用户名: 密码: 验证码:
碳纳米管非共价功能化的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(carbon nanotube, CNT)具有卓越的电学、机械和结构特性,在基因运载、生物成像等领域具有广泛的应用价值。但是,CNT难溶于水和普通的有机溶剂,极大地限制了其在分子水平上的进一步操控和应用。CNT非共价功能化既能够克服CNT水溶性和分散性差的缺陷,又不破坏其独特的π电子体系。此外,结合生物分子功能化还能增加CNT的生物兼容性,从而降低CNT的生理毒性。然而,CNT非共价功能化过程中许多微观细节诸如结构、作用机制及能量等尚不清楚。因此,本论文采用分子模拟方法从本质上理解CNT非共价功能化体系的自组装机制,旨在为新型CNT复合材料的设计提供理论依据与指导。主要内容如下:
     (1)多糖缠绕CNT是一种新兴的非共价功能化方式,借助分子动力学和自由能计算分别对海藻酸、壳聚糖和淀粉三种多糖缠绕CNT的动力学行为进行了系统地研究。结果表明,在范德华吸引作用和疏水作用的驱动下,三种多糖在水环境中均能自发地缠绕在CNT表面。其中,海藻酸和壳聚糖因骨架结构张力较大,形成疏松的螺旋结构,而淀粉则形成紧密的螺旋结构,分子内氢键是稳定紧密螺旋结构的主要因素。同时,海藻酸在模拟中重现了“长城”式结构重排的典型特征。两条海藻酸长链在Ca2+交联下通过静电吸引作用能够形成稳定的双螺旋结构,从而解释了可逆缠绕现象。另外,计算了壳聚糖缠绕过程的自由能变化曲线,得到了两个自由能最优的螺旋结构及相应的螺距,并预测了缠绕结构的稳定性,为设计功能化缠绕剂提供了一个潜在途径。最后,证实了CNT的末端效应,即CNT末端能够诱导淀粉发生缠绕行为,而CNT中端则不具有类似的效应,揭示了超短CNT在合成新型纳米材料领域的良好应用前景。
     (2)疏水蛋白HFBI吸附CNT表面能够有效地改善CNT的水溶性,并形成三维有序的纳米复合材料。通过分子动力学模拟和自由能计算研究了HFBI在3种取向下吸附CNT表面的动力学行为。结果表明,由于HFBI含有4个二硫键,在吸附过程中自身结构变化不大,主要的二级结构均得以保留。在不同的吸附取向下,分别得到了不同的吸附模式。其中,当HFBI的直接与CNT表面相互作用且最大限度地被掩埋时,形成了最稳定的吸附结构,结合自由能最为有利;反之,当疏水端完全暴露在水溶液环境中,吸附模式最为不利。溶剂化作用是吸附的主要驱动力。另外,比较了HFBI在聚二甲基硅氧烷固体基底上的吸附行为,得到了同样的吸附机制,残基Leu12、Leu24、Leu26、Ile27、Ala66及Leu68是导致疏水蛋白能够吸附在不同疏水表面上的关键残基。该研究合理地解释了实验现象,为设计新型生物活性表面提供了理论基础。
     (3)Smith-Lemli-Opitz综合症是一种由7-脱氢胆固醇-△7还原酶缺陷导致的胆固醇代谢异常的遗传性疾病,具体表现为患者体内血浆中低胆固醇及高7-脱氢胆固醇浓度。采用分子动力学模拟结合两种分子力场探索了不同浓度下胆固醇及7-脱氢胆固醇对细胞膜结构性质的影响,旨在从理论计算的角度阐述该综合症的病因,进而开展基于CNT功能化体系的基因运载研究。结果表明,两种固醇的浓缩效应与有序效应主要取决于浓度,即浓度越大,效应越明显。然而,在相同浓度下,两种固醇在对细胞膜的浓缩和有序能力上并无显著差异。
Carbon nanotubes (CNTs) have attracted enormous interest on account of their remarkable electrical, mechanical, and structural properties, offering a wide spectrum of applications in a variety of fields that range from gene delivery to bioimaging. However, their poor solubility and dispersity in aqueous and organic solvents have imposed great limitations to the wide usage of CNTs. Noncovalent functionalization of CNTs can not only overcome this shortcoming, but also potentially preserve the π-conjugated system. Furthermore, noncovalent functionalization can decrease toxicity of CNTs by combining biomolecules as a function of their biocompatibility. However, many aspects of the interactions involved in noncovalent functionalization of CNTs remain poorly understood owing to the lack of atomic-level information. In this dissertation, therefore, noncovalent functionalization of CNTs was probed with the help of molecular simulations to understand the nature of the underlying interactions and the processes of self-assembly. The main contents of the present dissertation include:
     (1) Helical wrapping of CNTs by polysaccharides is a new strategy of noncovalent functionalization. The wrapping processes of alginic acid, chitosan, and amylose around CNTs was systematically investigated by means of molecular dynamics simulations and free energy calculations. The results show that these polysaccharide chains can spontaneously wrap around CNTs by virtue of van der Waals attractions and hydrophobic interactions. Alginic acid and chitosan form loose helical structures due to the big rigidity while amylose forms compact helical conformation stabilized by an interlaced hydrogen-bond network. Documented experimentally and coined "Great Wall of China" motif, the typical arrangement of alginic acid residues around the tubular structure, is observed in the present simulations. Investigation of metal cations binding to alginic acid suggests that calcium ions can mediate aggregation of alginic acid chains by interacting strongly with the carboxylate groups, thereby leading to reverse unwrapping. Furthermore, the free-energy landscape characterizing the wrapping process of the chitosan chain from a straight conformation to a tight helical one brings to light two energetically favored helical conformations corresponding to distinct pitches. This method can be employed to estimate the pitch of the most stable helical structure, as well as to predict its stability with respect to an extended conformation, which provides a possible route for designing functionalized polymers wrapped on CNTs. At last, the simulations prove that amylose can wrap spontaneously around the tubular surface, starting from the end of the CNTs. Conversely, if wrapping proceeds from the middle of the CNTs, self-organization into a helical structure is not observed. The results reported herein shed meaningful light on the potential of short SWNTs for building ordered and innovative nanostructures.
     (2) The adsorption of hydrophobin protein named HFBI on the CNT surface can effectively increase the solubility of CNTs, leading to the architecture of ordered and novel nanoscale materials. Atomistic molecular dynamics simulations have been conducted to elucidate the adsorption mechanism of HFBI on the CNT surface in an aqueous environment. Independent simulations starting from three representative initial orientations of HFBI toward the tubular surface were performed, resulting in different adsorption modes. The main secondary structures of the protein in each mode are found to be preserved in the entire course of adsorption due to the four disulfide bonds. The relative binding free energies of the different adsorption modes were calculated, showing that the mode, in which the binding residues of HFBI fully come from its hydrophobic patch, is most energetically favored. Meanwhile, the adsorption behavior of HFBI on polydimethylsiloxane substrates was explored and the same adsorption mechanism was obtained. Moreover, a set of residues consisting of Leul2, Leu24, Leu26, Ile27, Ala66, and Leu68are found to play an important role in the adsorption of HFBI on different hydrophobic substrates, irrespective of the structural features of the surfaces. The results reported herein are consistent with experiments, and provide the theoretical basis for the design of bioactive surfaces.
     (3) Smith-Lemli-Opitz syndrome, a congenital and developmental malformation disease, is typified by abnormal accumulation of7-dehydrocholesterol (7DHC), the immediate precursor of cholesterol (CHOL), and depletion thereof. Knowledge of the effect of7DHC on the biological membrane is, however, still fragmentary. Large-scale atomistic molecular dynamics simulations have been conducted to elucidate differences in the structural properties of a bilayer membrane due to CHOL and7DHC, which is envisioned to probe the pathogeny of Smith-Lemli-Opitz syndrome from the perspective of computer simulations and provide a preliminary exploration for gene delivery by functionalized CNTs. The present series of results indicate that CHOL and7DHC possess virtually the same ability to condense and order membranes. Furthermore, the condensing and ordering effects are shown to be strengthened at increasing sterol concentrations.
引文
[1]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes- the route toward applications. Science,2002,297:787-792
    [2]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev,2006, 106:1105-1136
    [3]Lu F S, Gu L R, Meziani M J, et al. Advances in bioapplications of carbon nanotubes. Adv Mater,2009,21:139-152
    [4]Li F, Cheng H M, Bai S, et al. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett,2000,77:3161-3163
    [5]Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett,2000,84:5552-5555
    [6]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science,1999,286:1127-1129
    [7]Wang Q H, Setlur A A, Lauerhaas J M, et al. A nanotube-based field-emission flat panel display. Appl Phys Lett,1998,72:2912-2913
    [8]Cao G, Lee Y Z, Peng R, et al. A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source. Phys Med Biol,2009,54:2323-2340
    [9]Anantram M P, Leonard F. Physics of carbon nanotube electronic devices. Rep Prog Phys, 2006,69:507-561
    [10]Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics. Nat Nanotechnol,2007,2: 605-615
    [11]Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature,1992,358: 220-222
    [12]Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett,1995,243:49-54
    [13]Endo M, Takeuchi K, Igarashi S, et al. The production and structure of pyrolytic carbon nanotubes. J Phys Chem Solids,1993,54:1841-1848
    [14]Banerjee S, Hemraj-Benny T, Wong S S. Routes towards separating metallic and semiconducting nanotubes. J Nanosci Nanotechnol,2005,5:841-855
    [15]Krupke R, Hennrich F. Separation techniques for carbon nanotubes. Adv Eng Mater,2005,7: 111-116
    [16]Haddon R C, Sippel J, Rinzler A G, et al. Purification and separation of carbon nanotubes. Mater Res Bull,2004,29:252-259
    [17]Kam N W S, Jessop T C, Wender P A, et al. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc,2004,126:6850-6851
    [18]Kam N W S, Dai H J. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. J Am Chem Soc,2005,127:6021-6026
    [19]Kam N W S, Liu Z, Dai H J. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc,2005,127:12492-12493
    [20]Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun,2004,16-17
    [21]Liu Y, Zhao Y, Sun B, et al. Understanding the toxicity of carbon nanotubes. Acc Chem Res, 2012,46:702-713
    [22]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95-98
    [23]Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res,2002,35:1087-1095
    [24]Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes. Acc Chem Res,2002,35:1105-1113
    [25]Pekker S, Salvetat J P, Jakab E, et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys Chem B,2001,105:7938-7943
    [26]Boul P J, Liu J, Mickelson E T, et al. Reversible sidewall functionalization of buckytubes. Chem Phys Lett,1999,310:367-372
    [27]Bahr J L, Yang J P, Kosynkin D V, et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:a bucky paper electrode. J Am Chem Soc, 2001,123:6536-6542
    [28]Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes. J Am Chem Soc,2002,124:760-761
    [29]Hersam M C. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol,2008,3:387-394
    [30]Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed,2002, 41:1853-1859
    [31]O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett,2001,342:265-271
    [32]Didenko V V, Moore V C, Baskin D S, et al. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping. Nano Lett,2005,5:1563-1567
    [33]Star A, Liu Y, Grant K, et al. Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules,2003,36:553-560
    [34]Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed,2001,40:1721-1725
    [35]Nish A, Hwang J Y, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol,2007,2:640-646
    [36]Naito M, Nobusawa K, Onouchi H, et al. Stiffness- and conformation-dependent polymer wrapping onto single-walled carbon nanotubes. J Am Chem Soc,2008,130:16697-16703
    [37]Chen J, Liu H Y, Weimer W A, et al. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc,2002,124:9034-9035
    [38]Lemasson F A, Strunk T, Gerstel P, et al. Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). J Am Chem Soc, 2011,133:652-655
    [39]Antaris A L, Seo J W T, Green A A, et al. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano,2010,4: 4725-4732
    [40]Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci, 2009,14:364-371
    [41]Vaisman L, Wagner H D, Marom G The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface,2006,128:37-46
    [42]Yurekli K, Mitchell C A, Krishnamoorti R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc,2004,126: 9902-9903
    [43]Moore V C, Strano M S, Haroz E H, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett,2003,3:1379-1382
    [44]Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett,2003,3:269-273
    [45]Wenseleers W, Vlasov, II, Goovaerts E, et al. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater,2004,14: 1105-1112
    [46]Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol,2006,1:60-65
    [47]Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater,2003,2:338-342
    [48]Zheng M, Jagota A, Strano M S, et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science,2003,302:1545-1548
    [49]Strano M S, Zheng M, Jagota A, et al. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett,2004,4:543-550
    [50]Huang X Y, McLean R S, Zheng M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem,2005,77: 6225-6228
    [51]Lustig S R, Jagota A, Khripin C, et al. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J Phys Chem B,2005, 109:2559-2566
    [52]Tu X, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature,2009,460:250-253
    [53]Dieckmann G R, Dalton A B, Johnson P A, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc,2003,125:1770-1777
    [54]Zorbas V, Ortiz-Acevedo A, Dalton A B, et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J Am Chem Soc,2004,126: 7222-7227
    [55]Ortiz-Acevedo A, Xie H, Zorbas V, et al. Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. J Am Chem Soc,2005,127:9512-9517
    [56]Karajanagi S S, Yang H C, Asuri P, et al. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir,2006,22:1392-1395
    [57]Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew Chem Int Ed, 2002,41:2508-2512
    [58]Kim O K, Je J T, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc,2003,125:4426-4427
    [59]Liu Y, Liang P, Zhang H Y, et al. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small,2006,2:874-878
    [60]Liu Y, Yu Z L, Zhang Y M, et al. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc,2008,130:10431-10439
    [61]Numata M, Shinkai S.'Supramolecular wrapping chemistry' by helix-forming polysaccharides:a powerful strategy for generating diverse polymeric nano-architectures. Chem Commun,2011,47:1961-1975
    [62]Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys,2001, 115:9169-9183
    [63]Rodriguez-Gomez D, Darve E, Pohorille A. Assessing the efficiency of free energy calculation methods. J Chem Phys,2004,120:3563-3578
    [64]Henin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys,2004,121:2904-2914
    [65]H6nin J, Fiorin G, Chipot C, et al. Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput,2009,6:35-47
    [66]Kollman P A, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Acc Chem Res,2000, 33:889-897
    [67]Srinivasan J, Cheatham T E, Cieplak P, et al. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc,1998,120:9401-9409
    [68]Tallury S S, Pasquinelli M A. Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B,2010,114: 9349-9355
    [69]Tallury S S, Pasquinelli M A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B,2010,114:4122-4129
    [70]Guo R H, Tan Z, Xu K. L, et al. Length-dependent assembly of a stiff polymer chain at the interface of a carbon nanotube. ACS Macro Lett,2012,1:977-981
    [71]Bernardi M, Giulianini M, Grossman J C. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells. ACS Nano,2010,4:6599-6606
    [72]Caddeo C, Melis C, Colombo L, et al. Understanding the helical wrapping of poly(3-hexylthiophene) on carbon nanotubes. J Phys Chem C,2010,114:21109-21113
    [73]Caddeo C, Dessi R, Melis C, et al. Poly(3-hexylthiophene) adhesion on zinc oxide nanoneedles. J Phys Chem C,2011,115:16833-16837
    [74]Kang Y K, Lee O S, Deria P, et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett,2009,9:1414-1418
    [75]Uddin N M, Capaldi F M, Farouk B. Molecular dynamics simulations of the interactions and dispersion of carbon nanotubes in polyethylene oxide/water systems. Polymer,2011,52: 288-296
    [76]Roy A K, Fanner B L, Varshney V, et al. Importance of interfaces in governing thermal transport in composite materials:modeling and experimental perspectives. ACS Appl Mater Interfaces,2012,4:545-563
    [77]Karatrantos A, Composto R J, Winey K I, et al. Structure and conformations of polymer/SWCNT nanocomposites. Macromolecules,2011,44:9830-9838
    [78]Karatrantos A, Composto R J, Winey K I, et al. Entanglements and dynamics of polymer melts near a SWCNT. Macromolecules,2012,45:7274-7281
    [79]Angelikopoulos P, Al Harthy S, Bock H. Structural forces from directed self-assembly. J Phys Chem B,2009,113:13817-13824
    [80]Angelikopoulos P, Bock H. Directed self-assembly of surfactants in carbon nanotube materials. J Phys Chem B,2008,112:13793-13801
    [81]Angelikopoulos P, Bock H. The differences in surfactant adsorption on carbon nanotubes and their bundles. Langmuir,2010,26:899-907
    [82]Angelikopoulos P, Bock H. The nanoscale cinderella problem:design of surfactant coatings for carbon nanotubes. J Phys Chem Lett,2011,2:139-144
    [83]Angelikopoulos P, Bock H. The science of dispersing carbon nanotubes with surfactants. Phys Chem Chem Phys,2012,14:9546-9557
    [84]Angelikopoulos P, Gromoy A, Leen A, et al. Dispersing individual single-wall carbon nanotubes in aqueous surfactant solutions below the cmc. J Phys Chem C,2010,114:2-9
    [85]Angelikopoulos P, Schou K, Bock H. Surfactant-induced forces between carbon nanotubes. Langmuir,2010,26:18874-18883
    [86]Tummala N R, Striolo A. Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates:structural features and counterion dynamics. Phys Rev E,2009,80:021408
    [87]Tummala N R, Striolo A. SDS surfactants on carbon nanotubes:aggregate morphology. ACS Nano,2009,3:595-602
    [88]Tummala N R, Morrow B H, Resasco D E, et al. Stabilization of aqueous carbon nanotube dispersions using surfactants:insights from molecular dynamics simulations. ACS Nano, 2010,4:7193-7204
    [89]Suttipong M, Tummala N R, Kitiyanan B, et al. Role of surfactant molecular structure on self-assembly:aqueous SDBS on carbon nanotubes. J Phys Chem C,2011,115: 17286-17296
    [90]Lin S C, Blankschtein D. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes:a molecular dynamics simulation study. J Phys Chem B,2010,114:15616-15625
    [91]Lin S C, Shih C J, Strano M S, et al. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. J Am Chem Soc,2011,133:12810-12823
    [92]Lin S C, Hilmer A J, Mendenhall J D, et al. Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions. J Am Chem Soc,2012,134:8194-8204
    [93]Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett,2008,8:69-75
    [94]Johnson R R, Kohlmeyer A, Johnson A T C, et al. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9:537-541
    [95]Johnson R R, Johnson A T C, Klein M L. The nature of DNA-base-carbon-nanotube interactions. Small,2010,6:31-34
    [96]Roxbury D, Manohar S, Jagota A. Molecular simulation of DNA beta-sheet and beta-barrel structures on graphite and carbon nanotubes. J Phys Chem C,2010,114:13267-13276
    [97]Roxbury D, Jagota A, Mittal J. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J Am Chem Soc,2011,133: 13545-13550
    [98]Roxbury D, Jagota A, Mittal J. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes. J Phys Chem B,2012,117:132-140
    [99]Roxbury D, Mittal J, Jagota A. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett,2012,12:1464-1469
    [100]Balamurugan K, Gopalakrishnan R, Raman S S, et al. Exploring the changes in the structure of alpha-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J Phys Chem B,2010,114:14048-14058
    [101]Balamurugan K, Singam E R A, Subramanian V. Effect of curvature on the alpha-helix breaking tendency of carbon based nanomaterials. J Phys Chem C,2011,115:8886-8892
    [102]Chiu C C, Dieckmann G R, Nielsen S O. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B,2008, 112:16326-16333
    [103]Chiu C C, Dieckmann G R, Nielsen S O. Role of peptide-peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes:a molecular dynamics study. Biopolymers,2009,92:156-163
    [104]Chiu C C, Maher M C, Dieckmann G R, et al. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano,2010,4:2539-2546
    [105]Kang Y, Wang Q, Liu Y C, et al. Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. J Phys Chem B,2008,112:4801-4807
    [106]Shen J W, Wu T, Wang Q, et al. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials,2008,29:3847-3855
    [107]Chen Q, Wang Q, Liu Y C, et al. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. J Chem Phys,2009,131:015101
    [108]Kang Y, Liu Y C, Wang Q, et al. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials,2009,30:2807-2815
    [109]Shen J W, Wu T, Wang Q, et al. Adsorption of insulin peptide on charged single-walled carbon nanotubes:significant role of ordered water molecules. Chemphyschem,2009,10: 1260-1269
    [110]Kang Y, Wang Q, Liu Y C, et al. Diameter selectivity of protein encapsulation in carbon nanotubes. J Phys Chem B,2010,114:2869-2875
    [111]Xie Y H, Soh A K. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater Lett,2005,59:971-975
    [112]Tsuchiya Y, Komori T, Hirano M, et al. A polysaccharide-based container transportation system powered by molecular motors. Angew Chem Int Ed,2010,49:724-727
    [113]Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem,2004,76:5045-5050
    [114]Zhang X K, Meng L J, Lu Q H. Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes:a quantitative study of the surface properties of biomimetic nanofibrous scaffolds. ACS Nano,2009,3:3200-3206
    [115]Kurppa K, Jiang H, Szilvay G R, et al. Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotube. Angew Chem Int Ed, 2007,46:6446-6449
    [1]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev,2006, 106:1105-1136
    [2]Collins P G, Zettl A, Bando H, et al. Nanotube nanodevice. Science,1997,278:100-102
    [3]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science,1999,286:1127-1129
    [4]Sazonova V, Yaish Y, Ustunel H, et al. A tunable carbon nanotube electromechanical oscillator. Nature,2004,431:284-287
    [5]Portney N G, Ozkan M. Nano-oncology:drug delivery, imaging, and sensing. Anal Bioanal Chem,2006,384:620-630
    [6]Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater,2005,17:17-29
    [7]Britz D A, Khlobystov A N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev,2006,35:637-659
    [8]Lu F S, Gu L R, Meziani M J, et al. Advances in bioapplications of carbon nanotubes. Adv Mater,2009,21:139-152
    [9]Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew Chem Int Ed, 2002,41:2508-2512
    [10]Kim O K, Je J T, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc,2003,125:4426-4427
    [11]Chen J, Dyer M J, Yu M F. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc,2001,123:6201-6202
    [12]Chambers G, Carroll C, Farrell G F, et al. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett,2003,3:843-846
    [13]Dodziuk H, Ejchart A, Anczewski W, et al. Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin. Chem Commun,2003, 986-987
    [14]Dieckmann G R, Dalton A B, Johnson P A, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc,2003,125:1770-1777
    [15]Karajanagi S S, Yang H C, Asuri P, et al. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir,2006,22:1392-1395
    [16]Zheng M, Jagota A, Semke E D, et al. DN A-assisted dispersion and separation of carbon nanotubes. Nat Mater,2003,2:338-342
    [17]Tu X, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature,2009,460:250-253
    [18]Gao H J, Kong Y, Cui D X, et al. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett,2003,3:471-473
    [19]Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett,2008,8:69-75
    [20]Martin W, Zhu W S, Krilov G. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in Water. J Phys Chem B,2008,112:16076-16089
    [21]Johnson R R, Kohlmeyer A, Johnson A T C, et al. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9:537-541
    [22]Yarotski D A, Kilina S V, Talin A A, et al. Scanning tunneling microscopy of DNA-wrapped carbon nanotubes. Nano Lett,2009,9:12-17
    [23]Ito T, Sun L, Crooks R M. Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem Commun,2003,1482-1483
    [24]Xie Y H, Soh A K. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater Lett,2005,59:971-975
    [25]Kang Y K, Lee O S, Deria P, et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett,2009,9:1414-1418
    [26]Liu Y, Liang P, Zhang H Y, et al. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small,2006,2:874-878
    [27]Tonnesen H H, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm,2002,28: 621-630
    [28]Zheng Q, Xue Q, Yan K, et al. Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules. J Phys Chem C,2007,111: 4628-4635
    [29]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [30]Kuttel M, Brady J W, Naidoo K J. Carbohydrate solution simulations:producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem,2002,23:1236-1243
    [31]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [32]Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys,1995,103:4613-4621
    [33]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [34]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys,1992,97:1990-2001
    [35]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [36]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [37]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [38]Grant G T, Morris E R, Rees D A, et al. Biological interactions between polysaccharides and divalent cations:the egg-box model. FEBS Lett,1973,32:195-198
    [39]Braccini I, Grasso R P, Perez S. Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions:a molecular modeling investigation. Carbohyd Res,1999,317:119-130
    [40]Braccini I, Perez S. Molecular basis of Ca2+-induced gelation in alginates and pectins:the egg-box model revisited. Biomacromolecules,2001,2:1089-1096
    [41]Perry T D I V, Cygan R T, Mitchell R. Molecular models of alginic acid:interactions with calcium ions and calcite surfaces. Geochim Cosmochim Ac,2006,70:3508-3532
    [42]Sikorski P, Mo F, Skjak-Braek G, et al. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules,2007,8: 2098-2103
    [43]Donati I, Holtan S, Morch Y A, et al. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules,2005,6:1031-1040
    [44]Park S, Khalili-Araghi F, Tajkhorshid E, et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J Chem Phys,2003,119: 3559-3566
    [1]Ferber D. Gene therapy:safer and virus-free? Science,2001,294:1638-1642
    [2]Vijayanathan V, Thomas T, Shirahata A, et al. DNA condensation by polyamines:a laser light scattering study of structural effects. Biochemistry,2001,40:13644-13651
    [3]Matulis D, Rouzina I, Bloomfield V A. Thermodynamics of cationic lipid binding to DNA and DNA condensation:roles of electrostatics and hydrophobicity. J Am Chem Soc,2002, 124:7331-7342
    [4]Choi J S, Joo D K, Kim C H, et al. Synthesis of a barbell-like triblock copolymer, poly(L-lysine) dendrimer-block-poly(ethylene glycol)-block-poly(L-lysine) dendrimer, and its self-assembly with plasmid DNA. J Am Chem Soc,2000,122:474-480
    [5]Cai D, Mataraza J M, Qin Z H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods,2005,2:449-454
    [6]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev,2006, 106:1105-1136
    [7]Kam N W S, Jessop T C, Wender P A, et al. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc,2004,126:6850-6851
    [8]Kam NWS, Dai H J. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. J Am Chem Soc,2005,127:6021-6026
    [9]Kam N W S, Liu Z, Dai H J. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc,2005,127:12492-12493
    [10]Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun,2004,16-17
    [11]Singh R, Pantarotto D, McCarthy D, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes:toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc,2005,127:4388-4396
    [12]Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett,2008,8:69-75
    [13]Johnson R R, Kohlmeyer A, Johnson A T C, et al. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9:537-541
    [14]Johnson R R, Johnson A T C, Klein M L. The nature of DNA-base-carbon-nanotube interactions. Small,2010,6:31-34
    [15]Rinaudo M. Chitin and chitosan:properties and applications. Prog Polym Sci,2006,31: 603-632
    [16]Kumar A, Jena P K, Behera S, et al. Efficient DNA and peptide delivery by functionalized chitosan-coated single-wall carbon nanotubes. J Biomed Nanotechnol,2005,1:392-396
    [17]Liu Y, Yu Z L, Zhang Y M, et al. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc,2008,130:10431-10439
    [18]Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem,2004,76:5045-5050
    [19]Zhang X K, Meng L J, Lu Q H. Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes:a quantitative study of the surface properties of biomimetic nanofibrous scaffolds. ACS Nano,2009,3:3200-3206
    [20]Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys,2001, 115:9169-9183
    [21]Rodriguez-Gomez D, Darve E, Pohorille A. Assessing the efficiency of free energy calculation methods. J Chem Phys,2004,120:3563-3578
    [22]Henin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys,2004,121:2904-2914
    [23]Henin J, Fiorin G, Chipot C, et al. Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput,2009,6:35-47
    [24]Sikorski P, Hori R, Wada M. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules,2009,10:1100-1105
    [25]Okuyama K, Noguchi K, Miyazawa T, et al. Molecular and crystal structure of hydrated chitosan. Macromolecules,1997,30:5849-5855
    [26]MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B,1998,102:3586-3616
    [27]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [28]Kuttel M, Brady J W, Naidoo K. J. Carbohydrate solution simulations:producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem,2002,23:1236-1243
    [29]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [30]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [31]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [32]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [33]Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys,1995,103:4613-4621
    [34]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [35]Liu Y, Liang P, Zhang H Y, et al. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small,2006,2:874-878
    [36]Liu Y Z, Chipot C, Shao X G, et al. Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J Phys Chem B,2010,114:5783-5789
    [37]Kang Y K, Lee O S, Deria P, et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett,2009,9:1414-1418
    [38]Franca E F, Lins R D, Freitas L C G, et al. Characterization of chitin and chitosan molecular structure in aqueous solution. J Chem Theory Comput,2008,4:2141-2149
    [1]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science,2002,297:787-792
    [2]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev,2006, 106:1105-1136
    [3]Lu F S, Gu L R, Meziani M J, et al. Advances in bioapplications of carbon nanotubes. Adv Mater,2009,21:139-152
    [4]Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew Chem Int Ed, 2002,41:2508-2512
    [5]Kim O K, Je J T, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc,2003,125:4426-4427
    [6]Liu Y, Liang P, Zhang H Y, et al. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small,2006,2:874-878
    [7]Numata M, Shinkai S.'Supramolecular wrapping chemistry' by helix-forming polysaccharides:a powerful strategy for generating diverse polymeric nano-architectures. Chem Commun,2011,47:1961-1975
    [8]Liu Y, Yu Z L, Zhang Y M, et al. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc,2008,130:10431-10439
    [9]Tsuchiya Y, Komori T, Hirano M, et al. A polysaccharide-based container transportation system powered by molecular motors. Angew Chem Int Ed,2010,49:724-727
    [10]Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem,2004,76:5045-5050
    [11]Zhang X K, Meng L J, Lu Q H. Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes:a quantitative study of the surface properties of biomimetic nanofibrous scaffolds. ACS Nano,2009,3:3200-3206
    [12]Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett,2008,8:69-75
    [13]Johnson R R, Kohlmeyer A, Johnson A T C, et al. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9:537-541
    [14]Martin W, Zhu W S, Krilov G. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in Water. J Phys Chem B,2008,112:16076-16089
    [15]Karachevtsev M V, Karachevtsev V A. Peculiarities of homooligonucleotides wrapping around carbon nanotubes:molecular dynamics modeling. J Phys Chem B,2011,115: 9271-9279
    [16]Roxbury D, Jagota A, Mittal J. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J Am Chem Soc,2011,133: 13545-13550
    [17]Balamurugan K, Gopalakrishnan R, Raman S S, et al. Exploring the changes in the structure of alpha-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J Phys Chem B,2010,114:14048-14058
    [18]Balamurugan K, Singam E R A, Subramanian V. Effect of curvature on the alpha-helix breaking tendency of carbon based nanomaterials. J Phys Chem C,2011,115:8886-8892
    [19]Chiu C C, Maher M C, Dieckmann G R, et al. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano,2010,4:2539-2546
    [20]Friling S R, Notman R, Walsh T R. Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations. Nanoscale, 2010,2:98-106
    [21]Wallace E J, D'Rozario R S G, Sanchez B M, et al. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale,2010,2: 967-975
    [22]Walsh T R, Tomasio S M. Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Mol Biosyst,2010,6:1707-1718
    [23]Kang Y K, Lee O S, Deria P, et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett,2009,9:1414-1418
    [24]Bernardi M, Giulianini M, Grossman J C. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells. ACS Nano,2010,4:6599-6606
    [25]Caddeo C, Melis C, Colombo L, et al. Understanding the helical wrapping of poly(3-hexylthiophene) on carbon nanotubes. J Phys Chem C,2010,114:21109-21113
    [26]Caddeo C, Dessi R, Melis C, et al. Poly(3-hexylthiophene) adhesion on zinc oxide nanoneedles. J Phys Chem C,2011,115:16833-16837
    [27]Tallury S S, Pasquinelli M A. Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B,2010,114: 9349-9355
    [28]Tallury S S, Pasquinelli M A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B,2010,114:4122-4129
    [29]Xie Y H, Soh A K. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater Lett,2005,59:971-975
    [30]Rungrotmongkol T, Arsawang U, Iamsamai C, et al. Increased dispersion and solubility of carbon nanotubes noncovalently modified by the polysaccharide biopolymer, chitosan:MD simulations. Chem Phys Lett,2011,507:134-137
    [31]Liu Y Z, Chipot C, Shao X G, et al. Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J Phys Chem B,2010,114:5783-5789
    [32]Liu Y Z, Chipot C, Shao X G, et al. Free-energy landscape of the helical wrapping of a carbon nanotube by a polysaccharide. J Phys Chem C,2011,115:1851-1856
    [33]Amadei A, Linssen A B, Berendsen H J. Essential dynamics of proteins. Proteins,1993,17: 412-425
    [34]Popov D, Buleon A, Burghammer M, et al. Crystal structure of a-amylose:a revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules,2009,42: 1167-1174
    [35]MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B,1998,102:3586-3616
    [36]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [37]Kuttel M, Brady J W, Naidoo K. J. Carbohydrate solution simulations:producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem,2002,23:1236-1243
    [38]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [39]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [40]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [41]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [42]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys,1992,97:1990-2001
    [43]Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys,1995,103:4613-4621
    [44]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [45]Cai W S, Sun T T, Shao X G, et al. Can the anomalous aqueous solubility of beta-cyclodextrin be explained by its hydration free energy alone? Phys Chem Chem Phys, 2008,10:3236-3243
    [46]Yang L Q, Zhang B F, Liang Y T, et al. In situ synthesis of amylose/single-walled carbon nanotubes supramolecular assembly. Carbohyd Res,2008,343:2463-2467
    [I]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science,2002,297:787-792
    [2]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev,2006, 106:1105-1136
    [3]Lu F S, Gu L R, Meziani M J, et al. Advances in bioapplications of carbon nanotubes. Adv Mater,2009,21:139-152
    [4]Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater,2005,17:17-29
    [5]Britz D A, Khlobystov A N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev,2006,35:637-659
    [6]Kurppa K, Jiang H, Szilvay G R, et al. Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotube. Angew Chem Int Ed, 2007,46:6446-6449
    [7]Linder M B. Hydrophobins:proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci,2009,14:356-363
    [8]Chiu C C, Maher M C, Dieckmann G R, et al. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano,2010,4:2539-2546
    [9]Balamurugan K, Gopalakrishnan R, Raman S S, et al. Exploring the changes in the structure of alpha-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J Phys Chem B,2010,114:14048-14058
    [10]Balamurugan K, Singam E R A, Subramanian V. Effect of curvature on the alpha-helix breaking tendency of carbon based nanomaterials. J Phys Chem C,2011,115:8886-8892
    [11]Walsh T R, Tomasio S M. Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Mol Biosyst,2010,6:1707-1718
    [12]Friling S R, Notman R, Walsh T R. Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations. Nanoscale, 2010,2:98-106
    [13]Wallace E J, D'Rozario R S G, Sanchez B M, et al. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale,2010,2: 967-975
    [14]Karachevtsev M V, Karachevtsev V A. Peculiarities of homooligonucleotides wrapping around carbon nanotubes:molecular dynamics modeling. J Phys Chem B,2011,115: 9271-9279
    [15]Martin W, Zhu W S, Krilov G. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in Water. J Phys Chem B,2008,112:16076-16089
    [16]Roxbury D, Jagota A, Mittal J. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J Am Chem Soc,2011,133: 13545-13550
    [17]Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett,2008,8:69-75
    [18]Johnson R R, Kohlmeyer A, Johnson A T C, et al. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9:537-541
    [19]Hakanpaa J, Szilvay G R, Kaljunen H, et al. Two crystal structures of Trichoderma reesei hydrophobin HFBI-the structure of a protein amphiphile with and without detergent interaction. Protein Sci,2006,15:2129-2140
    [20]Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis,1997,18:2714-2723
    [21]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [22]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [23]MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B,1998,102:3586-3616
    [24]Mackerell A D, Feig M, Brooks C L. Extending the treatment of backbone energetics in protein force fields:limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem,2004,25: 1400-1415
    [25]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [26]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys,1992,97:1990-2001
    [27]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [28]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [29]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [30]Kollman P A, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Acc Chem Res,2000, 33:889-897
    [31]Konecny R. iAPBS interface on the web:http://mccammon.ucsd.edu/iapbs.
    [32]Baker N A, Sept D, Joseph S, et al. Electrostatics of nanosystems:application to microtubules and the ribosome. Proc Natl Acad Sci USA,2001,98:10037-10041
    [1]Wong L S, Khan F, Micklefield J. Selective covalent protein immobilization:strategies and applications. Chem Rev,2009,109:4025-4053
    [2]Linder M, Szilvay G R, Nakari-Setala T, et al. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Sci,2002, 11:2257-2266
    [3]Palomo J M, Penas M M, Fernandez-Lorente G, et al. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules,2003,4: 204-210
    [4]Corvis Y, Walcarius A, Rink R, et al. Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem,2005,77:1622-1630
    [5]Wang Z F, Huang Y J, Li S, et al. Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectron,2010,26:1074-1079
    [6]Valo H K, Laaksonen P H, Peltonen L J, et al. Multifunctional hydrophobin:toward functional coatings for drug nartoplarticles. ACS Nano,2010,4:1750-1758
    [7]von Vacano B, Xu R, Hirth S, et al. Hydrophobin can prevent secondary protein adsorption on hydrophobic substrates without exchange. Anal Bioanal Chem,2011,400:2031-2040
    [8]Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature,2009,460:1117-1121
    [9]Kisko K, Szilvay G R, Vuorimaa E, et al. Self-assembled films of hydrophobin proteins HFBI and HFBII studied in situ at the air/water interface. Langmuir,2009,25:1612-1619
    [10]Paananen A, Vuorimaa E, Torkkeli M, et al. Structural hierarchy in molecular films of two class Ⅱ hydrophobins. Biochemistry,2003,42:5253-5258
    [11]Hakanpaa J, Paananen A, Askolin S, et al. Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem,2004,279:534-539
    [12]Kurppa K, Jiang H, Szilvay G R, et al. Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotube. Angew Chem Int Ed, 2007,46:6446-6449
    [13]Kallio J M, Rouvinen J. Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII. Chem Commun,2011,47:9843-9845
    [14]Hektor H J, Scholtmeijer K. Hydrophobins:proteins with potential. Curr Opin Biotechnol, 2005,16:434-439
    [15]Linder M B. Hydrophobins:proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci,2009,14:356-363
    [16]Laaksonen P, Kainlauri M, Laaksonen T, et al. Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins. Angew Chem Int Ed,2010, 49:4946-4949
    [17]Qin M, Wang L K, Feng X Z, et al. Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization. Langmuir,2007,23: 4465-4471
    [18]Zhou J W, Ellis A V, Voelcker N H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis,2010,31:2-16
    [19]Ouyang M, Yuan C, Muisener R J, et al. Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater,2000,12:1591-1596
    [20]Wang R, Yang Y L, Qin M, et al. Biocompatible hydrophilic modifications of poly(dimethylsiloxane) using self-assembled hydrophobins. Chem Mater,2007,19: 3227-3231
    [21]Latour R A. Molecular simulation of protein-surface interactions:benefits, problems, solutions, and future directions. Biointerphases,2008,3:Fc2-Fcl2
    [22]Szott L M, Horbett T A. Protein interactions with surfaces:computational approaches and repellency. Curr Opin Chem Biol,2011,15:683-689
    [23]Moldovan C, Thompson D. Molecular dynamics of the "hydrophobic patch" that immobilizes hydrophobin protein HFBII on silicon. J Mol Model,2011,17:2227-2235
    [24]Mereghetti P, Wade R C. Diffusion of hydrophobin proteins in solution and interactions with a graphite surface. BMC Biophysics,2011,4:DOI:10.1186/2046-1682-1184-1189
    [25]Zangi R, de Vocht M L, Robillard G T, et al. Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface. Biophys J,2002,83:112-124
    [26]Fan H, Wang X Q, Zhu J, et al. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface. Proteins,2006,64:863-873
    [27]Hakanpaa J, Szilvay G R, Kaljunen H, et al. Two crystal structures of Trichoderma reesei hydrophobin HFBI-the structure of a protein amphiphile with and without detergent interaction. Protein Sci,2006,15:2129-2140
    [28]Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis,1997,18:2714-2723
    [29]Ismail A E, Grest G S, Heine D R, et al. Interfacial structure and dynamics of siloxane systems:PDMS-vapor and PDMS-water. Macromolecules,2009,42:3186-3194
    [30]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [31]MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B,1998,102:3586-3616
    [32]Mackerell A D, Feig M, Brooks C L. Extending the treatment of backbone energetics in protein force fields:limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem,2004,25: 1400-1415
    [33]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [34]Bahar I, Zuniga I, Dodge R, et al. Conformational statistics of poly(dimethylsiloxane).1. Probability distribution of rotational isomers from molecular dynamics simulations. Macromolecules,1991,24:2986-2992
    [35]Smith J S, Borodin O, Smith G D. A quantum chemistry based force field for poly(dimethylsiloxane). J Phys Chem B,2004,108:20340-20350
    [36]Schneemilch M, Quirke N. Effect of oxidation on the wettability of poly(dimethylsiloxane) surfaces. J Chem Phys,2007,127:114701-114707
    [37]Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys,1995,103:4613-4621
    [38]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys,1992,97:1990-2001
    [39]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [40]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [41]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [42]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [43]Kollman P A, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Acc Chem Res,2000, 33:889-897
    [44]Konecny R. iAPBS interface on the web:http://mccammon.ucsd.edu/iapbs.
    [45]Baker N A, Sept D, Joseph S, et al. Electrostatics of nanosystems:application to microtubules and the ribosome. Proc Natl Acad Sci USA,2001,98:10037-10041
    [46]Askolin S, Linder M, Scholtmeijer K, et al. Interaction and comparison of a class Ⅰ hydrophobin from Schizophyllum commune and class Ⅱ hydrophobins from Trichoderma reesei. Biomacromolecules,2006,7:1295-1301
    [47]Sung W C, Chang C C, Makamba H, et al. Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem,2008, 80:1529-1535
    [48]刘英哲,蔡文生,邵学广.疏水蛋白吸附碳纳米管的分子动力学模拟.高等学校化学学报,2012,33:2013-2018
    [49]Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol,1982,157:105-132
    [1]Tint G S, Irons M, Elias E R, et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. New Engl J Med,1994,330:107-113
    [2]Battaile K P, Steiner R D. Smith-Lemli-Opitz syndrome:the first malformation syndrome associated with defective cholesterol synthesis. Mol Genet Metab,2000,71:154-162
    [3]Ohvo-Rekila H, Ramstedt B, Leppimaki P, et al. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res,2002,41:66-97
    [4]Epand R M. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res,2006,45:279-294
    [5]Rog T, Pasenkiewicz-Gierula M, Vattulainen I, et al. Ordering effects of cholesterol and its analogues. Biochim Biophys Acta,2009,1788:97-121
    [6]Yu H, Patel S B. Recent insights into the Smith-Lemli-Opitz syndrome. Clin Genet,2005, 68:383-391
    [7]Correa-Cerro L S, Porter F D.3 beta-hydroxysterol Delta(7)-reductase and the Smith-Lemli-Opitz syndrome. Mol Genet Metab,2005,84:112-126
    [8]Berkowitz M L. Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta,2009,1788:86-96
    [9]Wassall S R, Stillwell W. Polyunsaturated fatty acid-cholesterol interactions:domain formation in membranes. Biochim Biophys Acta,2009,1788:24-32
    [10]Niemela P S, Hyvonen M T, Vattulainen I. Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta,2009,1788:122-135
    [11]Pandit S A, Scott H L. Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta,2009,1788:136-148
    [12]Rog T, Vattulainen I, Jansen M, et al. Comparison of cholesterol and its direct precursors along the biosynthetic pathway:effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. J Chem Phys,2008,129: 154508-154517
    [13]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [14]Klauda J B, Venable R M, Freites J A, et al. Update of the CHARMM all-atom additive force field for lipids:validation on'six lipid types. J Phys Chem B,2010,114:7830-7843
    [15]Pitman M C, Suits F, MacKerell A D, et al. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesteral. Biochemistry,2004,43:15318-15328
    [16]Henin J, Shinoda W, Klein M L. United-atom acyl chains for CHARMM phospholipids. J Phys Chem B,2008,112:7008-7015
    [17]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [18]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [19]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [20]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys,1992,97:1990-2001
    [21]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [22]Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys,1995,103:4613-4621
    [23]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [24]Klepeis J L, Lindorff-Larsen K, Dror R O, et al. Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struc Biol,2009,19:120-127
    [25]Olsen B N, Schlesinger P H, Baker N A. Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J Am Chem Soc,2009,131: 4854-4865
    [26]Falck E, Patra M, Karttunen M, et al. Lessons of slicing membranes:interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J,2004,87: 1076-1091
    [27]Aittoniemi J, Rog T, Niemela P, et al. Tilt:major factor in sterols'ordering capability in membranes. J Phys Chem B,2006,110:25562-25564
    [28]Davis J H. The description of membrane lipid conformation, order and dynamics by H-2-NMR. Biochimica Et Biophysica Acta,1983,737:117-171
    [29]Douliez J P, Leonard A, Dufourc E J. Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J,1995, 68:1727-1739
    [30]Keller R K, Arnold T P, Fliesler S J. Formation of 7-dehydrocholesterol-containing membrane rafts in vitro and in vivo, with relevance to the Smith-Lemli-Opitz syndrome. J Lipid Res,2004,45:347-355
    [31]Xu X L, Bittman R, Duportail G, et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem, 2001,276:33540-33546
    [32]Wolf C, Chachaty C. Compared effects of cholesterol and 7-dehydrocholesterol on sphingomyelin-glycerophospholipid bilayers studied by ESR. Biophys Chem,2000,84: 269-279
    [1]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science,2002,297:787-792
    [2]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev,2006, 106:1105-1136
    [3]Lu F S, Gu L R, Meziani M J, et al. Advances in bioapplications of carbon nanotubes. Adv Mater,2009,21:139-152
    [4]Li F, Cheng H M, Bai S, et al. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett,2000,77:3161-3163
    [5]Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett,2000,84:5552-5555
    [6]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science,1999,286:1127-1129
    [7]Wang Q H, Setlur A A, Lauerhaas J M, et al. A nanotube-based field-emission flat panel display. Appl Phys Lett,1998,72:2912-2913
    [8]Cao G, Lee Y Z, Peng R, et al. A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source. Phys Med Biol,2009,54:2323-2340
    [9]Anantram M P, Leonard F. Physics of carbon nanotube electronic devices. Rep Prog Phys, 2006,69:507-561
    [10]Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics. Nat Nanotechnol,2007,2: 605-615
    [11]Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature,1992,358: 220-222
    [12]Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett,1995,243:49-54
    [13]Endo M, Takeuchi K, Igarashi S, et al. The production and structure of pyrolytic carbon nanotubes. J Phys Chem Solids,1993,54:1841-1848
    [14]Banerjee S, Hemraj-Benny T, Wong S S. Routes towards separating metallic and semiconducting nanotubes. J Nanosci Nanotechnol,2005,5:841-855
    [15]Krupke R, Hennrich F. Separation techniques for carbon nanotubes. Adv Eng Mater,2005,7: 111-116
    [16]Haddon R C, Sippel J, Rinzler A G,et al. Purification and separation of carbon nanotubes. Mater Res Bull,2004,29:252-259
    [17]Kam N W S, Jessop T C, Wender P A, et al. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc,2004,126:6850-6851
    [18]Kam N W S, Dai H J. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. J Am Chem Soc,2005,127:6021-6026
    [19]Kam N W S, Liu Z, Dai H J. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc,2005,127:12492-12493
    [20]Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun,2004,16-17
    [21]Liu Y, Zhao Y, Sun B, et al. Understanding the toxicity of carbon nanotubes. Ace Chem Res, 2012,46:702-713
    [22]Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95-98
    [23]Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Ace Chem Res,2002,35:1087-1095
    [24]Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes. Ace Chem Res,2002,35:1105-1113
    [25]Pekker S, Salvetat J P, Jakab E, et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys Chem B,2001,105:7938-7943
    [26]Boul P J, Liu J, Mickelson E T, et al. Reversible sidewall functionalization of buckytubes. Chem Phys Lett,1999,310:367-372
    [27]Bahr J L, Yang J P, Kosynkin D V, et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:a bucky paper electrode. J Am Chem Soc, 2001,123:6536-6542
    [28]Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes. J Am Chem Soc,2002,124:760-761
    [29]Hersam M C. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol,2008,3:387-394
    [30]Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed,2002, 41:1853-1859
    [31]O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett,2001,342:265-271
    [32]Didenko V V, Moore V C, Baskin D S, et al. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping. Nano Lett,2005,5:1563-1567
    [33]Star A, Liu Y, Grant K, et al. Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules,2003,36:553-560
    [34]Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed,2001,40:1721-1725
    [35]Nish A, Hwang J Y, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol,2007,2:640-646
    [36]Naito M, Nobusawa K, Onouchi H, et al. Stiffness- and conformation-dependent polymer wrapping onto single-walled carbon nanotubes. J Am Chem Soc,2008,130:16697-16703
    [37]Chen J, Liu H Y, Weimer W A, et al. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc,2002,124:9034-9035
    [38]Lemasson F A, Strunk T, Gerstel P, et al. Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). J Am Chem Soc, 2011,133:652-655
    [39]Antaris A L, Seo J W T, Green A A, et al. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano,2010,4: 4725-4732
    [40]Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci, 2009,14:364-371
    [41]Vaisman L, Wagner H D, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface,2006,128:37-46
    [42]Yurekli K, Mitchell C A, Krishnamoorti R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc,2004,126: 9902-9903
    [43]Moore V C, Strano M S, Haroz E H, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett,2003,3:1379-1382
    [44]Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett,2003,3:269-273
    [45]Wenseleers W, Vlasov, II, Goovaerts E, et al. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater,2004,14: 1105-1112
    [46]Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol,2006,1:60-65
    [47]Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater,2003,2:338-342
    [48]Zheng M, Jagota A, Strano M S, et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science,2003,302:1545-1548
    [49]Strano M S, Zheng M, Jagota A, et al. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett,2004,4:543-550
    [50]Huang X Y, McLean R S, Zheng M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem,2005,77: 6225-6228
    [51]Lustig S R, Jagota A, Khripin C, et al. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J Phys Chem B,2005, 109:2559-2566
    [52]Tu X, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature,2009,460:250-253
    [53]Dieckmann G R, Dalton A B, Johnson P A, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc,2003,125:1770-1777
    [54]Zorbas V, Ortiz-Acevedo A, Dalton A B, et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J Am Chem Soc,2004,126: 7222-7227
    [55]Ortiz-Acevedo A, Xie H, Zorbas V, et al. Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. J Am Chem Soc,2005,127:9512-9517
    [56]Karajanagi S S, Yang H C, Asuri P, et al. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir,2006,22:1392-1395
    [57]Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew Chem Int Ed, 2002,41:2508-2512
    [58]Kim O K, Je J T, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc,2003,125:4426-4427
    [59]Liu Y, Liang P, Zhang H Y, et al. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small,2006,2:874-878
    [60]Liu Y, Yu Z L, Zhang Y M, et al. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc,2008,130:10431-10439
    [61]Numata M, Shinkai S.'Supramolecular wrapping chemistry'by helix-forming polysaccharides:a powerful strategy for generating diverse polymeric nano-architectures. Chem Commun,2011,47:1961-1975
    [62]Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys,2001, 115:9169-9183
    [63]Rodriguez-Gomez D, Darve E, Pohorille A. Assessing the efficiency of free energy calculation methods. J Chem Phys,2004,120:3563-3578
    [64]Henin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys,2004,121:2904-2914
    [65]Henin J, Fiorin G, Chipot C, et al. Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput,2009,6:35-47
    [66]Kollman P A, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Ace Chem Res,2000, 33:889-897
    [67]Srinivasan J, Cheatham T E, Cieplak P, et al. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc,1998,120:9401-9409
    [68]Tallury S S, Pasquinelli M A. Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B,2010,114: 9349-9355
    [69]Tallury S S, Pasquinelli M A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B,2010,114:4122-4129
    [70]Guo R H, Tan Z, Xu K L, et al. Length-dependent assembly of a stiff polymer chain at the interface of a carbon nanotube. ACS Macro Lett,2012,1:977-981
    [71]Bernardi M, Giulianini M, Grossman J C. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells. ACS Nano,2010,4:6599-6606
    [72]Caddeo C, Melis C, Colombo L, et al. Understanding the helical wrapping of poly(3-hexylthiophene) on carbon nanotubes. J Phys Chem C,2010,114:21109-21113
    [73]Caddeo C, Dessi R, Melis C, et al. Poly(3-hexylthiophene) adhesion on zinc oxide nanoneedles. J Phys Chem C,2011,115:16833-16837
    [74]Kang Y K, Lee O S, Deria P, et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett,2009,9:1414-1418
    [75]Uddin N M, Capaldi F M, Farouk B. Molecular dynamics simulations of the interactions and dispersion of carbon nanotubes in polyethylene oxide/water systems. Polymer,2011,52: 288-296
    [76]Roy A K, Farmer B L, Varshney V, et al. Importance of interfaces in governing thermal transport in composite materials:modeling and experimental perspectives. ACS Appl Mater Interfaces,2012,4:545-563
    [77]Karatrantos A, Composto R J, Winey K I, et al. Structure and conformations of polymer/SWCNT nanocomposites. Macromolecules,2011,44:9830-9838
    [78]Karatrantos A, Composto R J, Winey K I, et al. Entanglements and dynamics of polymer melts near a SWCNT. Macromolecules,2012,45:7274-7281
    [79]Angelikopoulos P, A1 Harthy S, Bock H. Structural forces from directed self-assembly. J Phys Chem B,2009,113:13817-13824
    [80]Angelikopoulos P, Bock H. Directed self-assembly of surfactants in carbon nanotube materials. J Phys Chem B,2008,112:13793-13801
    [81]Angelikopoulos P, Bock H. The differences in surfactant adsorption on carbon nanotubes and their bundles. Langmuir,2010,26:899-907
    [82]Angelikopoulos P, Bock H. The nanoscale cinderella problem:design of surfactant coatings for carbon nanotubes. J Phys Chem Lett,2011,2:139-144
    [83]Angelikopoulos P, Bock H. The science of dispersing carbon nanotubes with surfactants. Phys Chem Chem Phys,2012,14:9546-9557
    [84]Angelikopoulos P, Gromoy A, Leen A, et al. Dispersing individual single-wall carbon nanotubes in aqueous surfactant solutions below the cmc. J Phys Chem C,2010,114:2-9
    [85]Angelikopoulos P, Schou K, Bock H. Surfactant-induced forces between carbon nanotubes. Langmuir,2010,26:18874-18883
    [86]Tummala N R, Striolo A. Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates:structural features and counterion dynamics. Phys Rev E,2009,80:021408
    [87]Tummala N R, Striolo A. SDS surfactants on carbon nanotubes:aggregate morphology. ACS Nano,2009,3:595-602
    [88]Tummala N R, Morrow B H, Resasco D E, et al. Stabilization of aqueous carbon nanotube dispersions using surfactants:insights from molecular dynamics simulations. ACS Nano, 2010,4:7193-7204
    [89]Suttipong M, Tummala N R, Kitiyanan B, et al. Role of surfactant molecular structure on self-assembly:aqueous SDBS on carbon nanotubes. J Phys Chem C,2011,115: 17286-17296
    [90]Lin S C, Blankschtein D. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes:a molecular dynamics simulation study. J Phys Chem B,2010,114:15616-15625
    [91]Lin S C, Shih C J, Strano M S, et al. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. J Am Chem Soc,2011,133:12810-12823
    [92]Lin S C, Hilmer A J, Mendenhall J D, et al. Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions. J Am Chem Soc,2012,134:8194-8204
    [93]Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett,2008,8:69-75
    [94]Johnson R R, Kohlmeyer A, Johnson A T C, et al. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9:537-541
    [95]Johnson R R, Johnson A T C, Klein M L. The nature of DNA-base-carbon-nanotube interactions. Small,2010,6:31-34
    [96]Roxbury D, Manohar S, Jagota A. Molecular simulation of DNA beta-sheet and beta-barrel structures on graphite and carbon nanotubes. J Phys Chem C,2010,114:13267-13276
    [97]Roxbury D, Jagota A, Mittal J. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J Am Chem Soc,2011,133: 13545-13550
    [98]Roxbury D, Jagota A, Mittal J. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes. J Phys Chem B,2012,117:132-140
    [99]Roxbury D, Mittal J, Jagota A. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett,2012,12:1464-1469
    [100]Balamurugan K, Gopalakrishnan R, Raman S S, et al. Exploring the changes in the structure of alpha-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J Phys Chem B,2010,114:14048-14058
    [101]Balamurugan K, Singam ERA, Subramanian V. Effect of curvature on the alpha-helix breaking tendency of carbon based nanomaterials. J Phys Chem C,2011,115:8886-8892
    [102]Chiu C C, Dieckmann G R, Nielsen S O. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B,2008, 112:16326-16333
    [103]Chiu C C, Dieckmann G R, Nielsen S O. Role of peptide-peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes:a molecular dynamics study. Biopolymers,2009,92:156-163
    [104]Chiu C C, Maher M C, Dieckmann G R, et al. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano,2010,4:2539-2546
    [105]Kang Y, Wang Q, Liu Y C, et al. Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. J Phys Chem B,2008,112:4801-4807
    [106]Shen J W, Wu T, Wang Q, et al. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials,2008,29:3847-3855
    [107]Chen Q, Wang Q, Liu Y C, et al. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. J Chem Phys,2009,131:015101
    [108]Kang Y, Liu Y C, Wang Q, et al. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials,2009,30:2807-2815
    [109]Shen J W, Wu T, Wang Q, et al. Adsorption of insulin peptide on charged single-walled carbon nanotubes:significant role of ordered water molecules. Chemphyschem,2009,10: 1260-1269
    [110]Kang Y, Wang Q, Liu Y C, et al. Diameter selectivity of protein encapsulation in carbon nanotubes. J Phys Chem B,2010,114:2869-2875
    [111]Xie Y H, Soh A K. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater Lett,2005,59:971-975
    [112]Tsuchiya Y, Komori T, Hirano M, et al. A polysaccharide-based container transportation system powered by molecular motors. Angew Chem Int Ed,2010,49:724-727
    [113]Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem,2004,76:5045-5050
    [114]Zhang X K, Meng L J, Lu Q H. Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes:a quantitative study of the surface properties of biomimetic nanofibrous scaffolds. ACS Nano,2009,3:3200-3206
    [115]Kurppa K, Jiang H, Szilvay G R, et al. Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotube. Angew Chem Int Ed, 2007,46:6446-6449
    [116]Collins P G, Zettl A, Bando H, et al. Nanotube nanodevice. Science,1997,278:100-102
    [117]Sazonova V, Yaish Y, Ustunel H, et al. A tunable carbon nanotube electromechanical oscillator. Nature,2004,431:284-287
    [118]Portney N G, Ozkan M. Nano-oncology:drug delivery, imaging, and sensing. Anal Bioanal Chem,2006,384:620-630
    [119]Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater,2005,17:17-29
    [120]Britz D A, Khlobystov A N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev,2006,35:637-659
    [121]Chen J, Dyer M J, Yu M F. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc,2001,123:6201-6202
    [122]Chambers G, Carroll C, Farrell G F, et al. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett,2003,3:843-846
    [123]Dodziuk H, Ejchart A, Anczewski W, et al. Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin. Chem Commun,2003, 986-987
    [124]Gao H J, Kong Y, Cui D X, et al. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett,2003,3:471-473
    [125]Martin W, Zhu W S, Krilov G. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in Water. J Phys Chem B,2008,112:16076-16089
    [126]Yarotski D A, Kilina S V, Talin A A, et al. Scanning tunneling microscopy of DNA-wrapped carbon nanotubes. Nano Lett,2009,9:12-17
    [127]Ito T, Sun L, Crooks R M. Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem Commun,2003,1482-1483
    [128]Tonnesen H H, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Phann,2002,28: 621-630
    [129]Zheng Q, Xue Q, Yan K, et al. Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules. J Phys Chem C,2007,111: 4628-4635
    [130]Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem,2005,26:1781-1802
    [131]Kuttel M, Brady J W, Naidoo K J. Carbohydrate solution simulations:producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem,2002,23:1236-1243
    [132]Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys,1983,79:926-935
    [133]Feller S E, Zhang Y, Pastor R W, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys,1995,103:4613-4621
    [134]Darden T, York D, Pedersen L. Particle mesh Ewald:an N log (N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092
    [135]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys,1992,97:1990-2001
    [136]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J Comput Phys, 1977,23:327-341
    [137]Andersen H C. Rattle:a "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys,1983,52:24-34
    [138]Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics. J Mol Graph,1996, 14:33-38
    [139]Grant G T, Morris E R, Rees D A, et al. Biological interactions between polysaccharides and divalent cations:the egg-box model. FEBS Lett,1973,32:195-198
    [140]Braccini I, Grasso R P, Perez S. Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions:a molecular modeling investigation. Carbohyd Res,1999,317:119-130
    [141]Braccini I, Perez S. Molecular basis of Ca2+-induced gelation in alginates and pectins:the egg-box model revisited. Biomacromolecules,2001,2:1089-1096
    [142]Perry T D I V, Cygan R T, Mitchell R. Molecular models of alginic acid:interactions with calcium ions and calcite surfaces. Geochim Cosmochim Ac,2006,70:3508-3532
    [143]Sikorski P, Mo F, Skjak-Braek G, et al. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules,2007,8: 2098-2103
    [144]Donati I, Holtan S, Morch Y A, et al. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules,2005,6:1031-1040
    [145]Park S, Khalili-Araghi F, Tajkhorshid E, et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J Chem Phys,2003,119: 3559-3566
    [146]Ferber D. Gene therapy:safer and virus-free? Science,2001,294:1638-1642
    [147]Vijayanathan V, Thomas T, Shirahata A, et al. DNA condensation by polyamines:a laser light scattering study of structural effects. Biochemistry,2001,40:13644-13651
    [148]Matulis D, Rouzina I, Bloomfield V A. Thermodynamics of cationic lipid binding to DNA and DNA condensation:roles of electrostatics and hydrophobicity. J Am Chem Soc,2002, 124:7331-7342
    [149]Choi J S, Joo D K, Kim C H, et al. Synthesis of a barbell-like triblock copolymer, poly(L-lysine) dendrimer-block-poly(ethylene glycol)-block-poly(L-lysine) dendrimer, and its self-assembly with plasmid DNA. J Am Chem Soc,2000,122:474-480
    [150]Cai D, Mataraza J M, Qin Z H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods,2005,2:449-454
    [151]Singh R, Pantarotto D, McCarthy D, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes:toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc,2005,127:4388-4396
    [152]Rinaudo M. Chitin and chitosan:properties and applications. Prog Polym Sci,2006,31: 603-632
    [153]Kumar A, Jena P K, Behera S, et al. Efficient DNA and peptide delivery by functionalized chitosan-coated single-wall carbon nanotubes. J Biomed Nanotechnol,2005,1:392-396
    [154]Sikorski P, Hori R, Wada M. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules,2009,10:1100-1105
    [155]Okuyama K, Noguchi K, Miyazawa T, et al. Molecular and crystal structure of hydrated chitosan. Macromolecules,1997,30:5849-5855
    [156]MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B,1998,102:3586-3616
    [157]Liu Y Z, Chipot C, Shao X G, et al. Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J Phys Chem B,2010,114:5783-5789
    [158]Franca E F, Lins R D, Freitas L C G, et al. Characterization of chitin and chitosan molecular structure in aqueous solution. J Chem Theory Comput,2008,4:2141-2149
    [159]Karachevtsev M V, Karachevtsev V A. Peculiarities of homooligonucleotides wrapping around carbon nanotubes:molecular dynamics modeling. J Phys Chem B,2011,115: 9271-9279
    [160]Friling S R, Norman R, Walsh T R. Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations. Nanoscale, 2010,2:98-106
    [161]Wallace E J, D'Rozario R S G, Sanchez B M, et al. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale,2010,2: 967-975
    [162]Walsh T R, Tomasio S M. Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Mol Biosyst,2010,6:1707-1718
    [163]Rungrotmongkol T, Arsawang U, Iamsamai C, et al. Increased dispersion and solubility of carbon nanotubes noncovalently modified by the polysaccharide biopolymer, chitosan:MD simulations. Chem Phys Lett,2011,507:134-137
    [164]Liu Y Z, Chipot C, Shao X G, et al. Free-energy landscape of the helical wrapping of a carbon nanotube by a polysaccharide. J Phys Chem C,2011,115:1851-1856
    [165]Amadei A, Linssen A B, Berendsen H J. Essential dynamics of proteins. Proteins,1993,17: 412-425
    [166]Popov D, Buleon A, Burghammer M, et al. Crystal structure of a-amylose:a revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules,2009,42: 1167-1174
    [167]Cai W S, Sun T T, Shao X G, et al. Can the anomalous aqueous solubility of beta-cyclodextrin be explained by its hydration free energy alone? Phys Chem Chem Phys, 2008,10:3236-3243
    [168]Yang L Q, Zhang B F, Liang Y T, et al. In situ synthesis of amylose/single-walled carbon nanotubes supramolecular assembly. Carbohyd Res,2008,343:2463-2467
    [169]Linder M B. Hydrophobins:proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci,2009,14:356-363
    [170]Hakanpaa J, Szilvay G R, Kaljunen H, et al.Two crystal structures of Trichodenna reesei hydrophobin HFBI-the structure of a protein amphiphile with and without detergent interaction. Protein Sci,2006,15:2129-2140
    [171]Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis,1997,18:2714-2723
    [172]Mackerell A D, Feig M, Brooks C L. Extending the treatment of backbone energetics in protein force fields:limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem,2004,25: 1400-1415
    [173]Konecny R. iAPBS interface on the web:http://mccammon.ucsd.edu/iapbs.
    [174]Baker N A, Sept D, Joseph S, et al. Electrostatics of nanosystems:application to microtubules and the ribosome. Proc Natl Acad Sci USA,2001,98:10037-10041
    [175]Wong L S, Khan F, Micklefield J. Selective covalent protein immobilization:strategies and applications. Chem Rev,2009,109:4025-4053
    [176]Linder M, Szilvay G R, Nakari-Setala T, et al. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Sci,2002, 11:2257-2266
    [177]Palomo J M, Penas M M, Fernandez-Lorente G, et al. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules,2003,4: 204-210
    [178]Corvis Y, Walcarius A, Rink R, et al. Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem,2005,77:1622-1630
    [179]Wang Z F, Huang Y J, Li S, et al. Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectron,2010,26:1074-1079
    [180]Valo H K, Laaksonen P H, Peltonen L J, et al. Multifunctional hydrophobin:toward functional coatings for drug nartoplarticles. ACS Nano,2010,4:1750-1758
    [181]von Vacano B, Xu R, Hirth S, et al. Hydrophobin can prevent secondary protein adsorption on hydrophobic substrates without exchange. Anal Bioanal Chem,2011,400:2031-2040
    [182]Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature,2009,460:1117-1121
    [183]Kisko K, Szilvay G R, Vuorimaa E, et al. Self-assembled films of hydrophobin proteins HFBI and HFBII studied in situ at the air/water interface. Langmuir,2009,25:1612-1619
    [184]Paananen A, Vuorimaa E, Torkkeli M, et al. Structural hierarchy in molecular films of two class Ⅱ hydrophobins. Biochemistry,2003,42:5253-5258
    [185]Hakanpaa J, Paananen A, Askolin S, et al. Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem,2004,279:534-539
    [186]Kallio J M, Rouvinen J. Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII. Chem Commun,2011,47:9843-9845
    [187]Hektor H J, Scholtmeijer K. Hydrophobins:proteins with potential. Curr Opin Biotechnol, 2005,16:434-439
    [188]Laaksonen P, Kainlauri M, Laaksonen T, et al. Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins. Angew Chem Int Ed,2010, 49:4946-4949
    [189]Qin M, Wang L K, Feng X Z, et al. Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization. Langmuir,2007,23: 4465-4471
    [190]Zhou J W, Ellis A V, Voelcker N H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis,2010,31:2-16
    [191]Ouyang M, Yuan C, Muisener R J, et al. Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater,2000,12:1591-1596
    [192]Wang R, Yang Y L, Qin M, et al. Biocompatible hydrophilic modifications of poly(dimethylsiloxane) using self-assembled hydrophobins. Chem Mater,2007,19: 3227-3231
    [193]Latour R A. Molecular simulation of protein-surface interactions:benefits, problems, solutions, and future directions. Biointerphases,2008,3:Fc2-Fc12
    [194]Szott L M, Horbett T A. Protein interactions with surfaces:computational approaches and repellency. Curr Opin Chem Biol,2011,15:683-689
    [195]Moldovan C, Thompson D. Molecular dynamics of the "hydrophobic patch" that immobilizes hydrophobin protein HFBII on silicon. J Mol Model,2011,17:2227-2235
    [196]Mereghetti P, Wade R C. Diffusion of hydrophobin proteins in solution and interactions with a graphite surface. BMC Biophysics,2011,4:DOI:10.1186/2046-1682-1184-1189
    [197]Zangi R, de Vocht M L, Robillard G T, et al. Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface. Biophys J,2002,83:112-124
    [198]Fan H, Wang X Q, Zhu J, et al. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface. Proteins,2006,64:863-873
    [199]Ismail A E, Grest G S, Heine D R, et al. Interfacial structure and dynamics of siloxane systems:PDMS-vapor and PDMS-water. Macromolecules,2009,42:3186-3194
    [200]Bahar I, Zuniga I, Dodge R, et al. Conformational statistics of poly(dimethylsiloxane).1. Probability distribution of rotational isomers from molecular dynamics simulations. Macromolecules,1991,24:2986-2992
    [201]Smith J S, Borodin O, Smith G D. A quantum chemistry based force field for poly(dimethylsiloxane). J Phys Chem B,2004,108:20340-20350
    [202]Schneemilch M, Quirke N. Effect of oxidation on the wettability of poly(dimethylsiloxane) surfaces. J Chem Phys,2007,127:114701-114707
    [203]Askolin S, Linder M, Scholtmeijer K, et al. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichodenna reesei. Biomacromolecules,2006,7:1295-1301
    [204]Sung W C, Chang C C, Makamba H, et al. Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem,2008, 80:1529-1535
    [205]刘英哲,蔡文生,邵学广.疏水蛋白吸附碳纳米管的分子动力学模拟.高等学校化学学报,2012,33:2013-2018
    [206]Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol,1982,157:105-132
    [207]Tint G S, Irons M, Elias E R, et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. New Engl J Med,1994,330:107-113
    [208]Battaile K P, Steiner R D. Smith-Lemli-Opitz syndrome:the first malformation syndrome associated with defective cholesterol synthesis. Mol Genet Metab,2000,71:154-162
    [209]Ohvo-Rekila H, Ramstedt B, Leppimaki P, et al. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res,2002,41:66-97
    [210]Epand R M. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res,2006,45:279-294
    [211]Rog T, Pasenkiewicz-Gierula M, Vattulainen I, et al. Ordering effects of cholesterol and its analogues. Biochim Biophys Acta,2009,1788:97-121
    [212]Yu H, Patel S B. Recent insights into the Smith-Lemli-Opitz syndrome. Clin Genet,2005, 68:383-391
    [213]Correa-Cerro L S, Porter F D.3 beta-hydroxysterol Delta(7)-reductase and the Smith-Lemli-Opitz syndrome. Mol Genet Metab,2005,84:112-126
    [214]Berkowitz M L. Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta,2009,1788:86-96
    [215]Wassall S R, Stillwell W. Polyunsaturated fatty acid-cholesterol interactions:domain formation in membranes. Biochim Biophys Acta,2009,1788:24-32
    [216]Niemela P S, Hyvonen M T, Vattulainen I. Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta,2009,1788:122-135
    [217]Pandit S A, Scott H L. Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta,2009,1788:136-148
    [218]Rog T, Vattulainen I, Jansen M, et al. Comparison of cholesterol and its direct precursors along the biosynthetic pathway:effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. J Chem Phys,2008,129: 154508-154517
    [219]Klauda J B, Venable R M, Freites J A, et al. Update of the CHARMM all-atom additive force field for lipids:validation on six lipid types. J Phys Chem B,2010,114:7830-7843
    [220]Pitman M C, Suits F, MacKerell A D, et al. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesteral. Biochemistry,2004,43:15318-15328
    [221]Henin J, Shinoda W, Klein M L. United-atom acyl chains for CHARMM phospholipids. J Phys Chem B,2008,112:7008-7015
    [222]Klepeis J L, Lindorff-Larsen K, Dror R O, et al. Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struc Biol,2009,19:120-127
    [223]Olsen B N, Schlesinger P H, Baker N A. Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J Am Chem Soc,2009,131: 4854-4865
    [224]Falck E, Patra M, Karttunen M, et al. Lessons of slicing membranes:interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J,2004,87: 1076-1091
    [225]Aittoniemi J, Rog T, Niemela P, et al. Tilt:major factor in sterols' ordering capability in membranes. J Phys Chem B,2006,110:25562-25564
    [226]Davis J H. The description of membrane lipid conformation, order and dynamics by H-2-NMR. Biochimica Et Biophysica Acta,1983,737:117-171
    [227]Douliez J P, Leonard A, Dufourc E J. Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J,1995, 68:1727-1739
    [228]Keller R K, Arnold T P, Fliesler S J. Formation of 7-dehydrocholesterol-containing membrane rafts in vitro and in vivo, with relevance to the Smith-Lemli-Opitz syndrome. J Lipid Res,2004,45:347-355
    [229]Xu X L, Bittman R, Duportail G, et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem, 2001,276:33540-33546
    [230]Wolf C, Chachaty C. Compared effects of cholesterol and 7-dehydrocholesterol on sphingomyelin-glycerophospholipid bilayers studied by ESR. Biophys Chem,2000,84: 269-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700