composition on Bond Strength of Joined Silicon Nitride Ceramics [J].Journal of European Ceramic Society,1998, 18:901-905.
    [62]T.Hirano, T.Ohji, K.Niihara. Effects of matrix grain size on the mechanical properties of Si3N4/SiC nanocomposites densified with Y2O3[J].Materials Letters,1996,27:53-58.
    [63]Mikito Kitayama, Kiyoshi Hirao, Akira Tsuge, etc.. Thermal Conductivity of β-Si3N4:Ⅱ, Effect of Lattice Oxygen [J].Journal of American Ceramic Society,2000,83(8):1985-1992.
    [64]Giuseppe Pezzotti. Local Viscosity of Si-O-C-N Nanoscale Amorphous Phases at Ceramic Grain Boundaries [J].Journal of American Ceramic Society,2001,84(10):2225-2228.
    [65]Hyoungioon Park, Hyoun-Ee Kim. Microstructural Evolution and Mechanical Properties of Si3N4 with Yb2O3 as a Firing Additive [J].Journal of American Ceramic Society,1997,80(3): 750-756.
    [66]Won-Ho Lee, Hyoun-Ee Kim. Microstructural Evolution of Gas-Pressure-Fired Si3N4 with Yb2O3 as a Firing Aid [J] Journal of American Ceramic Society,1997,80(10):2737-2740.
    [67]Hyoungjoon Park, Hyoun-Ee Kim, Koichi Niihara. Microstructure and High-Temperature Strength of Si3N4-SiC[J].Journal of European Ceramic Society,1998,18:907-914.
    [68]T. Hirano, K. Izaki, K. Niihara. Microstructure and Thermal Conductivity of Si3N4-SiC Nanocomposites Fabricated from Amorphous Si-C-N[J].NanoStructured Materials,1995, 5:809-818.
    [69]Hiroshi Yokota, Masahiro Ibukiyama. Microstructure Tailoring for High Thermal Conduc-tivity of β-Si3N4 Ceramics [J].Journal of American Ceramic Soceity,2003,83(1):197-199.
    [70]Jiping Ye, Akira Okada. Microthermal Analysis of Heat Conduction in Silicon Nitrides [J].Journal of American Ceramic Society,2003,86(8):1365-1369.
    [71]G.Xu, H.Zhuang, W.Li, etc.. Microwave Firing of α/β-Si3N4 [J].Journal of European Ceramic Society,1997,17:977-981.
    [72]Volkan Giinay, Stuart Hampshire. Processing and properties of pressureless-fired Si3N4-SiC composites [J].Journal of Materials Processing Technology,1995,54:348-354.
    [73]黄朝晖,孙加林,王金相,等.A1203对Si3N4结合SiC材料抗氧化和抗碱侵蚀性的影响[J].耐火材料,2000,34(6):309-312.
    [74]杜大明.不同烧结助剂对氮化硅无压烧结的影响[D].武汉:武汉理工大学,2004,5.
    [75]赵中坚,王萍萍,胡伟,等.无压烧结制备多孔氮化硅陶瓷研究[J].硅酸盐通报,2010,29(4):976-979.
    [76]崔霞,崔霞,等.合金元素对Si3N4陶瓷生成的影响[J].昆明理工大学学报,2006,31(1):23-26.
    [77]张其上.Si3N4材料的钝化氧化和活化氧化[J].南京化工学院学报,1994,16(3):20-25.
    [78]Krishan L. Luthra. Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride [J].Journal of American Ceramic Society,1991,74(5):1095-1103.
    [79]苗立锋.氧化烧结Si3N4-SiC复合材料的制备工艺及性能研究[D].景德镇:景德锁陶瓷学院,2007,4.
    [80]徐锦标,王福.以燃烧合成的Si3N4粉体无压烧结氮化硅陶瓷套管[J].中国陶瓷,2012,48(2):39-41.
    [81]Balat M, Czerniak M, Berjoan R. Oxidation of Silicon Nitride under Standard Air or Microwave-excited Air at High Temperature and Low Pressure [J]. Journal of Material Science,1997,32:1187-1193.
    [82]冯建,赵光华,朱喜仲.Si3N4陶瓷材料的高温氧化理论及其抗氧化研究现状[J].中国表面工程,2004,67(4):15-19.
    [83]Sheehan J E. Passive and active oxidation of hot-pressed silicon nitride materials with two magnesia contents [J]. Journal of American Ceramic Society,1982,65(7):95-111.
    [84]张其土.Si3N4材料的钝化氧化和活化氧化[J].南京化上学院学报,1994,16(3):20-25.
    [85]Linus U.J.T.Ogbuji, Elizabeht J. Opola. A Comparison of the Oxidation Kinetics of SiC and Si3N4 [J]. Journal of Electrochemical Society,1995,142:925-930.
    [86]Singhal S C. Thermodynamics and Kinetics of Oxidation of Hot-Pressed Silicon Nitride [J]. Journal of Material Science,1976,11:500.
    [87]Cubicciotti D, Lau K H. Kinetics of Oxidation of Yttria Hot-Pressed Silicon Nitride [J]. Journal of Electrochemical Society,1979,126(10):1723-1728.
    [88]宋慎泰,刘开琪,等.特种陶瓷与耐火材料[J].冶金工业出版社,2004:136-145.
    [89]Mary Anne Alvin, Thomas E. Lippert, Jay E.Lane. Assessment of Porous Ceramic.Materials for Hot Gas Filtration Applications [J]. Journal of American Ceramic Society Bull,1991,70 (9):1941-1498.
    [90]吴庆祝.汽车柴油机排气颗粒泡沫陶瓷过滤器的研制[J].河北陶瓷,1997,25:3-8.
    [91]Walter E.C, Pritzkow. Pressure loaded volumetric ceramic receiver[J].Solar Energy Materials, 1991,24:498-507.
    [92]J. Kami, A. Kribus, R. Rubin, et al. The "porcupine":a novel high-flux absorber for volumetric solar receivers[J].Solar Energy Engineering,1998,120:85-95.
    [93]Paul C. Klimas, Richard B. Diver, James M. Chavez. United States Department of Energy solar receiver technology development[J].Solar Energy Materials,1991,24:136-150.
    [94]Reiner Buck, Christian Barth, Markus Eck, et al. Dual-receiver concept for solar towers [J].Solar Energy,2006,80:1249-1254.
    [95]Reiner Buck, Thomas Brauning, Thorsten Denk, et al. Solar-hybrid gas turbine-based power tower systems (REFOS) [J].Solar Energy Engineering,2002,124:2-9.
    [96]Michael Epstein, D.Liebermann, M.Rosh, et al. Solar tesing of 2MW,h water/steam receiver at the Weizmann Institute solar tower[J].Solar Energy Materials,1991,24:265-278.
    [97]S. Alexopoulos, G. Breitbach, B. Hoffschmidt, et al. Optimization of the geometry of porous SiC ceramic filtering modules using numerical methods [J].Developments in porous, Biological and Geopolymer Ceramics,2008,32(2):95-104.
    [98]赵耀华,张春平,刘志刚,等.腔式吸热器.中国,200410000650[P],2005-07-15.
    [99]王志峰,白凤武,李鑫,等.一种碳化硅泡沫陶瓷太阳能空气吸热器.中国,200710099039[P],2008-02-13.
    [100]Fengwu Bai. One dimensional thermal analysis of silicon carbide ceramic foam used for solar air receiver [J].International journal of thermal sciences,2010,49:2400-2404.
    [101]Yan Wang, Fengwu Bai, Yongfang Jian, et al. Heat transfer enchancement of an electric air heating furnace by inserting silicon carbide ceramic foam panels [J].Experimental Thermal and Fluid Science,2012,38:127-133.
    [102]王志峰,李鑫,白凤武,等.用于太阳能塔式热发电的流化床高温吸热器及其“吸热-吸热”双流化床系统.中国,200710099040[P],2008-02-13.
    [103]王志峰,白凤武,李鑫.太阳能热发电用固体球流吸热器.中国,200910090284[P],2010-01-27.
    [104]许昌,刘德有,郑源,等.一种多孔介质太阳能吸热器传热研究[J].研究与探讨,2010,3:1-4.
    [105]许昌,刘德有,郑源,等.多孔介质太阳能吸热器的非稳态传热[J].华南理工大学学报(自然科学版),2011,39(3):42-51.
    [106]崔福庆,何雅玲,程泽东,等.有压腔式吸热器内辐射传播过程Monte Carlo模拟[J].化工学报,2011,62(S1):60-65.
    [107]M. Becker, Th. Fend, B. Hoffschmidt, et al. Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers [J].Solar Energy,2006, 80:1241-1248.
    [108]Kyle Kitzmiller, Fletcher Miller. Thermodynamic cycles for a small particle heat exchange receiver used in concentrating solar power plants[J].Solar Energy Engineering,2011,133: 1-8.
    [109]Zhiyong Wu, Cyril Caliot, Gilles Flamant, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimize volumetric solar air receiver performances [J].International journal of heat and mass transfer,2011,54:1527-1537.
    [110]Chang Xu, Zhe Song, Lea-der Chen, et al. Numerical investigation on porous media heat transfer in a solar tower receiver [J].Renewable Energy,2011,36:1138-1144.
    [111]Manuel Romero, Reiner Buck, James E.Pacheco, et al. An update on solar central receiver systems, projects and technologies[J].Solar Energy Engineering,2002,124:98-108.
    [112]Ma. Jesus Macros, Manuel Romero, Silvia Palero, et al. Analysis of air return alternatives for CRS-type open volumetric receivers [J].Energy,2004,29:677-686.
    [113]Silvia Palero, Manuel Romero, Jose L. Castillo. Comparison of experimental and numerical air temperature distributions behind a cylindrical volumetric solar absorber module[J].Solar Energy Engineering,2008,130:1-8.
    [114]Fan Zhilin, Zhang Yaoming, Liu Deyou, et al. Discussion of mechanical design for pressured cavity-air [J].Solar Thermal Systems and Applications,2007,5:1868-1872.
    [115]白凤武,王志峰,李鑫,等.一种太阳能热发电用承压式空气吸热器.中国,200810115463[P],2008-11-19.
    [116]白凤武.王志峰,王艳,等.一种太阳能热发电用吸热体旋转式空气吸热器.中国, 200910243555[P],20]0-06-16.
    [117]王志峰,白凤武,李鑫.太阳能热发电用固体球流吸热器.中国,200910090284[P],2010-01-27.
    [118]Yang Min lin, Yang Xiao Xi, Zhang Shan shan. Performance comparisons solar central receivers and working fluids for solar power tower systems [J].Journal of shananxi university of science and technology,2008,26:21-27.
    [119]H.I. Villafan-Vidales, Stephane Abanades, Cyril Caliot, et al. Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver [J].Applied Thermal Engineering,2011,31:3377-3386.
    [120]崔福庆,何雅玲,李东,等.塔式吸热器中辐射传播过程的参数分析[J].工程热物理学报,2011,32(8):1375-1378.
    [121]王富强,帅永,谈和平.腔式太阳能吸热器的热分析[J].工程热物理学报,2011,32(5):843-846.
    [122]刘德有,许昌,王军,等.腔式太阳能高温空气吸热器传热过程数值模拟[J].可再生能源,2011,29(2):7-11.
    [123]许昌,刘德有,郑源,等.塔式太阳能发电多孔介质吸热器动态模拟[J].中国电机工程学报,2010,30(29):122-127.
    [124]姜培学,李勐,司广树.空气在多孔介质中对流换热的数值模拟[J].工程热物理学报,2001,22(5):609-611.
    [125]程泽东,何雅玲,崔福庆,等.有压腔式吸热器复杂耦合换热机理数值研究[J].工程热物理学报,2011,32(3):488-492.
    [126]王航,巢永烈,廖运茂.GI-Ⅱ型渗透陶瓷收缩率和弯曲强度测试[J].华西医大学报,2001,32(4):524-525.
    [127]Huang Fei, Fu Zhengyi, Wang Weimin, et al.Oxidation behavior of titanium diboride ceramic at different temperatures [J].Journal of Chinese Ceramic Soceity,2008,36(5):584-587.
    [128]R. M. Horton. Oxidation Kinetics of Powered Silicon Nitride[J].Journal of American Ceramic Society,1969,52(3):121-124.
    [129]张林,赵光华,朱喜仲.Si3N4-SiC材料的生产与应用[J].山东陶瓷,1999,22(1):11-17.
    [130]黄朝晖,孙加林,王金相,等.A1203对Si3N4结合SiC材料抗氧化和抗碱侵蚀性的影响[J].耐火材料,2000,34(6):309-312.
    [131]L.V. Wallace, G.M. Howard. Characterization of SiC Thermal Oxidation. Journal of American Ceramic Society,1990,73(6):1540-1543.
    [132]文洪杰,李文超,王金相.红柱石分解过程的分形研究[J].北京科技大学学报,1998,20(1):85-87.
    [133]曾令可,任雪潭,贺海洋.掺杂红柱石对堇青石质窑具抗热震性的影响[J].华南理工大学学报(自然科学版),2001,29(6):60-63.
    [134]文洪杰,苗圃,李文超.红柱石的莫来石化动力学[J].耐火材料,1995,29(3):140-141.
    [135]郭敬娜,林先桥,王渝斌.红柱石的粒度对莫来石-刚玉材料性能的影响[J].工业炉,2005,27(1):4-8.
    [136]李柳生,平增福.红柱石的莫来石化[J].硅酸盐通报,2006,1:34-36.
    [137]温光宇.Si3N4/碳化硅成份及显微结构设计与性能分析[D].西安:西北工业大学,2004,3.
    [138]吴清仁,文壁璇.SiC材料导热系数和热膨胀系数与温度关系[J].华南理工大学学报(自然科学版),1996,24(3):11-15.
    [139]Thomas C.R.Essentials of Carbon-Carbon Composites[M].London:Chapman and Hall Press, 1993:208.
    [140]1. A. Aksay and J. A. Pask. Journal of American Ceramic Society.1975,58 (11):507-512.
    [141]彭珍珍.无压埋烧85Al2O3/SiC纳米复合陶瓷及其表明性能的研究[D].天津:天津大学,2004,8.
    [142]曹顺华.β-Silaon/SiC耐火材料的氧化行为[J].中国有色金属学报,1994,4(3):78-81.
    [143]张海军.O'-Sialon-ZrO2-SiC复合材料的抗氧化性能研究[J].耐火材料,2000,34(2):82-85.
    [144]曹顺华,王才德Sialon结合SiC耐火材料的化学稳定性[J].耐火材料,1998,32(5):263-265.
    [145]曹顺华,黄和平,赵慕岳,等Sialon结合SiC耐火材料的高温碱侵蚀行为[J].中国矿冶学报,1994,23(1):81-84.
    [146]曹顺华,温东强,黄和平,等.P-Silaon/SiC复合材料在冰品石溶液中的腐蚀行为[J].耐火材料,1994,25(2):202-207.
    [147]D. A. Gunn. A Theoretical Evaluation of the Stability of Sialon-bonded Silicon Carbide in the Blast Furnace Environment[J]. Journal of European Ceramic Society,1993,11:35-41.
    [148]F. F. Lange, S. C. Singal, R. C. Kuznicki. Phase Relationships and Stability Studies in the Si3N4-SiO2-Y2O3 Pseudoternary System[J]. Journal of American Ceramic Society,1977, 60(5-6):249-252.
    [149]G. N. Babini, A. Bellosi, P. Vincenzini. A diffusion model for the oxidation of hot pressed Si3N4-Y2O3-SiO2 materials[J] Journal of Material Science,1984,19:1029-1042.
    [150]J. Weiss, H. L. Lukas, J. Lorenz, et al.CALPHAD:Comput.Coupling Phase Diagrams Thermochem,1981,5(2):125-140.
    [151]G Z. Cao, Z. K. Huang, X. R. Fu, and et al.International Journal of High Technology Ceramic,1985,1(2):119-127.
    [152]L. J. Gauckler, H. L. Lukas, G. Petzow. Contribution to the phase diagram Si3N4-AlN-Al2O3-SiO2[J]. Journal of America] Ceramic Society,1975,58(7-8):246-247.
    [153]I. K. Naik, L. J. Gauckler, T. Y. Tien. Solid-liquid equilibria in the system Si3N4-AlN-Si02-Al2O3[J]. Journal of American Ceramic Society,1978,61:332.
    [154]任喜新,黄振武.塞隆(Sialon)的化学组成、晶形和应用[J].耐火材料,1993,27(3):175-177.
    [155]孙维莹,李文兰,严东生.O’-p复相Sialon陶瓷中相组成的控制[J].中国科学,1987,10:55-59.
    [156]窦叔菊.塞隆陶瓷[J].国外耐火材料,1995,8:2-7.
    [157]方正国,刘解华Sialon系耐火材料[J].耐火材料,1983,5:57-61.
    [158]仲维斌,李文超,钟香崇.无压烧结合成O'-Sialon[J]耐火材料,1996,30(2):63-66.
    [159]M. B. Trigg, K. H. Jack. The Fabrication of O'-Sialon Ceramics by Pressureless firing [J]. Journal of Material Science,1988,23:481-487.
    [160]钟维斌,李文超,钟香崇.O'-Sialon-ZrO2复相材料的显微结构与力学性能的研究[J].耐火材料,1996,30(1):10-15.
    [161]H. L. Lukas,.1. Weiss, and E. Th. Henig, CALPHAD:Comput. Coupling Phase Diagrams Thermochem.,1982,6 (3):229-251.
    [162]D. R. Stull and H. Prophet; "JANAF Thermochemical Tables,2nd ed.", Natl. Stand. Ref. Data Ser. (U. S., Natl. Bur. Stand.), Rep. No. NSRDS-NBS 37, National Bureau of Standards, U. S. Department of Commerce; Washington, D.C.,1971:1141.
    [163]R. Hultgren, P. D. Desai, D. T. Hawkins, and et al.Selected Values of the Thermodynamic Properties of the Elements[J]. Journal of American Society of Metals, Metals Park, Ohio, 1973,3:465-471.
    [164]K. Blegen, Spec. Ceramic,1975,6:223-244.
    [165]W. A. Krivsky and R. Schuhmann, Jr. Trans. Metall. Soc. AIME,1961,221(5):898-904.
    [166]E. Gugel, P. Ettmayer, and A. Schmidt, Ber. Dtsch. Keram. Ges.,1968,45(8):395-402.
    [167]H. Rassaerts and A. Schmidt, Planseeber. Pulvermet.,1966,14 (2):110-114.
    [168]徐国涛,陈方玉,杜鹤桂.塞隆结合碳化硅耐火材料的微观结构与性能分析[J].陶瓷工程,1999,33(1):1-4.
    [169]Teixeira V, Sousa E, Costa M. F. et al. Spectrally selective composite coatings of Cr/Cr2O3 and Mo-Al2O3 for solar energy applications [J].Thin Solid Films,2001,392(2):320-326.
    [170]潘永强.直流磁控溅射Cr/Cr2O3金属陶瓷选择吸收薄膜的研究[J].真空科学与技术学报,2006,26(6):517-521.
    [171]Z. K. Huang, P. Greil, G. Petzow. Formation of Silicon Oxinitride from Si3N4 and SiO2 in the Presence of Al2O3[J]. Journal of Ceramic International,1984,10(1):14-19.
    [172]M. Mitomo, S. Ono, T. Asami, et al. Effect of atmosphere on the reaction firing of Si2N2O[J]. Journal of Ceramic International,1989,15(6):345-350.
    [173]M. Ohashi, S. Kanzaki, H. Tabata. Processing, Mechanical Properties and Oxidation Behavior of Silicon Oxynitride Ceramics[J].Journal of American Ceramic Society,1991,74 (1):109-114.
    [174]M. Ohashi, K. Nakamura, K. Hirao, et al. Factors affecting mechanical properties of silicon oxynitride ceramics[J]. Journal of Ceramic International,1997,23(1):27-37.
    [175]M. H. Lewis, C. J. Reed, N. D. Butler. Pressureless FIRed Ceramics Based on the Compound Si2N2O[J]. Journal of Material Science Engineering,1985,75:87-94.
    [176]P. L. Roeder, F. P. Glasser, E. F. Osborn, Journal of American Ceramic Society.1968, 51(10):585-594.
    [177]U. Kolitsch, H. J. Seifert, T. Ludwig, and et al. Journal of Material Science,1999,14(2): 447-455.
    [178]N. A. Toropov, I. A. Bondar, Izv. Akad,and et al.Oxide ratios of compounds are given as Y203.Si02 Bull. Acad. Sci USSR, Div. Chemical Science,1961,4:502-508.
    [179]C. O. Meara, J Sjoberg, G. Dunlop. Oxidation of pressureless fired Si2N2O materials[J]. Journal of European Ceramic Society,1991, (7):369-378.
    [180]L.O. Nordberg, M. Nygren, P. O. Kall and et al.. Stability and Oxidation Properties of RE-a-Sialon Ceramics(RE=Y, Nd, Sm, Yb)[J]. Journal of American Ceramic Society,1998,81(6): 1461-1470.
    [181]黄康明,李伟信,吴建青,等.陶瓷增韧技术的研究进展[J].中国陶瓷,2007,43(11):6-9.
    [182]McGarry C. N., Monroe D. L., Webber R. A..New thermal shock-resistant dense zircon and dense chromic oxide refractories [J]. Ceramic Engineering and Science Proceedings,1991, 12(3):473-481.
    [183]Y. B. Cheng, D. P. Thompson.System(ZrO2)3-(Al2O3)2-(SiO2)3-Si3N4-(AlN)4-(ZrN)3.Trans action Material Reserach Society,1994,14(2):895-898.
    [184]J. Weiss, L.J. Gauckler, H.L. Lukas, et al.System ZrO2-ZrN-Si3N4-AlN-Al2O3-SiO2[J]. Journal of Material Science,1981,16(11):2997-3005.
    [185]Schwarzwalder and A. V. Somess. US Patent,3090094.1963.
    [186]James A.Terry G.Thermal Performance of Solar Concentrator/Cavity Receiver Systems [J].Solar Energy,1985,34(2):135-142.
    [187]James A Willian S.Focal Plane Flux Distributions Produced by Solar Concentrating Reflectors[J]Solar Energy,1981,27:403.
    [188]Seo,T., Ryu, S., and Kang, Y., Thermal Performance of the Receivers for the Dish-Type Solar Energy Collecting System of Korea Institute of Energy Research[C].Procedding of the International Solar Energy Conference,2000,6(16):303-306.
    [189]Umrov, I., Fattakhov, A., et al. Heat Loss in a Cavity-Type Solar Collector[J]. Applied Solar Energy,1983,19(3):35-38.
    [190]Hwang G J, Wu C C, Chao C H. Investigation of Non-Darcian Forced Convection in an Asymmetrically Heated Fired Porous Channel [J]. Journal of Heat Transfer,1995,117 (8): 725-731.
    [191]Alazmi B, Vafai K. Analysis of Variants Within the Porous Media Transport Models [J]. Journal of Heat Transfer,2000,122(5):303-312.
    [192]Achenbach E. Heat and Flow Characteristics of Packed Beds[J]. Experimental Thermal and Fluid Science,1995,10(5):17-27.
    [193]Dixon A G, Cresswell D L. Theoretical Prediction of Active Heat Transfer Parameters in Packed Beds [J]. AICHE,1979,25(3):663-676.
    [194]Amiri A, Vafai K, Kuzay T M. Effects of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons, Numer [J]. Heat Transfer, Part A,1995,27(2):651-664.
    [195]Amiri A, Vafai K.Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity In compressible Flow Through Porous Media [J].Internation Journal of Heat Mass Transfer,1994,37(5):939-954.
    [196]Thomas Fend, Robert Pitz-Paal, Oliver Reutter.The propertyof cellular ceramics[R]. Germ-any:Institute of Technical Thermodynamics,2005.
    [197]Thomas Fend, Robert Pitz-Paal, Oliver Reutter. Convection Heat Transfer Investigation in Porous Materials[R]. Germany:Institute of Technical Thermodynamics,2005.
    [198]Thomas Fend, Bernhard Hoffschmidt, Robert Pitz-Paal.Porous Materials as Open Volumetric Solar Receivers:Experimental Determination of Thermophysical and Heat Transfer Properties [J]. Energy,2004,29(5):823-833.
    [199]谢龙汉,赵新宇,张炯明Ansys CFX流体分析及仿真[M].电子工业出版社,2012,6:22-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700