用户名: 密码: 验证码:
非牛顿流体中气泡运动及传质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非牛顿流体中的气泡运动广泛存在于化工、生化、环保、食品、冶金及高分子聚合等领域。对非牛顿流体中气泡运动及传质的深入了解将有助于相关设备的设计与优化。本文针对气泡在非牛顿流体中的运动及传质行为进行了实验及数值模拟研究。主要研究内容包括:
     利用高速摄像仪,对单个气泡在非牛顿流体中的上升行为进行了实验研究,测定了气泡的纵横比及上升的终端速度。根据Reynolds数、Eotvos数和Morton数三个无量纲准数作出了气泡在非牛顿流体中的形状分布图。提出了一个气泡纵横比与自定义的无量纲准数Wn的关联式。研究了非牛顿流体的流变性质及气泡形状对曳力系数的影响。提出了一个新的曳力系数关联式,在0.05<Re<300范围内,该关联式的预测值与实验结果吻合良好。
     利用高速摄像仪对非牛顿流体中两个气泡的在线相互作用进行了研究。发现在气泡相互靠近的过程中,先行气泡保持稳态上升,其速度不受跟随气泡的影响。受先行气泡尾流及剪切变稀效应影响,跟随气泡的速度在靠近先行气泡的过程中逐渐增大。提出了一个描述跟随气泡速度的理论模型,该模型的预测值与实验结果吻合良好。
     利用粒子影像测速仪(PIV)技术,研究了非牛顿流体中单个上升气泡周围的黏度分布和气泡链周围的湍动特性。考察了流体浓度对单气泡周围的黏度场的影响,同时讨论了速度场、黏度场和剪切应力场之间的耦合关系。探讨了气泡链周围的流场、湍动能及其耗散率的分布。
     对CO_2在三种不同流变性质的液相(牛顿流体、剪切变稀流体、黏弹性流体)中的传质行为进行了实验研究。测定了不同操作条件下的液相体积传质系数。考察了气体流量及液相性质对液相体积传质系数的影响。基于Higbie渗透理论和Kolmogorov湍动理论提出了一个半经验模型,并引入修正因子用于修正黏弹性对CO2传质的影响。在三种不同流变性质的液相中,模型预测值与实验结果均吻合良好。
     利用Level Set方法对气泡在剪切变稀型非牛顿流体中的自由上升运动进行了模拟。主要模拟了球形气泡、椭球形气泡以及球帽形气泡。模拟所得气泡形状及曳力系数与实验结果均能较好的吻合。论文还对两个在线上升气泡相互靠近和聚并过程进行了模拟。
The bubble motion in non-Newtonian fluids is extensively encountered inchemical engineering, biochemical application, food, metallurgy, polymerizationand other industrial applications. The knowledge of bubbles’ motion and masstransfer in non-Newtonian fluids is an inevitable foundation for the equipmentdesign and process optimization. In this thesis, the motion and mass transfer ofbubbles in non-Newtonian fluids were studied experimentally and computationally.The specific studies were included as follows:
     The motion of a single bubble rising in non-Newtonian fluids was investigatedexperimentally with the use of a high-speed camera. The bubble’ aspect ratio andterminal velocity were measured. The shape distribution chart of bubbles innon-Newtonian fluids was plotted by using the Reynolds number Re, the Eotvosnumber Eo and the Morton number Mo. An empirical correlation was proposed tocorrelate the bubble’s aspect ratio and the dimensionless number Wn. The influenceof rheological properties of non-Newtonian fluids and bubble’s shape on dragcoeffcients was studied. A new empirical correlation was proposed to predict thedrag coeffcient. And the predicted values of the present correlation agreed wellwith the experimental results within the experimental conditions.
     The interaction between two in-line bubbles rising in non-Newtonian fluidswas studied experimentally with the use of a high speed camera. It was found thatthe velocity of the leading bubble was invariant and was not affected by the trailingbubble during the approaching process of the two bubbles. Due to the wake andshear thinning effects of the leading bubble, the velocity of the trailing bubbleincreased gradually during the approaching process to the leading bubble. Atheoretical model was proposed to predict the velocity of the trailing bubble. Andthe values predicted by the model were in good agreement with the experimentresults.
     The viscosity distribution around a single bubble and the turbulencecharacteristics around bubble chains were investigated by using a particle imagevelocimetry (PIV). The effect of fluid’s concentration on the viscosity distribution around a single bubble was studied. The coupling relationship between the flowfield, the viscosity field and the shear stress field were discussed. The distributionsof flow fields, turbulent kinetic energy (TKE) and TKE dissipation rate aroundbubble chains were discussed.
     The mass transfer process of CO2bubble swarms in three various fluids withdifferent rheological properties (Newtonian fluids, shear-thinning fluids andviscoelastic fluids) was studied experimentally. The volumetric liquid-phase masstransfer coefficient under various operation conditions was determined. Theinfluences of gas flow rates and liquid properties on the volumetric liquid-phasemass transfer coefficient were investigated. Based on the Higbie’s penetrationtheory and Kolmogorov’s isotropic turbulence theory, a semi-empirical model wasdeveloped by introducing a modified factor taking into account the influence ofviscoelastic property on the mass transfer. The values predicted by this model werein good agreement with the experimental data in the three different types of liquidsused.
     The Level Set method was applied to simulate bubbles in shear-thinningnon-Newtonian fluids. The spherical, ellipsoidal and spherical cap bubbles weresimulated. Good agreement was found between the simulated results and theexperimental data of the bubble’s shape and drag coefficient. The approaching andcoalescence processes of two in-line bubbles were also simulated.
引文
[1] Chhabra, R. P. Bubbles, Drops and Particles in Non-Newtonian Fluids;2nded.CRC Press: Boca Raton, FL,2007.
    [2] Clift R, Grace J R, Weber M G, Bubbles, drops, and particles, London:Academic press,1978.
    [3] Chen L, Garimella S V, Reizes J A, et al., The development of a bubble risingin a viscous liquid, Journal of Fluid Mechanics,1999,387:61-96.
    [4]戴干策,陈敏恒,化工流体力学,北京:化学工业出版社,1988.
    [5] Grace J R, Shapes and velocities of bubbles rising in infnite liquids,Transactions of the Institution of Chemical Engineers,1973,51(1):116-120.
    [6] Moore D, The rise of a gas bubble in a viscous liquid, Journal of FluidMechanics Digital Archive,1958,6(1):113–130.
    [7] Ryskin G, Leal L G, Numerical simulation of a free-boundaryproblem in fuidmechanics. Part3. Bubble deformation in an axisymmetric straining fow,Journal of Fluid Mechanics,1984,148:37-43.
    [8] Raymond F, Rosant J M, A numerical and experimental study of the termina lvelocity and shape of bubbles in viscous liquids, Chemical EngineeringScience,2000,55(2):943-955.
    [9] Kojima E, Akehata T, Shirai T, Rising velocity and shape of single airbubbles in highly viscous liquids, Journal of Chemical Engineering of Japan,1968,1(1):45-50.
    [10] Tadaki T, Maeda S, On the shape and velocity of single air bubbles rising invarious liquids, Kagaku Kogaku,1961,25:254–264.
    [11] Vakhrushev I, Efremov G, Interpolation formula for computing the velocitiesof single gas bubbles in liquids, Chemistry and Technology of Fuels and Oils,1970,6(5):376–379.
    [12] Bhaga D, Weber M E, Bubbles in viscous liquids: shapes, wakes andvelocities, Journal of Fluid Mechanics,1981,105:61–85.
    [13] Kelbaliyev G, Ceylan K, Development of new empirical equations forestimation of drag coeffcient, shape deformation and rising velocity of gasbubbles or liquid drops, Chemical Engineering Communications,2007,194(12):1623-1637.
    [14] Wagner A R, Giraud L, Scott C E, Simulation of a cusped bubble rising in aviscoelastic fuid with a new numerical method, Computer PhysicsCommunications,2000,129(1-3):227-232.
    [15] DeKee, Rodrigue D, Chhabra R P, Hydrodynamics of free-rise of bubbles innon-Newtonian polymer solutions, Handbook of Applied Polymer ProcessingTechnology, Marcel Dekker, New York,1996,87-123.
    [16] DeKee, Rodrigue D, Chan Man Fong, C F, The motion of bubbles innon-Newtonian fuids, Rheology and Fluid Mechanics of Nonlinear Materials,1996,217:37-42.
    [17] DeKee D, Chan Man Fong, C F, Yao J, Bubble shape in non-Newtonian fuids,Journal of Applied Mechanics (ASME),2002,69(5):703-705.
    [18] Astarita G, Apuzzo G, Motion of gas bubbles in non-Newtonian liquids,AIChE Journal,1965,11(5):815-820.
    [19] Calderbank P H, Johnson D S L, Loudon J, Mechanics and mass transfer o fsingle bubbles in free rise through some Newtonian and non-Newtonianliquids, Chemical Engineering Science,1970,25(2):235-256.
    [20] Budzynski P, Dziubinski M, Orczykowska M, Shape of gas bubbles rising innon-Newtonian liquids, Inzynieria Chemiczna I Procesowa,2003,24(2):533-538.
    [21] DeKee D, Chhabra R P, A photographic study of shapes of bubbles andcoalescence in non-Newtonian polymer solutions, Rheologica Acta,1988,27(6):656-260.
    [22] Barnett S M, Humphery A E, Litt M, Bubble motion and mass transfer innon-Newtonian fuids, AIChE Journal,1966,12(2):253-259.
    [23] Warshay M, Bogusz E, Johnson M, et al., Ultimate velocity of drops instationary liquid media, The Canadian Journal of Chemical Engineering,1959,37(1):29-36.
    [24] DeKee D, Carreau P J, Mordarski J, Bubble velocity and coalescence inviscoelastic liquids, Chemical Engineering Science,1986,41(9):2273-2283.
    [25] Acharya A, Mashelkar R A, Ulbrecht J, Mechanics of bubble motion anddeformation in non-Newtonian media, Chemical Engineering Science,1977,32(8):863-872.
    [26] Leider P J, R B Bird, Squeezing fow between parallel disks. I. Theoreticalanalysis, Industrial&Engineering Chemistry Fundamentals,1974,13(4):336–341.
    [27] Miyahara T, Yamanaka S, Mechanics of motion and deformation of a singlebubble rising through quiescent highly viscous Newtonian andnon-Newtonian media, Journal of Chemical Engineering of Japan,1993,26(3):297-302.
    [28] Liu Y J, Liao T Y, Joseph D D, A two-dimensional cusp at the trailing edge o fan air bubble rising in a viscoelastic liquid, Journal of Fluid Mechanics,1995,304:321-342.
    [29] Pillapakkam S B, Dynamics of drops and bubbles in Newtonian andviscoelastic fows,2011Meeting of the Divisionof Particles and Fields of theAmerican Physical Society,1999,250:169-177.
    [30] Dubash N, Frigaard I, Conditions for static bubbles in viscoplastic fuids,Physics of Fluids,2004,16(12):4319-4330.
    [31] Mei R, Klausner J F, Unsteady force on a spherical bubble at finite Re withsmall fucntions in the free stream velocity, Physics Fluids A,1992,4(1):63-70.
    [32] Rodrigue D, Drag coefficient-Reynolds number transition for gas bubblesrising steadily in viscous fluids, The Canadian Journal of ChemicalEngineering,2001,79(1):119-123.
    [33] Rodrigue D, A general correlation for the rise velocity of single gas bubbles,The Canadian Journal of Chemical Engineering,2004,82(2):382-386.
    [34] Margaritis A, Te Bokkel D W, Karamanev D G, Bubble rise velocities anddrag coefficients in non-Newtonian polysacchride solutions, Biotechnologyand Bioengineering,1999,64(3):257-266.
    [35] Dewsbury K H, Karamanev D G, Margaritis A, Hydrodynamic characteristicsof free rise of light solid particles and gas bubbles in non-Newtonian liquids,Chemical Engineering Science,1999,54(21):4825-4830.
    [36] Dziubinski M, Orczykowska M, Budzynski P, Comments on bubble risingvelocity in non-Newtonian liquids, Chemical Engineering Science,2003,58(11):2441-2443.
    [37] Mohan V, Creeping fow of a power law fuid over a Newtonian fuid sphere,AIChE Journal,1974,20(1):180-182.
    [38] Chhabra R P, Dhingra S C, Creeping motion of a Carreau fuid past aNewtonian fuid sphere, The Canadian Journal of Chemical Engineering,1986,64(6):897-905.
    [39] Rodrigue D, Dekee D, Chan Man Fong C F, The slow motion of a single gasbubble in a non-Newtonian fluid containing surfactants, Journal ofNon-Newtonian Fluid Mechanics,1999,86(1-2):211-227.
    [40] Rodrigue D, De Kee D, Chan Man Fong C F, Bubble velocities: furtherdevelopments on the jump discontinuity, Journal of Non-Newtonian FluidMechanics,1998,79(1):45-55.
    [41] Crabtree J R, Bridgwater J, Bubble coalescence in viscous liquids, Chemica lEngineering Science,1971,26(6):839-851.
    [42] De N N, Wu J L, Bubble coalescence in viscous fluids, AICHE Journal,1971,17(1):182-186.
    [43] Bessler W F, Littman H, Experimental studies of wakes behind circularlycapped bubble, Journal of Fluid Mechanics,1987,185:137-151.
    [44] Komasawa I, Tsutao O, Motoyoshi K, Wake behavior and its effect oninteraction between spherical-cap bubbles, Journal of Chemical Engineeringof Japan,1980,13(2):103-109.
    [45] Marrucci G, A theory of coalescence, Chemical Engineering Science,1969,24(6):975-985.
    [46] Camarasa E, Vial C, Poncin S, et al., Influence of coalescence behaviour o fthe liquid and of gas sparging on hydrodynamics and bubble characteristics ina bubble column, Chemical Engineering and Processing: ProcessIntensification,1999,38(4-6):329-344.
    [47] Zahradn k J, KuncováG, FialováM, The effect of surface active additives o nbubble coalescence and gas holdup in viscous aerated batches, ChemicalEngineering Science,1999,54(13-14):2401-2408.
    [48] Sagert N H, Quinn M J, The coalescence of gas bubbles in dilute aqueoussolutions, Chemical Engineering Science,1978,33(8):1087-1095.
    [49] Shiloh K S, Sideman S, Resnick W, Coalescence and break-up in dilutepolydispersions, The Canadian Journal of Chemical Engineering,1973,51(5):542-549.
    [50] Prince M J, Harvey W B, Bubble coalescence and break-up in air-spargedbubble columns, AICHE Journal,1990,36(10):1485-1499.
    [51] Hassagar O, Negative wake behind bubbles in non-Newtonian liquids, Nature,1979,279:402-403.
    [52] Li H Z, Mouline Y, Funfschilling D, et al., Evidence for in-line bubbleinteractions in non-Newtonian fluids, Chemical Engineering Science,1998,53(12):2219-2230.
    [53] Lin T J, Lin G M, The mechanisms of bubble coalescence in anon-Newtonian fluid, The Canadian Journal of Chemical Engineering,2003,81(34):476-482.
    [54] Lin T J, Lin G M, Mechanisms of in-line coalescence of two-unequal bubblesin a non-Newtonian fluid, Chemical Engineering Journal,2009,155(3):750-756.
    [55] Acharya A, Ulbrecht J J, Note on the influence of viscoelasticity on thecoalescence rate of bubbles and drops, AIC hE Journal,1978,24(2):348-351.
    [56] Kok J B W, Dynamics of a pair of gas bubbles moving through liquid. Part ii.Experiment, European Journal of Mechanics-B/Fluids,1993,12(4):541-560.
    [57] Ramírez-Mu oz J, Soria A, Salinas-Rodríguez E, Hydrodynamic force o ninteractive spherical particles due to the wake effect, International Journal ofMultiphase Flow,2007,33(7):802-807.
    [58] Zhang J, Fan L S, A semi-analytical expression for the drag force of a ninteractive particle due to wake effect, Industrial&Engineering ChemistryResearch,2002,41(20):5094-5097.
    [59] Ramírez-Mu oz J, Salinas-Rodríguez E, Soria A, et al., Hydrodynamicinteraction on large-Reynolds-number aligned bubbles: Drag effects, NuclearEngineering and Design,2011,241(7):2371-2377.
    [60] Tsao H K, Koch D L, Collisions of slightly deformable in high Reynoldsnumber bubbles with short-range repulsive forces, Physics of Fluids,1994,6(8):2591-2605.
    [61] Tsao H K, Koch D L, Observation of high Reynolds number bubblesinteracting with a rigid wall, Physics of Fluids,1997,9(1):44-56.
    [62] Takemura F, Magnaudet J, The transverse force on clean and contaminatedbubbles rising near a vertical wall at moderate Reynolds number, Journal ofFluid Mechanics,2003,495:235-253.
    [63] Kushch V I, Sangani A S, Spelt P D M, et al., Finite weber number motion o fbubbles through a nearly inviscid liquid, Journal of Fluid Mechanics,2002,460:241-280.
    [64] de Vries A W G, Biesheuvel A, van Wijngaarden L, Notes on the path andwake of a gas bubble rising in pure water, International Journal of MultiphaseFlow,2002,28(11):1823-1835.
    [65] Kirkpatrick R D, Lockett MJ, The influence of approach velocity o n bubblecoalescence, Chemical Engineering Science,1974,29(12):2363-2373.
    [66] Chesters A K, Hofman G, Bubble coalescence in pure liquids, AppliedScience Research,1982,38(1):353-361.
    [67] Duineveld P C, Bouncing and coalescence of bubble pair rising at highReynolds number in pure water or aqueous surfactant solutions, AppliedScience Research,1998,58(1-4):409-439.
    [68] Lehr F, Millies M, Mewes D, Bubble-size distributions and flow fields inbubble columns, AIChE Journal,2002,48(11):2426-2443.
    [69] Sanada T, Shirota M, Watanabe M, Bubble wake visualization by usingphotochroic dye, Chemical Engineering Science,2007,62(24):7264-7273.
    [70] Sanada T, Sato A, Shirota M, et al., Motion and coalescence of a pair o fbubbles rising side by side, Chemical Engineering Science,2009,64(1):2659-2671.
    [71] Fan W Y, Ma Y G, Li X L, et al., Study on the flow field around two paralle lmoving bubbles and interaction between bubbles rising in CMC solutions byPIV, Chinese Journal of Chemical Engineering,2009,17(6):904-913.
    [72] Lance M, Bataille J, Turbulence in the liquid phase of a uniform bubblyair-water flow, Journal of Fluid Mechanics,1991,222:95-118.
    [73] Tokuhiro A, Maekawa M, Iizuka K, et al., Turbulent flow past a bubble andan ellipsoid using shadow-image and PIV techniques, International Journal ofMultiphase Flow,1998,24(8):1383-1406.
    [74] Brucker C, Structure and dynamics of the wake of bubbles and its relevancefor bubble interaction, Physics of Fluids,1999,11(7):1781-1781.
    [75] Ortiz-Villafuerte J, Schmidl W D, Hassan Y A, Three-dimensional PTV stud yof the surrounding flow and wake of a bubble rising in a stagnant liquid,Experiments in Fluids,2000,29(1):202-210.
    [76] Crabtree J R, Bridgwater J, Chain bubbling in viscous liquids, Chemica lEngineering Science,1969,24(12):1755-1768.
    [77] Fujiwara A, Danmoto Y, Hishida K, et al., Bubble deformation and flowstructure measured by double shadow images and PIV/LIF, Experiments inFluids,2004,36(1):157-165.
    [78] Liu Z L, Zheng Y, Jia L, et al., Study of bubble induced flow structure usingPIV, Chemical Engineering Science,2005,60(13):3537-3552.
    [79] Dziubinski M, Orczykowska M, Budzynski P, Average value of shear stressand shear rate at the surface of gas bubble rising in non-Newtonian liquids,Inzynieria Chemiczna I Procesowa,2002,23(3):341-348.
    [80] Lin T J, Lin G M, An experimental study on flow structures of a singlebubble rising in a shear-thinning viscoelastic fluid with a new measurementtechnique, International Journal of Multiphase Flow,2005,31(2):239-252.
    [81] Funfschilling D, Li H Z, Flow of non-Newtonian fluids around bubbles: PIVmeasurements and birefringence visualization, Chemical Engineering Science,2001,56(3):1137-1141.
    [82] Whitman W G, The two-film theory of gas absorption, Chem Met Eng,1923,29(4):146-148.
    [83] Lewis W K, Whitman W G, Principles of gas absorption, Industrial&Engineering. Chemistry,1924,16(3):1215-1220.
    [84] Higbie R, The rate of absorption of a pure gas into a still liquid during shortperiods of exposure, Transactions of the American Institute of ChemicalEngineers,1935,31:365-389.
    [85] Danckwerts P V, Significance of liquid-film coefficients in gas absoption,Industrial&Engineering Chemistry,1951,43(6):1460-1467.
    [86] Kubaczka A, Bandrowski J, Solutions of a system of multicomponent masstransport equation for mixtures of real fluids, Chemical Engineering Science,1991,46(2):539-556.
    [87] Krishna R, Ternary mass transfer in a wetted-wall column significance o fdiffusional interactions. I. Stefan diffusion, Transactions of the AmericanInstitute of Chemical Engineers,1981,59(1):35-43.
    [88] Perlmutter D D, Surface-renewal models in mass transfer, Chemica lEngineering Science,1961,16(3-4):287-296.
    [89]沈自求,徐维勤,丁杰,相际传质(I)一个修正的表面膜更新模型,化工学报,1980,31(4):23-36.
    [90] Ruckenstein E, A note concerning turbulent exchange of heat or mass with aboundary, Chemical Engineering Science,1958,7(4):265-268.
    [91] Ruckenstein E, Some remarks on renewal models, Chemical EngineeringScience,1963,18(4):233-241.
    [92] Koppel L B, Patel R D, Holmes J T, Statistical models for surface renewal inheat and mass transfer: part. Dependence pf average transport coefficients onage distribution, AIChE Journal,1966,12(5):941-946.
    [93] Nijsing R, Predictions on momentum, heat and mass transfer in turbulentchannel flow with the aid of a boundary layer growth-breakdown model,Warmeund Stoffiibertragung,1969,2(1):65-86.
    [94] Pinczewski W V, Sideman S, A model for mass (heat) transfer in turbulenttube flow. Moderate and high Schmidt (Prandtl) numbers, ChemicalEngineering Science,1974,29(9):1969-1976.
    [95] Hanratty T J, Turbulent exchange of mass and momentum with a boundary,AIChE Journal,1956,2(3):359-363.
    [96] Toor H L, Marchello J M, Film-penetration model for mass and heat transfer,AIChE Journal,1958,4(1):97-101.
    [97] Dobbin W E, BOD and oxygen relationships in streams, Journal of theSanitary Engineering Division,1964,90(3):53-78.
    [98] Wang J, Langenann H, Unsteady two-film model for mass transfer, Chemica lEngineering&Technology,1994,17(4):280-284.
    [99] Wang J, Langenann H, Unsteady two-film model for mass transferaccompanied by chemical reaction, Chemical Engineering Science,1994,49(20):3457-3463.
    [100] Zhao B, Wang J, Yang W, Jin Y, Gas–liquid mass transfer in slurry bubblesystems I. Mathematical modeling based on a single bubble mechanism,Chemical Engineering Journal,2003,96(1-3):23-27.
    [101] Levich V G, Physicochemical hyrodynamics, Prentice-Hall Englewood Cliffs,1962.
    [102] Davies J T, Driscoll J P, Eddies in free surfaces, simulated by pluses of water,Industril Engineering Chemistry Fundamentals,1974,13(2):105-106.
    [103] Fortescue G E, Pearson J R A, On gas absorption into a turbulent liquid,Chemical Engineering Science,1967,22(9):1163-1176.
    [104] Lamont J C, Scott D S, Eddy cell model of mass transfer into the surface of aturbulent liquid, AIChE Journal,1970,16(4):513-519.
    [105] Luk S, Lee Y H, Mass transfer in eddies close to air-water interface, AIChEJournal,1986,32(9):1546-1554.
    [106]苗容生,王树楹,余国琮,运动气泡近界面浓度场的激光测量及其传质特性的研究,化工学报,1992,43(5):635-639.
    [107]马友光,余国琮,何明霞,多组分相际传质近界面浓度场的测定,化工学报,1994,45(5):636-642.
    [108] Ma Y G, Feng H S, Xu S C, et al., The Mechanism of interfacial masstransfer in gas absorption process, Chinese Journal of Chemical Engineering,2003,11(2):227-230.
    [109] Calderbank P H, Moo-Young M B, The continuous phase heat and masstransfer properties of dispersions, Chemical Engineering Science,1961,16(1-2):39-54.
    [110] Fukuda H, Nakashima T, Morikawa H, Oxygen transfer in a new towerbioreactor containing a draft tube and perforated plates, Journal offermentation technology,1978,56(6):619-625.
    [111] Yoshida F, Miura Y, Gas absorption in agitated gas–liquid contactors,Industrial&Engineering Chemistry Process Design and Development,1963,2(4):263-268.
    [112] Colombet D, Legendre D, Cockx A, et al., Experimental study of masstransfer in a dense bubble swarm, Chemical Engineering Science,2011,66(14):3432-3440.
    [113] Akita K, Yoshida F, Bubble size, interfacial area, and liquid-phase masstransfer coeffcient in bubble columns, Industrial&Engineering ChemistryProcess Design and Development,1974,13(1):84-91.
    [114] Nedeltchev S, Jordan U, Schumpe A, A New Correction Factor forTheoretical Prediction of Mass Transfer Coeffcients in Bubble Columns,Journal of Chemical Engineering of Japan,2006,39(12);1237-1242.
    [115] Hassan I T M, Robinson C W, Mass transfer coeffcient in mechanicallyagitated gas-aqueous electrolyte dispersions, The Canadian Journal ofChemical Engineering,1980,58(2):198-205.
    [116] Nedeltchev S, Jordan U, Schumpe A, Semi-theoretical prediction o fvolumetric mass transfer coefficients in bubble columns with organic liquidsat ambient and elevated temperatures, The Canadian Journal of ChemicalEngineering,2010,88(4):523-533.
    [117] Nedeltchev S, Jordan U, Schumpe A, Correction of the penetration theorybased on mass-transfer data from bubble columns operated in thehomogeneous regime under high pressure, Chemical Engineering Science,2007,62(22):6263-6273.
    [118] Hassan I T M, Robinson C W, Mass-transfer-effective bubble coalescencefrequency and specifc interfacial area in a mechanically agitated gas–liquidcontactor, Chemical Engineering Science,1980,35(6):1277-1289.
    [119] Panja N C, Phaneswara Rao D, Measurement of gas–liquid parameters in amechanically agitated contactor, Chemical Engineering Journal,1993,52(3):121-129.
    [120] Alves S S, Maia C I, Vasconcelos J M T, Gas–liquidmass transfer coeffcientin stirred tanks interpreted through bubble contamination kinetics, ChemicalEngineering and Processing,2004,43(7):823-830.
    [121] Linek V, Kordac M, FujasováM, et al., Gas–liquid mass transfer coeffcientin stirred tanks interpreted through models of idealized eddy structure ofturbulence in the bubble vicinity, Chemical Engineering and Processing,2004,43(12):1511-1517.
    [122] Garcia-Ochoa F, Gomez E, Prediction of gas–liquid mass transfer coeffcientin sparged stirred tank bioreactors, Biotechnology and Bioengineering,2005,92(6):761-772.
    [123] Linek V, Kordac M, Moucha T, Mechanism of mass transfer from bubbles indispersions. Part II.Mass transfer coeffcients in stirred gas–liquid reactor andbubble column, Chemical Engineering and Processing,2005,44(3):121-130.
    [124] Nedeltchev S, Simultaneous application of penetration theory to both smalland large bubbles formed in a column operated under heterogeneous regime,Chemical Engineering&Technology,2008,31(2):315-323.
    [125] Popovic M, Robinson C W, The specifc interfacial area in externalcirculation loop airlift and bubble column II Carboxymethylcellulose/sulphite solution, Chemical Engineering Science,1987,42(12):2825-2832.
    [126] Li G G, Yang S Z, Cai Z L, et al., Mass transfer and gas–liquid circulation inan airlift bioreactor with viscous non-Newtonian fuids, The ChemicalEngineering Journal and The Biochemical Engineering Journal,1995,56(2):B101–B107.
    [127] Kawase Y, Halard B, Moo-Young M, Theoretical prediction of volumetricmass transfer coeffcients in bubble columns for Newtonian andnon-Newtonian fuids, Chemical Engineering Science,1987,42(7):1609-1617.
    [128] Kawase Y, Moo-Young M, Correlations for liquid-phase mass transfercoeffcients in bubble column reactors with Newtonian and non-Newtonianfuids, The CanadianJournalofChemical Engineering,1992,70(1):48-54.
    [129] Schumpe A, Deckwer W D, Gas holdups, specifc interfacial areas, and masstransfer coeffcients of aerated carboxymethyl cellulose solutions in a bubblecolumn, Industrial&Engineering Chemistry Process Design andDevelopment,1982,21(4):706–711.
    [130] Schumpe A, Deckwer W D, Viscous media in tower bioreactors:hydrodynamic characteristics and mass transfer properties, Bioprocess andBiosystems Engineering,1987,2(2):79-94.
    [131] Garcia-Ochoa F, Gomez E Theoretical prediction of gas–liquid mass transfercoefficient, specific area and hold-up in sparged stirred tanks, ChemicalEngineering Sciense,2004,59(12):2489-2501.
    [132] Gómez-Díaz D, Navaza J M, Quintáns-Riveiro L C, Gas absorption in bubblecolumn using a non-Newtonian liquid phase, Chemical Engineering Journal,2009,146(1):16–21.
    [133] Suh I S, Herbst H, Schumpe A, et al., The molecular weight of xantha npolysaccharide produced under oxygen limitation, Biotechnology Letters,1990,12(3):201–206.
    [134] Park S W, Choi B S, Lee J W, Chemical absorption of carbon dioxide intoaqueous elastic xanthan gum solution containing NaOH, Journal of Industrialand Engineering Chemistry,2008,14(3):303-307.
    [135] Nakanoh M, Yoshida F, Gas absorption by Newtonian and non-Newtonia nliquids in a bubble column, Industrial&Engineering Chemistry ProcessDesign and Development,1980,19(1):190-195.
    [136] Son Y S, Park S W, Park D W, et al., Effect of the rheological properties o faqueous xanthan gum solution on chemical absorp-tion of carbon dioxidewith diisopropanolamine, Korea-Australia Rheology Journal,2009,21(2):109-117.
    [137] Park S W, Choi B S, Lee J W, Effect of polyacrylamide on absorption rate o fcarbon dioxide in aqueous polyacrylamide solution containingmonoethanolamine, Journal of Industrial and Engineering Chemistry,2007,13(1):7-13.
    [138] Furzeland R M, A comparative study of numerical methods for movingboundayr problems, Journal of International Mathsmatics Application,1980,26(4):411-429.
    [139] Alder B, Methods in Computational Physics, Academic Press, New Yord,1964.
    [140] Hirt C W, Nichols B D, Volume of fluid Method for the Dynamics of freebounaries, Journal of Computational Physics,1981,39(1):201-225.
    [141] Ashgriz N, Poo J Y, FLAIR: flux line-segment model for advection andinterfase reconstruction, Journal of Computational Physics,1991,93(2):449-468.
    [142] Youngs D L, Time dependent multi-material flow with large fluid distortion,New York: Academic Press,1982,273-285.
    [143] Noh W, Woodward P, A simple line interface calculation, Proceedings o fFifth International Conference on Fluid Dynamics, New York:Springer-Verlag,1976,330-340.
    [144] Ubbink O, Issa R I. A method for capturing sharp fluid interfaces o narbitrary meshes, Journal of Computational Physics,1999,153(1):26-50.
    [145] Boris J P, Book D L, Flux-corrected transport I. SHASTA, a fluid transportalgorithm that works, Journal of Computational Physics,1973,11(1):38-69.
    [146] Osher S, Sethian J A, Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations, Journal ofComputational Physics,1988,79(1):12-49.
    [147] Peng D, Merriman B, Osher S, et al., A PDE-Based Fast Local Level SetMethod, Journal of Computational Physics,1999,155(2):410-438.
    [148] Enright D, Fedkiw R, Ferziger J, et al., A Hybrid Particle Level Set Methodfor Improved Interface Capturing, Journal of Computational Physics,2002,183(1):83-116.
    [149] Issa R I, Solution of the implicitly discretised fluid flow equations b yoperator-splitting, Journal of Computational Physics,1986,62:40-65.
    [150] Sankaranarayanan K, Shan X, Kevrekidis I G, Sundaresan S, Bubble flowsimulations with the lattice Boltzmann method, Chemical EngineeringScience,1999,54(21):4817-4823.
    [151] Inamuro T, Ogata T, Ogino F, Numerical simulation of bubble flows by thelattice Boltzmann method, Future Generation Computer Systems,2004,20(6):959-964.
    [152] McNamara G R, Zanetti G, Use of the Boltzmann equation to simulate latticegas automata, Physical Review Letters,1988,61(20):2332-2335.
    [153] Qian Y H, D'Humières D, Lallemand P, Lattice BGK models forNavier-Stokes equation, Europhysics Letters,1992,17(6):479-484.
    [154] Bhatnagar P L, Gross E P, Krook M, A model for collision processes in gases,Physical Review,1954,94(3):511-525.
    [155] Karamanev D, Dewsbury K, Margaritis A, Comments on the free rise of gasbubbles in non-Newtonian liquids, Chemical Engineering Science,2005,60(16):4655-4657.
    [156] Fan W Y, Ma Y G. Jiang S K, et al., An experimental investigation forbubble rising in non-Newtonian fluids and empirical correlation of dragcoefficient, Journal Fluids Engineering,2010,132(2):1-7.
    [157] Clift R, Gauvin W H, Motion of entrained particles in gas streams, TheCanadian Journal of Chemical Engineering,1971,49(4):439-448.
    [158] Zhang L, YangC, Mao Z S, Anempirical correlationof drag coeffcient for asingle bubble Rising in non-Newtonian liquids, Industrial&EngineeringChemistry Research,2008,47(23):9767-9772.
    [159] Sousa R G., Pinto A M F R, Campos J B L M, Interaction between Taylorbubbles rising in stagnant non-Newtonian fuids, International Journal ofMultiphase Flow,2007,33(9):970-986.
    [160] Li H Z, Frank X, Funfschilling D, et al., Towards the understanding o fbubble interactions and coalescence in non-Newtonian fuids: a cognitiveapproach, Chemical Engineering Science,2001,56(21-22):6419-6425.
    [161] Jiang S K, Ma Y G, Fan W Y, et al., Chaotic behavior of in-line bubblesrising with coalescences in non-Newtonian fluids: a mutiscale analysis,Korean Journal of Chemical Engineering,2010,28(1):56-63.
    [162] Frank X, Charpentier J C, Ma Y G, et al., A Multiscale Approach forModeling Bubbles Rising in Non-Newtonian Fluids, Industrial&EngineeringChemistry Research,2011, XX(XX):000-000.
    [163] Radl S, Tryggvason G, Khinast J G, Flow and mass transfer of fully resolvedbubbles in non-Newtonian fluids, AIChE Journal,2007,53(7):1861-1878.
    [164] Davidson J F, Schuler B O G, Bubble formation at an orifce in an inviscidliquid, Transactions of the Institution of Chemical Engineers,1960,38:335-342.
    [165] Schlichting H, Boundary Layer Theory,6th edn, McGraw-Hill, N.Y.1968.
    [166] Al-Masry W A, Effect of scale-up on average shear rates for aeratednon-Newtonian liquids in external loop airlift reactors (Communication to theeditor), Biotechnology and Bioengineering,1999,62(4):494-498.
    [167] Allen D G, Robinson CW, On the calculation of shear rate and apparentviscosity in air lift and bubble column reactors, Biotechnology andBioengineerin,1991,38(2):212-216.
    [168] Kawase Y, Kumagai T, Apparent viscosity for non-Newtonian fermentatio nmedia in bioreactors, Bioprocess Engineering,1991,7(1-2):725-728.
    [169] Zhang L, Yang C, Mao Z S, Numerical simulation of a bubble rising inshear-thinning fluids, Journal of Non-Newtonian Fluid Mechanics,2010,165(11-12):555-567.
    [170] Chen R C, Chou I S, Wake structure of a single bubble rising in atwo-dimensional column, Experimental Thermal and Fluid Science,1998,17(3):165-178.
    [171] Serizawa A, Kataoka I, Michiyoshi I, Turbulence structure of air-waterbubbly flow-II. Local properties, International Journal of Multiphase Flow,1975,2(3):235-246.
    [172] Michiyoshi I, Serizawa A, Turbulence in two-phase bubbly flow, NuclearEngineering and Design,1986,95:253-267.
    [173] Wang S K, Lee S J, Jones Jr, O C, Lahey Jr R T,3-D turbulence structure andphase distribution measurements in bubbly two-phase flows, InternationalJournal of Multiphase Flow,1987,13(3):327-343.
    [174] Wei T, Willmarth W W, Reynolds number effects on the structure of aturbulent channel flow, Journal of Fluid Mechanics,1987,204:57-95.
    [175] Panidis T, Papailiou D D, The structure of water-air bubble grid turbulence ina square duct, Applied Scientific Research,1993,51(1-2):269-273.
    [176] Mudde R F, Lee J, Reese J, Fan L S, Role of coherent structures on Reynoldsstresses in a2-D bubble column, AIChE Journal,1997,43(4):913-926.
    [177] Funfschilling D, Li H Z, Effects of the injection period on the rise velocityand shape of a bubble in a non-Newtonian fluid, Chemical EngineeringResearch and Design,2006,84(10):875-883.
    [178] Leveque E, She Z S, Cascade structures and scaling exponents in a dynamica lmodel of turbulence: Measurements and comparison, Physical Review Letters,1997,55(3):2789-2799.
    [179] Eisner J W, Eisner W, On the measurement of turbulence energy dissipation,Measurement Science&Technology,1996,7(10):1334-1348.
    [180] Azad R S, Kassab S Z, A new method of obtaining dissipation, Experimentsin Fluids,1989,7(2):81-87.
    [181] Suh I S, Herbst H, Schumpe A, The molecular weight of xantha npolysaccharide produced under oxygen limitation, Biotechnology Letters,1990,12(3):201-206.
    [182] Gómez-Díaz D, Navaza J M, Carbon dioxide absorption to rheologicallycomplex liquid phases, Chemical Engineering Journal,2009,149(1-3):50-56.
    [183] Nishikawa N, Kato H, Hasimoto K, Heat transfer in aerated tower flled withnon-Newtonian liquid, Industrial and Engineering Chemistry Process Designand Development,1977,16(1):133-137.
    [184] Kazakis N A, Papadopoulos I D, Mouza A A, Bubble columns with fne poresparger operating in the pseudo-homogeneous regime: Gas holdup predictionand acriterion for the transition to the heterogeneous regime, Chemica lEngineering Science,2007,62(12):3092-3103.
    [185] Mouza A A, Dalakoglou G K, Paras S V, Effect of liquid properties on theperformance of bubble column reactors with fne pore spargers, ChemicalEngineering Science,2005,60(5):1465-1475.
    [186]姜韶堃,马友光,范文元,等.拟塑性非牛顿流体中在线气泡聚并规律.化学工程,2010,38(8):22-25.
    [187] Lamont J C, Scott D S, An eddy cell model of mass transfer into the surfaceof a turbulent liquid, AIChE Journal,1970,16(4):513-519.
    [188] Nakajima E, Maffia M C, Meirelles A J A, Influence of liquid viscosity andgas superficial velocity on effective mass transfer area in packed columns, J.Journal of Chemical Engineering of Japan,2000,33(3):561-566.
    [189] Van’t Riet K V, Tramper J, Basic Bioreactor Design, Marcel Dekker,1991.
    [190] Wilkinson P M, Haringa H, Dierendonck L L V, Mass transfer and bubblesize in a bubble column under pressure, Chemcal Engineering Science,1994,49(9):1417-1427.
    [191] Alvarez E, Sanjurjo B, Cancela A, Navaza J M, Mass transfer and infuenceof physical properties of solutions in a bubble column, Chemical EngineeringResearch and Design,2000,78(6):889-893.
    [192] Suh I S, Schumpe A, Deckwer W D, gas-liquid mass transfer in the bubblecolumn with viscoelastic liquid, Canadian Journal of Chemical Engineering,1991,69(2):506-512.
    [193] Mashelkar R A, Anomalous convective diffusion in films of polymericsolutions, AIChE Journal,1984,30(3):353-362.
    [194] Timson W J, Dunn C G, Mechanism of gas absorption from bubbles undershear, Industrial&Engineering Chemistry,1960,52(9):799-802.
    [195] Deindoerfer F H, Humphrey A E, Mass transfer from individual gas bubbles.Industrial&Engineering Chemistry,1961,53(9):755-759.
    [196] Nedeltchev S, Jordan U, Schumpe A, Correction of the penetration theoryapplied to the prediction of kLa in a bubble column with organic liquids,Chemical Engineering&Technology,2006,29(9):1113-1117.
    [197] Koynov A, Khinast J, Tryggvason G, Mass transfer and chemical reactions inbubble swarms with dynamic interfaces, AIChE Journal,2005,51(10):2786-2800.
    [198] Jakobsen H A, Lindborg H, Dorao C A, Modeling of bubble column reactors:progress and limitations, Industrial&Engineering Chemistry Research,2005,44(14):5107-5151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700